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Abstract 
Complexity of modern networks and service solutions raises several challenges in the design and 
development of communication and content services. The unbearable costs in configuration and 
management call for autonomic approaches, in which services are able to self-configure and self-
adapt their activities without (or with a limited) human intervention. The need for ubiquity of service 
provisioning calls for the capability of services of adapting their behaviour depending on the current 
situation in which they are used. 

In a previous Deliverable, D8.2, the need for innovative approaches facilitating the development and 
execution of autonomic and situation-aware services have been deeply discussed and analysed. 
CASCADAS project has the main goal of identifying and developing an innovative component-ware 
architecture for the development of innovative situation aware and autonomic services.  
The Autonomic Communication Element (ACE) is the basic component abstraction over which the 
CASCADAS vision is built. The project development activities aims at prototyping a toolkit based on 
distributed ACES characterised by autonomic features (self-configuration, self-optimization, self-
healing, self-protection, etc). Services will be created and executed (in a distributed way) by the self-
aggregation of ACEs. This architecture will be demonstrated in application use-case by means of a 
tool-kit developed by the Consortium. 
 
This deliverable has two main objectives: the former is to provide a preliminary description of the 
first release of the toolkit, a first step towards the open source Cascadas toolkit; the latter is to report 
a preliminary description of the roadmap leading to an integrated fully-fledged released of the toolkit. 
Moreover the deliverable will describe (in synthesis) the application use-case that will be adopted to 
demonstrate the features of the toolkit 
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1 Document Overview 

During the CASCADAS build-up phase (M1-M18), WP1 has carried out the design and 
development of a first release of the toolkit based on distributed components, ACE, as a 
basic run-time environment (e.g. a distributed s/w infrastructure to support ACE life-cycle 
and interactions). During the same period, the other WPs (WP2 for supervision, WP3 for 
self-organization, WP4 for security, WP5 for knowledge networks) have developed libraries 
of tools and proof-of-concept elements as a collection of (documented) software modules, 
suitable to be used by third parties and ready to be ported (and then integrated) into the 
run-time environment (developed by WP1). Then full integration phase of the toolkit will 
take place during M18-M24.  

This deliverable has two main objectives: the former is to provide a preliminary description 
of the first release of the toolkit, a first step towards the open source Cascadas toolkit; the 
latter is to report a preliminary description of the roadmap leading to an integrated fully-
fledged released of the toolkit.  

 Specifically, this first version of the ACE-based toolkit includes basic tools for creating and 
deploying ACEs; this is being used by the other WPs to integrate and release specific 
libraries devoted to implement   self-aggregation algorithms, knowledge network services, 
pervasive supervision services, and security services.  

At the end of the second year of the project all these implemented tools will form the first 
release of the open source Cascadas integrated toolkit. The effectiveness of the toolkit will 
be demonstrated through the implementation of an application demonstrator according to 
the application-oriented approach adopted by our project. Therefore this deliverable will 
also describe the application use-case selected to demonstrate how the toolkit fulfils the 
Cascadas vision. 

2 Basic principles of the toolkit 

CASCADAS project has the main goal of identifying and developing an innovative 
component-ware architecture for the development of innovative situation aware and 
autonomic services.  
 
The Autonomic Communication Element (ACE) is the basic component abstraction over 
which the CASCADAS vision is built. The project development activities aims at prototyping 
a toolkit based on distributed ACES characterised by autonomic features (self-
configuration, self-optimization, self-healing, self-protection, etc). Services will be created 
and executed (in a distributed way) by the self-aggregation of ACEs. 
 

ACEs, the central components in CASCADAS are partially expected to be light weighted. 
The envisaged environment will contain a variety of ACEs, whose autonomic behaviour will 
not be realised by large and computational expensive subsystems but will emerge as an 
effect of ACE aggregation and cooperation amongst different system components.  Events 
are the sole means for communication among ACEs and between ACE subcomponents.  

The toolkit will provide the basic interfaces and technique aimed to support all the key 
aspects of Cascadas project .Generally speaking a mechanism (i.e., Functionality 
Repository) is enabled so that specific functionalities get deployed into the ACE instance 
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and get accessed via ACE events.  In this way all the specific algorithms elaborated by all 
the WPs are part of Specific Part Functionalities managed through the Functionality 
Repository. Only for the pervasive supervision in the toolkit is settled a specific inner 
feature as the pervasive supervision deals with the creation of dynamic, online feedback 
and control loops over an ensemble of ACEs. Such control loops will be a fundamental 
mechanism to manage ACEs activities in a decentralized and autonomic way. In the first 
release of the toolkit, functionality hooks and interfaces are available to monitor and 
supervise the Aces behaviour by establishing a contractual connection between the 
component under supervision and the supervision system expected from WP2. This 
basically means that the toolkit is able to send/receive events by the supervised ACE sub-
components to/from the supervision system where they are manage properly. 

3 Demonstration Use case 

The general scenario selected for demonstration considers a modern exhibition center, 
such as for instance a big museum or a stadium. We consider the presence in the 
exhibition center of a number of advertising screens, which can be used to display 
information about the exhibition itself as well as commercial advertisements. As of today, 
such screens display information cyclically, in a way independent of the situation (i.e., 
independent of who is actually close to that screen)In such type of contexts, it is realistic to 
foresee the presence of a pervasive infrastructure of embedded devices such as sensors 
of various types, WiFi connections, RFID tags and other location systems. Likewise, we 
consider realistic to assume that people in the crowd carry mobile devices, such as PDAs, 
smart phones and tablet PCs, which can be equipped with an RFID-based system to the 
extent of providing a sort of “ticketing system” capable of providing information. The typical 
information stored, that would aim to guarantee for instance that the user has paid the 
entrance fee and possibly other peculiar fees, would serve to store other information about 
the user itself. A “smart” service devoted to decide what information to display could exploit 
the availability of contextual information to adaptively decide what information to show on 
advertising screen the basis of the people around and of their activities and interests. This 
would increase the value of the displayed advertisement both for users and for advertising 
companies. 

The demonstrator that will be put in place will consider (see Figure 1): 

- One real screen devoted to actually display commercial in an adaptive way, 
depending on the surrounding users, properly controlled by an associated PC 

- Real users, each with an RFID-equipped device, that can get close to that screen 
and whose profiles can be tracked and analyzed anonymously for the sake of 
evaluating what advertisements to show. An RFID reader on the screen PC will 
make it possible to access RFID data. In addition, data on users’ mobile devices 
can be accessed by the PC via Bluetooth as well as via WiFi. 

- The execution of distributed auctions to sell the screen time slots. These auctions 
will take place by executing a number of ACEs on the CASCADAS distributed 
testbed, which will be connected via VPN to the local PC.  
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Figure 1 : Demonstrator scenario hardware configuration 

The software architecture of the system employed in this scenario will be fully based on the 
ACE toolkit. Up-to-date information whether local or remote, to any requesting ACE will be 
provided by the Knowledge Network allocated on the screen PC and implemented on the 
ACE toolkit as well. 

An ACE will be associated to the screen PC and will act as a “seller” for the time slots of 
the screen. Such ACE can advertise the auction in a (possibly remote) auction center, 
again realized via ACE. A variety of other ACEs will be instantiated on the remote 
CASCADAS testbed to act as bidders and to participate in auctions related to the selling of 
the screen time slots.  

Pervasive Advertisement 
The architecture for dealing with the specific part on pervasive advertisement considers the 
following. 

• RFID tickets: will include information, such as user ID and user interest, this latter 
in the simple and anonymous (age range, subject of interest) form. This data will be 
transmitted to the screen PC via the RFID and, translated into the XML format for 
Knowledge Atoms, will feed the knowledge network (see Figure 2). 
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Figure 2 Acquisition and processing of profiles in the knowledge network 

 

• Knowledge Network: Information mentioned above will be gathered by the screen 
PC, and will enter a knowledge network allocated on the PC itself. At any given 
time, the knowledge network will contain one knowledge atom for any user currently 
in range screen. Information contained in the knowledge network can be made 
available to any requesting ACE. Also, please note that access to individual 
knowledge atoms is always made possible for any ACE, thanks to the specific 
mechanisms integrated in ACE toolkit. 

3.1.2 Advertisement Auction System 
In the scenario, sequential time slots become available over time, each of them suitable for 
a particular type of audience. Such time slots become valuable to sellers interested in 
advertising their products and therefore, time slots are sold through an auction system. As 
a general rule, each time slot will need to be sold within stringent time constraints (e.g., 
while another advertisement is being displayed), so that real-time communications and 
high standard QoS networks become critical for the operation of the system.  

Although, time slots could be sold ahead in time in a real system possibly allowing the 
creation of a complex market for such slots (e.g. reselling), we will concentrate on a single-
slot selling to simplify the demonstrator. Therefore, the seller will always advertise the 
auction for the slot of time starting after the current one, and therefore auction duration will 
not have to exceed the duration of a slot. 
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Figure 3 Auction System in the demonstrator scenario 

In the scenario introduced as demonstrator, the machine communicating with the main 
display will act as a seller, while the item under auction is the concession to advertise, on 
the main screen, for a slot of time of fixed length. The actual auction will be conducted 
internally to a remote testbed, to whom the seller will be connected remotely through a 
Virtual Private Network (VPN). One of the machines on the testbed will act as Auction 
Centre (AC), facilitating the meeting between seller (that will contact the AC to ask the 
hosting of the auction advertisement) and bidders (that will ask the AC for retrieval of 
auctions). The rest of the machines in the testbed will act as bidders, competing for the slot 
of time under auction.  

The auction transaction starts with the seller advertising its will to sell an advertisement slot 
of time through an English auction. The AC receives the message and makes the auction 
advertisement available. Sometimes later, one or more bidders will ask the AC for retrieval 
of a specific good. Bidders then come acquainted of the slot of time under auction, and 
decide whether to place a bid or not. Placement of a bid is realized by direct point-to-point 
communication with the seller. This, upon reception of a bid, notifies all competitors, and 
particularly the new highest bidder, of a new highest bid and contacts the AC to update the 
auction status.  

Bidding decisions are taken, in the auction system, according to a policy which defines 
what and how parameters need to be considered when taking decisions. These are then 
evaluated mathematically through an aggregate function, and the policy contains facilities 
to map the value obtained by the function to the final decision to be taken. 

The widths of the buckets, as well as the actual value of the consideration factor for each 
of the aspects defined, are assigned dynamically. Assignment will be based on current 
environmental conditions, i.e. context-awareness, and local conditions, such as for 
instance the financial status.  

Bidders can be individual users, enterprises or a coalition, i.e. a number of single entities 
acting jointly. In this latter case, a leader acts on behalf of all the entities included in the 
coalition. Members democratically (for instance by means of a fair consensus protocol) 
take a set of decisions that will regulate the coalition behaviour. Decisions to be taken 
include, in the case of a coalition of bidders, leadership, maximum payable price for a 
good, bid increase etc. Coalitions will be able to revise own strategies based on past 
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experiences, for instance increasing the maximum price and/or bid for a good if bids for a 
good of the same time have always been outbid in past. 

4 Toolkit development 

Cascadas Toolkit should enable autonomic, situation-aware, and self-similar development 
of communication services based on ACEs as core components. Moreover the toolkit will 
be released under an Open Source license to facilitate the wide-spread of technological 
achievements to the Scientific Community and industry; for this reason it is platform 
independent and adopted Java as programming language.  

The other important aspect of the first prototype is the adoption of the DIET Agent Platform 
as an underlying unified execution environment. DIET Agents is a platform for developing 
agent-based applications. It was created as part of the EU-funded DIET project, where 
DIET stands for Decentralised Information Ecosystem Technologies. The reasons behind 
this choice are twofold: on one side we think the synergy between EU projects is an 
important result of the effectiveness of the project per se and on the other hand DIET tried 
to overcome the limitation of other agent platforms. In addition the support available by BT, 
the lead partner in DIET, is the other key towards the choice of DIET. 

 
The DIET project is concerned with the development of an ecosystem-inspired approach to 
the design of agent systems [2]. In this context an ecosystem can be viewed as an entity 
composed of one or more communities of living organisms, in which organisms conduct 
frequent, flexible local interactions with each other and with the environment that they 
inhabit. Although the capability of each organism itself may be very simple, the collective 
behaviours and the overall functionality arising from their interactions exceed the capacities 
of any individual organism. These higher level processes can be adaptive, scalable and 
robust to changes in their environments. These elements are perfectly in line with the work 
carried in Cascadas as the Aces interaction is seen as an emergent behaviour where the 
group ability is greater than the sum of each individual acting alone. 

 

4.1 ACE implementation 
ACEs are defined to be autonomic, self-similar, light weighted, situation-aware, and 
semantically self-organising communication elements. The model developed for ACEs tries 
to satisfy all these requirements. 

To realise self-similarity, though being light weighted, an ACE is separated into a Common 
Part, equally implemented for all ACEs, and a Specific Part that can be equipped with 
specific functionality differing from ACE to ACE [1]. This section shortly describes how the 
ACE model is implemented within the CASCADAS Toolkit. A more detailed description can 
be found in [6].  

In order to be platform independent, the ACE model is implemented using the Java 
programming language. The DIET Agent Platform [8] is utilised as an underlying unified 
execution environment. It provides very basic features to organise the ACE components to 
a complete ACE as well as communication and control principles which help to manage 
large systems of ACEs. 
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In structural detail, the ACE model consists of a set of Organs each responsible for 
delivering a subset of the functionality of the whole component. Figure 4 gives an overview 
of an ACE and its Organs.  

 
Figure 4 :Organs of an ACE 
Within this model, the Specific Part is the functionality which is deployed into the 
Functionality Repository. An ACE developer can embed here all individual services the 
ACE needs to fulfil its goals. The Organs themselves as well as the features they offer form 
the Common Part which cannot be changed by ACE developers. It is uniform for each and 
every ACE and therefore builds the basis for self-similarity. Following, a list of all ACE 
Organs is presented explaining their functionality and the role they play within an ACE. 

4.1.1 Gateway 
Communication in the ACE model is based on events. The Gateway is the Organ which is 
responsible for managing external communication, i.e. between different ACEs. From the 
view of an ACE, the Gateway is the interface to everything which is not inside the ACE. 
External communication can occur in two different ways. First, it is possible to exchange 
events between ACEs in an uncoupled, session-less way. The REDS [7] middleware is 
used to implement this. Applying this communication mechanism, an ACE can subscribe to 
a set of events which it is interested in. Each time an according event occurs, REDS 
publishes it to all subscribed ACEs. REDS realises this by using clients, one for each ACE, 
that can send and handle events, and brokers which are responsible for managing the 
subscriptions and the routing of events. 

The second external communication mechanism implemented in the CASCADAS Toolkit is 
point-to-point, session based communication using contracts between two ACEs. 
Establishing a contract with another ACE requires knowing its address. An 
EstablishContractEvent can then be sent in order to request a contract with the desired 
party. Thereafter a Mirror Agent is created using functionality of the DIET Agent Platform. 
This Mirror Agent then establishes a direct communication channel between the two 
contract parties until one of them quits the contract by sending a CancelContractEvent. For 
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the second release of the CASCADAS Toolkit an advanced contract negotiation 
mechanism is planned to be implemented. 

4.1.2 Bus 
The Event Bus (i.e., Bus) is responsible for internal communication between the 
subcomponents of an ACE. Like the Gateway, it is based on events. Organs can subscribe 
to a set of events they are interested in. Whenever an event is sent, the Bus will dispatch it 
by calling appropriate handle methods that have to be implemented by each subscribed 
Organ. 

The Bus supports both synchronous and asynchronous event handling. For asynchronous 
communication, events need to be sent and will then be further dispatched by the Bus. 
Communication in a synchronous way means that after an Organ has sent an event, it is 
blocked by the Bus until all subscribed components finished to handle the concerned 
event. 

4.1.3 Facilitator and Self Model 
The ACE autonomic behaviour is specified by the ACE developer within the Self Model and 
provided by the Facilitator. The Facilitator is the ACE Organ responsible for ACE Plan 
creation and modification. It processes the Self Model and creates a new or modifies an 
existing ACE Plan accordingly. Changing the ACE plan means changing the behaviour of 
an ACE. 

The Self Model is defined through an XML file which has to be provided by the ACE 
developer. It contains all different Plans an ACE can process, as well as rules for their 
creation and modification. An ACE Plan is a state machine where states are connected to 
each other via transitions. Transitions contain actions and conditions for their execution. 
The Self Model basically contains the specifications for states and transitions as well as 
rules for building and modifying the state machine (the ACE Plan). Plan creation and 
modification rules are formulated in standard RuleML [10] syntax. 

Facilitator actions are triggered via events. The Facilitator can be used to create a new 
ACE Plan via CreatePlanEvent. Plan modification is a continuous process, which depends 
on context information. In the current implementation the Facilitator subscribes to the 
Reasoner for receiving certain context data. Each time it gets notified about context data 
changes, it executes the Plan modification rules and modifies the ACE Plan accordingly. 
For introspection purposes, the Facilitator provides access to the Self Model of the ACE.  

4.1.4 Reasoner and Plan 
ACE Plans are generated by the Facilitator and executed by the Reasoner. They are state 
machines containing states and transitions. Each Plan has an initial state and a goal to 
achieve which is specified within the transition that contains the goal achieved description. 
Executing the ACE Plan means executing actions specified within transitions. Plan 
execution always starts at the initial state and ends after reaching a final state. 

The Reasoner executes the Plan in two cases: first, immediately after it receives the new 
Plan from the Facilitator and second, when the ACE service is requested by another ACE. 
In case the ACE Plan contains a loop back transition between two states, the Plan will be 
continuously executed. In this current implementation the Reasoner also takes care of 
gathering the context information. 
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The Reasoner relies upon the OOjDREW rule engine [9]. It translates the ACE Plan into 
standard RuleML syntax, executes the rules in the rule engine, evaluates the outcome and 
performs actions accordingly.  

 

4.1.5 Lifecycle Manager 
The Lifecycle Manager is responsible for starting and stopping an ACE. It is triggered by 
the Reasoner which may request any lifecycle action according to the ACE Plan. The 
Lifecycle Manager will then prepare the requested action by informing all other ACE 
Organs. These have to prepare themselves for the announced action. Having done this, 
each Organ has to confirm to be ready by answering with a LifeCycleEventResult. The 
Lifecycle Manager collects and evaluates all results and finally executes the requested 
action when all Organs are ready.  

The first version of the CASCADAS Toolkit implements the lifecycle actions start and stop. 
For the next release, it is planned to include cloning and moving of ACEs as well. These 
features will then enable ACEs to be mobile and will provide them with the ability to change 
their working environment if necessary. 

 

4.1.6 Functionality Repository  
The Functionality Repository is an Organ which is responsible for deploying and executing 
individual services of an ACE. It is used as a container and access point for the features, 
an ACE is equipped with. Arbitrary code, specifically programmed as well as already 
existing libraries, can be added to the Functionality Repository. Using the concepts of 
modularity and reusability optimises programming expenses for creating systems of ACEs.  

To deploy a service to the Functionality Repository of an ACE, a library implementing the 
service and an XML descriptor describing it are necessary. The descriptor includes an 
identification (ID) and a name for the functionality that should be deployed. Furthermore, it 
lists the required input and output parameters. 

Any service which is deployed to the Functionality Repository can be accessed using 
events. ACE internal functionality calls are dispatched by the Bus. If an Organ likes to 
invoke functionality from the Repository, a FunctionallityCallEvent has to be sent. 
Thereafter, the requested functionality is executed and the results are returned. In the case 
that an ACE likes to call a service provided by another ACE, the requester has to send a 
ServiceCallEvent to the provider. This results in the execution of the desired functionality 
and the delivery of the results. Of course, all service calls have to contain values for all 
parameters specified in the XML descriptor of the invoked service. 

 

Looking at the Organs the ACE model is composed of, each of them contributes to fulfil the 
requirements listed above. A Common Part containing all Organs and being implemented 
equally guaranties self-similarity. The features and properties the Common Part provides 
are granted for each and every ACE. Keeping this common functionality restricted to what 
is absolutely necessary for all ACEs ensures their light weighted character. Anyway, the 
possibility to deploy any individual service to the Functionality Repository enables a 
practically unlimited diversity of functionality to be offered. Autonomicity and situation-
awareness result from the ability of the Facilitator to react on the context an ACE 
encounters. Its behaviour, even its main goal can be adapted accordingly. The GN-GA 
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(Goal Needed – Goal Achievable) protocol is used to advertise own services and find those 
which an ACE cannot perform itself. Communicating and interacting this way enables the 
creation of a complex autonomic system. 

4.2 Pervasive Supervision  
 To define the integration of supervision architecture into an ACE based service 
configuration we have to answer two basic questions: 

1. How to exploit ACE mechanisms (protocols, interfaces) to (a) define the possible 
interactions between the configuration under supervision, and the supervision system, 
i.e. what the supervision system is allowed to monitor, and which actions it is permitted 
to perform if corrective measures become necessary; (b) obtain run-time information 
(monitoring); and (c) interact if the interference of supervision functions becomes 
necessary (i.e. the configuration under supervision is in a (or approaches a) non-
desirable state. 

2. How to define the supervision system itself (a) either as an integrated part of the ACE 
architecture, or (b) as a component or configuration of components that is 
architecturally separated from the ACE configuration under supervision. 

4.2.1 Interaction with supervised ACEs  
To provide a certain service, an ACE basically executes a workflow generated from its self-
model. This workflow is called a plan.  It comprises of states and transitions leading from 
one state to another. A transition is performed by calling a specific function from the 
function repository of the ACE (which is assumed to be stateless), or by sending/receiving 
external messages.  Additionally, a session object is maintained that stores data necessary 
for the service computation.  This session object may be modified by specific functions. 

The self-model thus defines what is supposed to be the correct or intended function of an 
ACE. It explains the structure of states, and which actions are available to change from one 
state into another and how to update state information, Furthermore, a special attribute is 
has been introduced that is used to assess the desirability of a certain state, e.g. whether it 
is an initial, intermediate, or end state, an error state, etc. Thus the self-model can be 
understood not only as a functional specification of ACEs, but also as an expression of 
computation goals and purposes. Supervision can now be described as the task to make 
sure that those goals/purposes are fulfilled, by means of the functions that are made 
available by an ACE.  

To answer question 1(a), we envision using the GA/GN protocol developed in WP1 to 
commit a contract between the ACEs to be supervised and the supervision system. The 
contract comprises the self-models of these ACEs, together with monitoring and control 
permissions for actions. 

To answer questions 1(b) and 1(c), let us now have a closer look into the architecture of a 
supervision system: Figure 5 provides a summary of the elements of the supervision 
system (orange) and their relationship to the constituents of an ACE under supervision 
(gray).  
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Figure 5 Architecture overview (singular ACE) 

 

For monitoring, ACEs provide interfaces (a) to access state and session object, (b) to 
subscribe on information on specific function invocation or incoming/outgoing messages. 
Technically, this is solved by hooking up on the ACE internal publish/subscribe 
communication infrastructure.  

We are now going to elaborate briefly on set of components that is available to build 
supervision systems for ACEs or ACE configurations. All these components will be 
implemented as ACEs. 

− Monitor components links the supervision system with the ACE under supervision by 
utilizing the access mechanisms described above. 

− Correlators are responsible to aggregate monitored data from distributed sources and 
to correlate them, in order to extract meaningful indicators of the current health 
condition of the system under supervision 

− DriftAnalysers try to anticipate future problem situations in the system under 
supervision. Additionally, information from the environment may be used to supplement 
the analytical process. 

Thus if Correlators are concerned with the current state of the system, DriftAnalysers are 
concerned with the possible evolution of the system. Finally, 

− Assessors make assumptions on the current (or future) system health on the basis of 
raw data or the output of Correlators and DriftAnalysers, and invoke a Planner if 
necessary. 

Monitors, Correlators, DriftAnalysers, and Assessor thus form an analysis system. The 
reactive part is provided by the following components: 

− On the basis of the assessments generated by the Assessor, the Planner tries to 
compute a course of actions that is intended to resolve the detected problem. Planning 
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is based on the actions described in the self-model of the ACE (or ACEs) under 
supervision. 

− Effectors are responsible to execute plans. This is again done by intercepting internal 
events of the ACE under supervision. Events can be deleted, modified, or inserted. 

4.2.2 Integration of Supervision Functions.  
Let us now answer question 2. We use alternative 2.b for the following reasons.  

− Separation of concerns. Integration of supervision functions into the ACE architecture 
itself would blow up the ACEs unnecessarily. In some cases, supervision functions may 
not be desired, possible, or necessary. 

− Widening of scope. Some supervision functions require the coordinated interaction with 
a number of ACEs, which would be difficult to realize in the intrinsic scenario. 

− Flexibility. In a number of cases, the described analysis/reaction cycle is obviously 
unnecessarily heavy-weighted. The external approach allows us to formulate the 
software architecture in a way that it is possible to flexibly use only the components that 
are needed, while others are not instantiated at all. 

Thus we implement each of the components described in the previous paragraphs as a 
specialized ACE that runs asynchronously to the other components.This allows the flexible 
definition and setup of arbitrary complex control cycles comprising for instance chains of 
Correlators and DriftAnalysers, hierarchical Planners, and coordinated Effectors.  

Now since these components are ACEs by itself, the GA/GN protocol can be used to 
discover available supervision components and the contracting mechanism developed in 
WP1 is available for the set-up of the configuration of the supervision system and the 
parameterization of its components (e.g. by rules, models, etc.). Therefore, supervision 
systems become an integral and pervasive part of service configurations, utilizing functions 
of the underlying platform for discovery and orchestration.  

4.2.3 Implementation Roadmap   
We conclude this section by elaborating on a road map comprising four phases to 
implement the described concepts, leading from of monolithic supervision systems to a 
pervasion of interacting supervisors is divided in the following phases  
Phase 1 – “Basic supervision”: This includes the implementation of the components 
described above, under the assumption that the system under supervision is a singular 
ACE or an unstructured set of ACEs. It comprises the basis monitoring and effection 
mechanisms explained above. Self-models of ACEs will be employed as supervision 
models for planning, i.e. we consider also the establishment of contracts between 
supervision system and system under supervision.  

Phase 2 – “Hierarchies”: In this phase, hierarchical supervision is considered. In this phase 
we will stipulate the assumption that service hierarchies are a-priory given, and do not 
change during service execution. This simplification will allow concentrating of hierarchical 
planning and distributed execution of hierarchical plans. 

Phase 3 – “Self-configuration”: The assumption that hierarchies are fixed will be dropped in 
this phase. We now consider ACE configuration with dynamically adapt their structure, and 
what this dynamism implies to the structure and function of the associated supervision 
pervasion. 
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Phase 4 – “Self-supervision”: A final phase concludes addresses the question how a 
supervision pervasion itself can be made robust against problems. 

4.2.4 Self-organization algorithms  
The initial WP3 contribution for the first toolkit version is a standard interface called 
Clustering_Algorithm for distributed self-organization algorithms.The purpose to these 
algorithms [3] is to find a solution to the clustering problem, where the clustering problem, 
is defined as follows: given a network of interconnected nodes characterized by a type, the 
purpose of clustering is the creation of interconnected groups of nodes having the same 
type. Another related problem that is addressed by this algorithm is the reverse-clustering 
problem, where the aim is to constitute groups of nodes having different type. According to 
Ace-based toolkit structure, self-organization algorithms are part of the Specific Part 
Functionalities and accessed through the generic Clustering_Algorithm interface, 
It provides all the methods that will govern the whole life of the algorithm, from its 
Initialization to its termination. The life cycle of a self-organization algorithm can be 
schematized  as follows: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Algorithm steps 
 
Initialization Step 
The algorithm is instantiated and it receives information about the local node, (i.e., 
the Ace) an ID that identifies the current instance of the algorithm (to solve 
ambiguity when there are parallel executions of the same algorithm in the same 
ACE) and an interface used to communicate with its local ACE. 

Tuning Step 
In this step some algorithm proprieties can be optionally set by who is loading the 
algorithm. 
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Results Step 
This is an optional step. The algorithm reports its results to the local node or on a 
remote node (useful to perform algorithm analysis). 

Self-Organizing Step 
The algorithm participates to the self-organization of the system by sending and 
receiving event messages.  

Finalizing Step 
In this step the algorithm terminates cleanly its execution, stops its threads and 
marks itself as completed. Only a completed algorithm can be safely unloaded from 
the Ace. 

 

Each implementation of the ClusteringAlgorithm interface is parameterized with the 
possibility to perform the self-organized algorithms such as: clustering (aggregating nodes 
with the same type), reverse-clustering (aggregating nodes with different type), passive 
clustering and an active (or “on demand”) clustering according to the work carried by Wp3 
during the first year of the project. In particular the implementations that will be proposed 
are: 

• Saffre Clustering; at the beginning of each iteration an initiator node is randomly 
elected, it chooses two neighbors having the same type, it creates a new link 
between them, and then it removes one of them from its list of neighbors. 

• Fast Clustering: it’s derived from the previous algorithm. In order to prevent all the 
useless iterations, it is possible to add the following constraint: a node cannot lose a 
link to another node if both nodes have the same (for clustering) or different (in 
reverse clustering) type 

• Accurate Clustering; to link two nodes with different types unless they cause an 
increment in the number of links that have endpoints with different types. 

• Adaptive Clustering is a self-adaptive version of the three previous algorithms with 
the aim to get only the best from the three algorithms above: it tries to use the most 
constrained algorithm (Fast algorithm) and, if it fails because the constraint is not 
satisfied by any neighbor, it switches to the Saffre algorithm. If even Saffre 
algorithm fails, it tries the least constrained algorithm (Accurate algorithm). If, for 
any reason, some new neighbor is added to the node, then the algorithm is 
changed again to the most constrained one. 

 

The above algorithms use different strategies in choosing the nodes to cluster that give 
different results in terms of network type homogeneity and algorithm speed. 

4.3 Security mechanisms 
The contribution of WP4 to the CASCADAS toolkit consists in providing security 
functionalities to protect the communication within and among clusters of ACEs. These 
functionalities are deployed by using existing libraries implementing a set of cryptographic 
algorithms and hash functions.  

The most used cryptographic primitives have been also deeply analyzed to understand 
their suitability for the communication environment envisioned in the CASCADAS project 
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and, in particular, with respect to the heterogeneous nature of devices that embed 
Autonomic Communication Elements. This will help to understand what the performances 
of these algorithms and functions are with respect to key size, device capabilities and 
cryptosystem type. 

In order to protect the system from traditional attacks that mine the system itself by 
exploiting communication vulnerabilities or by improper use of messages and resources, 
we focus on solving basic security problems that are common to any communication 
system. We refer to basic security problems as confidentiality, integrity and authentication. 

With respect to the security architecture presented in [11], we focus on ACEs of type B for 
the first release of the toolkit as they provide specific cryptographic protection to the 
CASCADAS system.  

The approach taken in WP4 consists in defining a secure framework that can be applied to 
the CASCADAS system if required by the communication environment. With this concept in 
mind, security is not deployed as a stand-alone component that is always embedded in the 
ACE model or implemented in the communication Gateway to provide security for any 
message or event communicate to external ACEs, but it is defined as service or 
functionality that can be either “aggregated” or exploited following the communication 
framework and service formation defined in the CASCADAS project. The advantages of 
this solution are twofold:  

1) Security is used on demand when required, thus, reducing the unnecessary 
communication overhead introduced by message flow exchange either to agree on 
a shared key or to authenticate ACEs. In addition, the computational capabilities of 
the device running the ACE are not overloaded by extra computation if security 
should not be in place. 

2) Security components can be re-used or better different cryptographic primitives can 
be used in an appropriate way by considering the data flow and the communication 
environment. 

According to the ACE-based structure, security functionalities, implemented in the security 
library, are deployed in the Functionality Repository and accessed via the ACE event 
model. In our effort to come up with hands-on examples of typical security problems of a 
communicating system, we selected those cryptographic libraries that are compatible with 
the development environment chosen for the project. For these libraries, we consider the 
basic constructs that can be used in the CASCADAS toolkit to integrate and complement 
software components to achieve the basic security levels required by the application 
scenarios defined as prominent examples of the CASCADAS system. 

In CASCADAS, we envision the presence of multiple ACE agents running on the same 
device. These ACEs implements basic functionalities in a virtual trusted environment. 
Complex services are deployed through aggregation or external exploitation of the single 
ACEs capabilities.  

In this virtual community, ACEs that implement basic cryptographic functionalities have the 
role to provide security to other components when they require to communicate in a secure 
way with external ACEs outside the trusted domain. For instance, if the communication 
between two external entities requires data authentication and integrity, an ACE 
implementing HMAC will be used for the calculation of the digest. This ACE will exploits the 
capabilities of another ACE implementing a hash function, e.g. MD5 or SHA1, and the 
capabilities of a ACE implementing a key agreement protocol like Diffie-Hellman as shown 
in  Figure 7. 
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Figure 7 ACE Communication Model: ACE 1 and ACE 2 want to communicate securely. They exploit 
the capabilities of ACE 3 and 4 to agree on a symmetric key used to provide data authentication and 
integrity during the message exchange. 

Due to different context of communication and to the heterogeneous nature of the devices, 
it is important for an ACE to choose the best option in terms of cryptographic algorithm 
available in the trusted domain. For this reason, we have also focused on practical 
considerations that need to be pondered when deciding which security service or 
cryptographic function needs to be selected to achieve a specific goal, both taking in 
consideration the application performance, storage and computational requirements. 

For instance, not all basic ciphering algorithms are suitable for the communication with 
mobile devices, which are characterized by limited processing resources. Thus, it is 
important to assess the processing overhead of cryptographic algorithms independently of 
specific software implementations to derive the feasibility of deploying algorithms on mobile 
devices and networks.  

 

4.4 Knowledge network 
The overall development process of WP5 software has been so far organized along three 
stages. During the first year of the project relevant conceptual components have been 
defined and the overall structural framework has been drawn up, which has lead to the 
alpha release of knowledge network software. All of these are described in [4]. The 
research in the first half of the second year has concentrated on aspects that support not 
only the autonomic principles but also the utilisation of stigmergic principles for flexible 
query optimisation as well as the initial self reasoning mechanism and context verification. 
This has lead to the beta release of knowledge network software, described in [5]. For the 
second half of the second year of the project, we aim at refining and further developing the 
concepts proposed so far and integrate the results of WP5 development into the ACE 
framework, by implementing knowledge networks in terms of ACEs and by making 
knowledge network services available to ACE-based services. The plan for implementing 
this is described in the following section. 
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4.4.1 ACE Integration Process  
The integration of the ACE model (WP1) and knowledge networks (WP5) will proceed in 
two main directions: 

• An interface will be developed to retrieve access and produce information in the 
knowledge network that is compatible with the standard way adopted by ACEs to interact 
with each other (i.e., GN-GA protocol and contracting).  

• The core mechanisms of knowledge networks will be integrated on top of the ACE 
architecture. This completes the integration in that the knowledge network components 
(knowledge atoms and knowledge containers) are actually ACEs themselves.  

4.4.2 Knowledge Network Interface 
ACEs access the knowledge network using the features of the toolkit 

• The GN-GA protocol will be used by ACEs to locate the most appropriate Knowledge 
Container (KC) to satisfy their knowledge need. Specifically we subclass the GN and GA 
message classes to have knowledge network specific message format: KNM (Knowledge 
Needed Message), KAM (Knowledge Available Message). 

a. KNM provides a template to express interest to a class of context information 
(e.g., I want all the information related to a specific region, or to a specific user) 

b. KAM provides another template specifying which kind of information is produced 
by a given entity. 

The communication middleware using in the toolkit (i.e., REDS) takes care of routing 
KNM messages to matching KAM messages so that relevant information sources are 
discovered. 

• Once suitable KCs have been discovered, they can be directly accessed via the point-to-
point mechanism to actually retrieve the requested information. Such point to point 
interaction also allows negotiating on specific information access modalities (e.g., quality 
of information, sampling rate, access rights, policies etc.). 

4.4.3 Realising Knowledge Network via ACEs 
The following step is to realise the core mechanisms and components of the knowledge 
network on top of the ACE architecture describe in [1]. In order to modify knowledge 
network components, namely KA and KC according to this architecture (as well as any 
other ACE-based component) the Self Model and the required Functionalities thereof has 
to be specified.  

A complete description of these ACE internal components can be find in [1]. Here only the 
basic mechanism of ACE’s that are relevant to knowledge networks are recapitulated: 

• The ACE Self Model describes at an abstract level what the ACE is capable of doing and 
how it realizes its functionalities. 

• The Facilitator creates a Plan on the basis of the current system circumstances (i.e., 
context) by loading specific behaviour from the Self Model. The Plan is represented by 
means of a finite state automaton. 

• The Reasoner is the component in charge of running the finite state automaton triggering 
its transitions. Upon the triggering of a transition, the Plan indicates which Functionality 
has to be called to achieve the transition. 
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All these components apart from the Self Model and the Functionalities are either common 
to all the ACEs or dynamically generated (e.g. Plan from the Self Model). 

4.4.4 Implementing Knowledge Atoms 
At the most basic level KAs will be implemented according to the trivial Self Model (that 
actually constitutes a single constant Plan) as depicted in Figure 8. 

This Self Model mainly states the following actions: 

• If receiving a KNM message that matches the kind of information the atom is able to 
produce, then reply with a KAM message describing such kind of information 

• If a query point-point message arrives, then execute the getValue functionality.  

• The getValue functionality actually accesses the low level sensor machinery, retrieves 
the result and sends it back to the requesting ACE. It is worth remarking that since point-
to-point messages are really sort of RMI invocation, the sending of the result back to the 
client is actually a simple return statement. 

4.4.5 Implementing Knowledge Containers 
KC will be implemented according to the Self Model in Figure 8.The Self Model basically 
states: 

• If receiving a KNM message that matches the kind of information the atom is able to 
produce, then reply with a KAM message describing such kind of information 

• If a query point-point message arrives, then execute the queryAtoms functionality.  

• The queryAtoms functionality actually sends a point-to-point query message to the atoms 
registered within this knowledge container. The replies will be combined according to a 
KC-specific policy – to be implemented within the queryAtoms functionality – and the final 
result is returned to the enquired ACE. 

• Every T seconds, the knowledge container looks for knowledge atoms (or other 
knowledge containers) able to provide information that are suitable to its need. It 
performs this by sending a KNM message specifying the kind of information it is willing to 
aggregate (i.e., contain). 

• Upon the receipt of suitable KAM messages the container calls the storeAtomAddress 
functionality. 

• The storeAtomAddress actually registers the atom in the container by storing its address 
in a suitable repository. Registered atoms will be queried upon the receipt of a query 
message. 

It is finally worth noticing that the above self models and functionalities are only a first 
attempt of mapping knowledge network functionalities into the ACE model. In future 
versions more advanced mapping taking into account more context-related information 
would be developed. 
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(a) (b)  

Figure 8 : (a) Self-Model of a Knowledge Atom (b) Self-Model of a Knowledge 
Container 

5 Conclusion  

CASCADAS project has the main goal of identifying and developing an innovative 
component-ware architecture for the development of innovative situation aware and 
autonomic services.  

The Autonomic Communication Element (ACE) is the basic component abstraction over 
which the CASCADAS vision is built. The project development activities aim at prototyping 
a toolkit based on distributed ACES characterised by autonomic features (self-
configuration, self-optimization, self-healing, self-protection, etc). Services will be created 
and executed (in a distributed way) by the self-aggregation of ACEs. This architecture will 
be demonstrated in application use-case by means of a tool-kit developed by the 
Consortium. 

This deliverable (collecting and integrating contributions from all WPs) has provided a 
preliminary description of: 1) the first release (at M18) of the ACE toolkit (i.e. run time 
environment and libraries); 2) the roadmap leading to an integrated release of the toolkit; 3) 
a brief description of the application use-case that will be adopted to demonstrate the 
features of the toolkit.  

Regarding future steps, it should be noted that the first release of the toolkit (currently 
available) provides all basic ACE functionalities which allow developers to create ACEs 
providing basic services. From the lifecycle point of view, the basic lifecycle functionalities 
starting and stopping of ACEs are supported, whereas cloning and migration will be 
implemented in the future. Therefore, in the current implementation ACEs are static 
components. They will remain in the environment of the initial creation. ACE 
communication is event based. We distinguish between internal and external ACE 
communication. The Internal communication is provided by the ACE organ called Event 
Bus while the external ACE communication is handled by the Gateway.  The Service 
lookup is implemented by the usage of GN/GA protocol. The ACE autonomic behaviour is 
specified by the ACE developer within the Self Model and carried out by the Facilitator. 
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In cooperation with other WP-s, WP1 will test and evaluate the current CASCADAS Toolkit 
implementation. A list of requirements will be created with the improvements that should be 
implemented in the next release.  

From WP1 point of view, the following tasks are planned: 

- The concept of context data acquisition should be redesigned in terms of moving 
this functionality from the Reasoner to the Functionality Repository. 

- The Lifecycle Manager should be enhanced with cloning and moving functionalities 
in order to support mobility of ACEs 

- Further enhancements of the Functionality Repository in terms of loading 
functionalities should be implemented. 

- General improvements of most ACE Organs should be made in order to enable 
additional functionalities and to enhance the ACE stability. 

The main task of other WPs will be to integrate coherently into ACE run-time environment 
the libraries of tools and software modules1 that they have developed in the building phase. 
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