

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 1 of 54

WP5: “Knowledge Networks”
Deliverable D5.2: Extended Beta Release Software for
Knowledge Networks

Status and Version: Version 4, Final

Date of issue: 27th of June 2007

 Distribution: Project Deliverable R+P

 Author(s): Name Partner

 Matthias Baumgarten UU

 Kieran Greer UU

 Franco Zambonelli UNIMORE

 Rico Kusber UniK

 Nicola Bicocchi UNIMORE

Partners Unimore, UU, UNIK

Checked by: Kevin Curran UU

 Franco Zambonelli UNIMORE

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 2 of 54

Table of Contents

1.1 Purpose and Scope...4
1.2 Reference Documents...4
1.3 Acronyms & Definitions ...5
1.4 Document History..6
1.5 Document overview...6

2 Knowledge Networks: Status of Things ...7
3 Beta Prototype Overview ...8

3.1 Execution Space ...8
3.2 Distributed Communication Software ..10

4 Structural Components ..11
4.1 Service Architecture ..11

4.1.1 Example Services..15
4.2 Knowledge Atom ...18

4.2.1 ACE Atoms..18
4.2.2 Sensor Atoms - micaZ...18

4.3 Knowledge Container ..22
4.3.1 Network Based Organisation...22
4.3.2 Concept Based Organisation...24

5 Knowledge Execution ..27
5.1 Knowledge Querying ...27

5.1.1 Query Process...27
5.1.2 Autonomic Querying ..29
5.1.3 The Query Language...30
5.1.4 Ontology-Based Search ..30
5.1.5 KN Query Interface..32
5.1.6 Summary ...33

5.2 Knowledge Verification..33
6 Integration with the ACE Framework ...35

6.1 ACE Integration Process ...35

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 3 of 54

6.2 Knowledge Network Interface ...36
6.3 Realising Knowledge Network via ACEs. ..37
6.4 Implementing Knowledge Atoms...38
6.5 Implementing Knowledge Containers..39

7 Research Directions...40
Appendix A – User Guide..42

A.1 Knowledge Atom...43
A.2 Embedded Knowledge Atom...43
A.3 Remote Knowledge Atom ...44
A.4 Atom Registration..47
A.5 Atom Add-On Services..47

Appendix B – Examples ..49
B.1 Embedded Atom ...49
B.2 RPC Atom and Add-On Service..50
B.3 Skeleton Class for Push Mechanism ..51

Appendix C – Class Structures ...52
C.1 Atom..52
C.2 KN Service ..53
C.3 Overall Framework..54

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 4 of 54

Introduction

1.1 Purpose and Scope
This document represents the M16 deliverable for the CASCADAS WP5 “Knowledge
Networks”. Firstly, it summarizes on some aspects of knowledge networks and refines
individual aspects of the initial specification. Secondly, it provides a description of
relevant components as developed for the beta release of the knowledge network toolkit.
Finally, it elaborates on aspects related to knowledge execution before outlining relevant
research directions for the remainder of the project.

This deliverable is also accompanied by a software package containing individual
algorithms and packages that reflect the first beta release of the KN toolkit.

1.2 Reference Documents
[D5.1] Deliverable D5.1: Knowledge Networks Specifications, Mechanisms, and

Alpha Software Release

[XMLRPC] http://ws.apache.org/xmlrpc/

[HTTPCore] http://jakarta.apache.org/httpcomponents/

[OTK-RQL] G. Karvounarakis, V. Christophides, D. Plexousakis, S. Alexaki, “Querying
community web portals”, Technical Report, Institute of Computer Science,
FORTH, Heraklion, Greece, 2000,
http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.pdf.

[RDF] http://www.w3.org/RDF/

[DAMLOIL] I. Horrocks, “DAML+OIL: A Reason-able Web Ontology Language,
Advances in Database Technology”, 8th International Conference on
Extending Database Technology, Prague, Czech Republic, pp. 103-116,
March 25-27, 2002. Proceedings, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, http://www.daml.org/

[SPARQL] http://www.w3.org/TR/rdf-sparql-query/

[Xcerpt] http://www.xcerpt.org/

[BicMZ07] N. Bicocchi, M. Mamei, F. Zambonelli, “Self-organized Spatial Regions for
Sensor Network Infrastructures”, 2007 IEEE Symposium on Pervasive
and Ad-Hoc Communications, IEEE Press, May 2007

[CasMZ07] G. Castelli, M. Mamei, F. Zambonelli, “Engineering Contextual Knowledge
for Pervasive Autonomic Services”, submitted to the International Journal
of Information and Software Technology, 2007.

[Bau07] M. Baumgarten, N. Bicocchi, R. Kusber, M. Mulvenna, F. Zambonelli,
“Self-organizing Knowledge Networks for Pervasive Situation-aware
Services”, IEEE International Conference on Systems, Man, and
Cybernetics, Toronto (CA), October 2007, to appear.

http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.pdf
http://www.w3.org/RDF/
http://www.daml.org/
http://www.w3.org/TR/rdf-sparql-query/
http://www.xcerpt.org/

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 5 of 54

1.3 Acronyms & Definitions

Context: In general terms, the context defines the “surrounding and interrelated
conditions in which something exists” (Mirriam-Webster Dictionary). In
CASCADAS, the context identifies the operational environment in
which a service situates, which could include network, application,
social, and physical context (Cfr. Knowledge).

Contextual
Information:

Information related to some actual characteristics of the operational
environment, i.e., to some facts occurring in it.

Context-
awareness:

The capability of software (i.e., as far as CASCADAS is concerned, of
services) of being aware of the context in which they are invoked
and/or executed, and of adapting their behaviour accordingly.

Concept of
Interest:

A computational model of any real world object or event (including
services and processes).

Ontology: A formal specification detailing how to express concepts of interest in
a specific area. In CASCADAS, a shared ontology is expected to be
defined for ACE’s so as to enable them to properly represented in a
semantic and inter-operable way all needing contextual information.

Knowledge: Contextual information as it can be made available to some actors
(i.e., ACE’s) to make them aware of some facts and reason about
them. In CASCADAS, we account for: network knowledge,
representing facts about the current configuration of the physical
network and of the related devices; application (or ACE-level)
knowledge, representing facts about the current status of (some)
ACE’s; social knowledge, representing facts about the human actors
currently exploiting the network and its ACE-based services, and the
social context in which they are doing so; physical knowledge,
representing facts about the physical world. We emphasize that the
difference between Contextual Information and Knowledge is really
subtle, and mostly related to the observation viewpoint: the context
generates contextual information which then becomes something that
the agent knows, i.e., knowledge.

Knowledge
Atom KA:

A knowledge atom is a generic access concept that describes,
references and provides access to a single data entity of any type,
complexity, size, location etc. For example, one can imagine that the
information related to the current physical location of a person can be
a knowledge atom reporting the name of that person, its location in
terms of latitude and longitude, and possibly some information related
to the activities currently undertaken by that person.

Situation: In general terms, a situation defines a “relative position or combination
of circumstances at a certain moment” (Mirriam-Webster Dictionary).
Accordingly, in CASCADAS, a situation is considered as “something

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 6 of 54

that is happening in the context” and, for generalization, also
something that “is likely to occur at a certain moment in the future”.

Situation-
awareness:

In general terms, situation-awareness relates to the capability of being
aware and of adapting behaviour to situations other than to context
(Cfr. Context-awareness). While components and services (i.e.,
ACE’s) are situated in a context and can perceive contextual
information in the form of knowledge atoms to become context-aware,
perceiving situations (present and future) and becoming situation-
aware implies a higher degree of understanding. In particular, it
requires properly acquiring all the needed knowledge about
“combinations of circumstances”.

Knowledge
Network KN:

A network of knowledge is an ontology-based structured collection of
knowledge atoms, describing specific situations, and built in order to
facilitate ACE’s in acquiring high degrees of situation-awareness in an
efficient way. This is not to be confused with “network knowledge”,
intended as the information available about the status of a network.

Knowledge
Container KC:

As it will appear clearer in the remainder of this document, the
structuring of knowledge atoms in networks may also imply the need
to create higher-level structures aggregating existing knowledge
atoms into a component aggregating a set of related knowledge atoms
or other knowledge containers into a composite.

1.4 Document History
Version Date Authors Comment

1.00 01/03/2007 MB Document Created

2.00 15/05/2007 WP5 Partners ToC finalized

3.00 25/06/2007 MB First Complete Draft integrating all
contributions by partners

4.00 26/06/2007 FZ Corrections and minor restructurings

1.5 Document overview
The document is structured as follows. Section 2 summarizes the organization of the
development process and its current status. Section 3 overviews the architecture of the
knowledge network software. Section 4 provides a detailed description of individual
components and their usage within the developed prototype. Section 5 elaborates on
aspects that are related to knowledge execution and in particular to knowledge querying
and knowledge verification. Section 6 discussed the plan of action for the integration with
the ACE framework. Section 7 provides the research scope for the remainder of the
project. Finally the Appendix sections supplements this document with the user guide on
how to build specific atom realisations as well as other relevant material.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 7 of 54

2 Knowledge Networks: Status of Things
As specified in [D5.1], the high level goal of knowledge networks can be summarized as
the provision of a vehicle capable of creating, storing, propagating and discovering
information in a light-weight, scale free and multi-view environment. In particular the
organisation and the provisioning of knowledge at different levels of granularity is of
particular importance as it allows pre-organisation of available knowledge based on (a)
dynamic models that are derived via self-contextualisation of the knowledge providers
(bottom-up organisation) and (b) model-based organisation where distinct granular
levels are introduced by the services and applications that use the knowledge network
(top-down organisation). In any case, the knowledge network must be able to self-
organise itself in the sense that it autonomically monitors available context within the
virtual space it is operating in and provides the required context and any other necessary
knowledge and operational support to the requested services, and self-adapts when
context changes.

From an evolutionary perspective, three distinct stages have been identified to be
relevant for the construction and effective usage of knowledge networks
(see Figure 1). Firstly, structural requirements that provide necessary components
capable of holding knowledge at different levels of granularity including the
implementation of a highly flexible framework capable of linking individual knowledge
components or any group thereof into distinct purpose-build sub-networks. Secondly,
behavioural requirements which deal with more dynamic aspects of knowledge networks
such as self-organization, self-optimisation, self-adaptation and self-configuration
activities. Thirdly, predictive requirements enabling detailed analytics of individual
knowledge components in order to derive new, useful and understandable knowledge.

The overall research development process is accordingly organized along three stages,
which also reflect the three tiered duration of the project.

During the first year of the project relevant conceptual components have been defined
and the overall structural framework has been drawn up, which has lead to the alpha
release of knowledge network software. Self-organized knowledge aggregation
algorithms have been studied and experienced too during the first year, but not
integrated in the alpha version of the software.

The research within the second year has and will largely concentrate on aspects that
support autonomic principles thus promoting concepts that support self-organisations,
self-adaptation, context verification as well as the utilisation of stigmergic principles in
support for flexible query optimisation as well as initial self reasoning mechanism. From
the software viewpoint, this has lead so far (i.e., by the half of second year) to the beta
release of knowledge network software, which extend the alpha one with a refined and
more flexible structural management, flexible querying mechanisms, and with the
integration of some of the studied algorithms for both network-based and concept-based
self-organized knowledge aggregation. WP5 partners will utilise the second half of this
year to (a) refine and further develop the concepts proposed so far, (b) initiate additional
research directions depending on upcoming results and requirements, (c) integrate the

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 8 of 54

results of WP5 into the overall framework of the project and in particular into the ACE
framework and (c) evaluate the runtime capabilities of the resulting KN framework.

The final year will then concentrate on activities that include self-reasoning over the
content of the network and / or its usage, more sophisticated and situation specific
context orchestration as well as propagation. In addition flexible context verification
mechanisms will be introduced to guarantee a certain quality of context to individual
knowledge consumers.

Figure 1: Conceptual Components of Knowledge Networks.

3 Beta Prototype Overview
The beta prototype consists of a number of packages that are partially integrated into a
single RPC based execution environment. Note, that one of the objectives for the
remainder of this year will be to replace this temporary execution environment with an
ACE based solution. Later in this document we describe how we plan to realize such
porting.

3.1 Execution Space
The basic architecture is to have a number of “knowledge servers” running on any
number of computational resources, which is depicted in Figure 2. Simplified each server
may host any number of sub-networks which internally as well as remotely communicate
via RPC. Client access as well as data provisioning, via knowledge atoms, is also
facilitated via RPC.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 9 of 54

RPC

RPC

RPC RPC

Client

Knowledge Network Knowledge Network

Container

Container Container

Atom Atom Atom

Container

Container Container

Atom Atom

Server1

Service1 Service2

Server2

Service3 Service4

Figure 2: Basic test environment architecture

Although each computer may comprise a number of networks it should only host one
server, which provides a single access point to all nested components. The server then
stores a base component to which the root nodes of the network are added. For our
tests there was just one root node of the Knowledge Network type. The root node then
stores the network components of the network (nodes, sources or services). All
components are stored in the root network component as services, as well as being
hierarchically organised through references. To call a remote component, you specify
the URL of the remote server, access the network and then access the individual
component. Services can be nested however and so can be called recursively through
the root service. For example, to call a sub-service service in an atom one would need to
specify the atom engine first to access the specific service it wants to address. Each
remote server needs to know the addresses of the other servers in the network. A client
then only needs access to one server to access the whole KN. For a user it is indifferent
which server is initially addressed as each server will effectively have access to all other
servers as well. Nonetheless, the concept of private networks may be facilitated by
preventing the registration of individual servers into the scope of a global knowledge
network.

This concept is visualised in Figure 3 where a number of knowledge sources, simulated
or not, register into the scope of individual knowledge servers (hosts) which are linked
together via RPC. Individual applications may now access either one of the hosts
available in order to query for knowledge. Although hidden from the user the underlying
KN may query the whole available knowledge space or any part thereof to answer a
user’s query.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 10 of 54

Simulated Knowledge Sources

Registering of Sources

RPC ServiceRPC Service

RPC ServiceRPC Service

RPC ServiceRPC Service

A
pp

lic
at

io
n

In
te

rfa
ceHost

Host

Host

Figure 3: Knowledge Network Realisation

3.2 Distributed Communication Software
In order to facilitate flexible, lightweight and extendable distributed communication
among KN objects two distinct packages have been explored. Firstly the XML-RPC
based communication package as provided by Apache (http://ws.apache.org/xmlrpc/)
and secondly an internal communication package based on HttpCore
(http://jakarta.apache.org/httpcomponents/).

In a nutshell, both approaches provide a flexible mechanism to access individual
components and their methods directly via an RPC interface. Thus, each knowledge
network component can be seen as a distinct resource that is accessible via a unique
URI. This promotes one of the key objectives of the Cascadas project. That is to realise
knowledge networks with independent and light weight components that can be linked
together in a distributed environment. Furthermore, it allows for the dynamic extension of
individual components in a way that specific services are added / removed at runtime.

XML-RPC is a popular protocol that uses XML over HTTP to implement remote
procedure calls. Currently in version 3 it has full XML support and also allows for vendor
specific extensions. In addition, it has some limitations which limit the flexibility during
integration. Probably the most awkward thereof is that registered RPC handlers are not
object safe which means that the handling of local or session based data is difficult.
Finally, although being a lightweight mechanism, it still comprises functionality that is not
required by KN’s thus a specialized sub version should be generated to allow for very

http://ws.apache.org/xmlrpc/

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 11 of 54

small and lightweight implementations. As a consequence, an internal communication
mechanism has been explored that has been specifically tailored towards the needs of
knowledge networks Also based on a Remote Procedure Calling mechanism it enables
components to call each other’s methods in a distributed as well as localised fashion.
Named LICAS (Lightweight Internet-based Communication for Autonomic Services) it
has been designed to be as small as possible yet as powerful as necessary. All
communication uses Java Reflection to dynamically call another component’s methods
while internal processing is based on XML. LICAS already has support for a number of
different data types including XML and serialisation. Vendor specific extensions are also
possible to support more specific data types via individual parsers. They must be able to
serialize the object into an XML format or parse from XML back to the object.
Alternatively, the user can implement the Serializable interface, when the object will be
serialized and then passed as part of the XML message. The final transport mechanism
is as a String, when the XML is automatically converted into and back from a String. A
standard class is used to specify the method to call, which can be on a local or remote
object. A full method description is required, when Reflection will then match this to the
called object’s methods. The parameters are entered simply as objects and the package
will automatically serialize and parse them based on the parsers stored. Other
parameters that may be included are passwords and communication IDs. Basic security
services such as password protection or communication ID are also provided for. This
package is based on the Apache Jakarta HttpCore package and the JDOM parser,
though it should also be possible to parse XML objects of the Java DOM type as well.
The system uses JDOM internally, so it would be recommended to use this for parsing
other xml objects as well. While this package is currently under internal evaluation, it
may be used at a later stage to facilitate remote communication among KN components

4 Structural Components

4.1 Service Architecture
The knowledge network envisioned can be seen as an advanced, fully distributed, and
dynamic knowledge provisioning system that serves knowledge or, to be more precise,
access to knowledge based on specific user or application requests. The main principle
employed to keep the internal structures as lightweight as possible is that neither
knowledge nor its sources are duplicated and as such the underlying data are always
available wherever they are produced. Utilising this concept not only results in simplified
organisational structures inside the KN but also ensures that knowledge, when
accessed, is fully up to date. However, from a knowledge utilisation point of view some
additional functionality are necessary in order to optimise some important factors such
as processing power, network traffic generated when using the KN or finally, but also
very important, usability of the KN framework. Some examples of such required
functionality include the possibility of notifying other applications if knowledge that is of
interest to them has recently changed (push mechanism) or a dedicated history
component that provides a history buffer to other services.

Obviously, one possibility is to outsource this mechanism to individual applications
themselves. As such, each application needs to constantly query the knowledge source

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 12 of 54

it is interested in, comparing its current state with the previous one. Although beneficial
for some applications, this mechanism has several drawbacks. For example:

 Multiple applications need to observe the same value, which inevitably requires
higher processing power to serve multiple requests.

 A single application needs to observe multiple values (often to detect that values
have not changed yet), which wastes processing power at the application side.

 Knowledge sources are remote and as this increases network traffic.

 Knowledge to be compared may be large, thus increasing network traffic, wasted
processing power and delaying response time.

Considering the above limitations renders an outsourcing of some services such as the
push functionality as inefficient and actually, in most cases, counter-productive with
respect to the optimum use network and computational resources.

Another more effective mechanism is to connect a dedicated service with the knowledge
source under observation and as such embed the functionality required directly into the
service structure of the KN. For instance, if an application needs to be notified when a
knowledge source changes its value it could simply register itself with the push service
of the related knowledge source component. Thus, the knowledge source component
periodically monitors its own values and notifies all registered listeners if a change has
occurred. This concept is more efficient due to the following reasons:

 Applications may (de-)register dynamically via a single standardised interface.

 Applications will only be notified if new / updated knowledge is available and then
can decide how to deal with it.

 Monitoring is performed directly at the knowledge source, thus no unnecessary
network traffic occurs.

 Minimum processing overhead at the knowledge source component because
individual compare procedures are only evaluated once per polling cycle and not
once for every request.

Finally, realising this mechanism as a KN service promotes dynamic orchestration of
components and services depending on individual circumstances which is another goal
of the overall KN framework.

The current XML-RPC based architecture allows hosting a knowledge server within a
JVM. Having a specific servicehandler incorporated it allows for other services to be
added or removed at initialisation or at runtime. Furthermore, as long as services are
visible by the standardised Java URILoader class they may be loaded locally or
remotely. Individual methods of added services may be explored or executed at runtime
via reflection utilising the build in execution handler. This allows for maximum flexibility
as new functionality becomes instantly available without the need for registering any
components.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 13 of 54

- <Services>
- <!--
Extra services the component can provided as added components
 -->
- <Service>
 <Name>The name of a service this component provides as an add-on</Name>
 <Description>Sementic description of the service</Description>
 <URI>The address of the service, can be null for a local service</URI>
 <ClassName>The Java class name of the service object</ClassName>
- <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
- <Parameters>
- <!--
Intitialisation parameters of the service
 -->
- <Parameter>
 A single parameter for the method
 <Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
- <Methods>
- <!--
A list of methods for the service
 -->
- <Method>
- <!--
A single method specification
 -->
 <Name>The methods name</Name>
 <Description>Sementic description of the method</Description>
 <Return>The return type of the method</Return>
- <Parameters>
- <!--
A list of parameters for the method
 -->
- <Parameter>
 A single parameter for the method
 <Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 </Method>
 </Methods>
 </Service>
 </Services>

Figure 4: Service Description
This proposed framework allows the fully generic construction of hierarchical based
service structures where each component is by default a service itself and as such can

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 14 of 54

incorporate other services. Thus services may be orchestrated via other services which
in turn contain services themselves and so on. Obviously this could result in very
complex service structures so that it should used with care rather than as a commodity.

Available and executable services may be described using the xml template shown
above and may be added to any component that implements the serviceHandler
interface using the respective addComponent Method. For more information on this the
authors refer to the Java Documentation.

Figure 5: Host Admin GUI

Figure 5 shows a simple admin GUI that allows configuring a host thus launching a
dedicated web server providing the RPC interface to other servers and client
applications. In addition, it allows adding sub networks as well as other services into the
scope of the knowledge server. Individual actions are logged and if required presented
to the user.

Once the URI of a server is known the knowledge network explorer may be used to
explore, execute or modify the server’s services. As visualised in Figure 6, any number
of Servers can be added to the explorer (Add Server) and a list available services (get
Services) as well as methods (Method node) can be retrieved. Once a service has been
loaded into the explorer its methods can be executed utilising the right side of the
explorer where a user can select the method to be called as well as relevant parameters.
Once a method is executed the corresponding service is identified and remotely
executed. Currently, the response is then displayed within the explorer. In the example
below the get value method has been called on the atom service of
“Embedded_Test_Atom” which in turn is a specific services of “Example_Network” which
is itself a service running on host “http://127.0.0.1:888.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 15 of 54

Figure 6: Knowledge Network Explorer

As can be seen the hierarchical as well as the vertical organization has practically no
limit and can be controlled by the application itself or any other supervision mechanism.
Furthermore, the methods available by individual services are also dynamic in a way that
it cannot be guaranteed that a certain type of functionality exists always. Thus KN
structures may be explored and tested for the existence of specific functionality instead
of using them in a brute force approach where static structures are assumed. While this
is actually a feature with respect to dynamic service orchestration it is a drawback with
respect to documenting the utilisation thereof. Because of the dynamicity of the overall
system no clear and finite functional repository can be defined, instead a service
discovery mechanism should be implemented into the dynamic exploration of the system
so that the utilization of dynamic functionality can be automated. This is envisioned to be
facilitated via the GN-GA protocol of WP1. For standardized functionality that is
concerned with e.g. the (de-)registration of services, please refer to the java
documentation provided.

4.1.1 Example Services
Standard KN components may be extended via the plug-in of desired sub-services that
perform a specific goal that is either specific to the application that has registered the
service or it may provide additional, not standardised, functionality to be used by other
applications. For knowledge atoms two good examples for such services are the
provision of a set of history values or a dedicated push service that eases the detection
of change within data. Both are exemplified within this section and will be provided as
part of the final tool-set.

• Push Service

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 16 of 54

This section proposes the skeleton of an embedded push mechanism based on the
concepts outlined earlier. Of course each application needs to subclass a dedicated
listener interface to accommodate for specific notification procedures. Although, this can
also be standardised depending on the communication interface chosen for the overall
KN framework.

Figure 7: Push Service (Schematic Architecture)

Figure 7 shows a schematic architecture of an embedded push mechanism where
relevant data is accessed form the push service via the atom interface (left side) and
where applications can register specific notification listeners (right side). The service
component itself consists of three parts that are compulsory. Namely, (a) a generic data
access mechanism (atom interface), (b) a configuration part that controls the overall
service based on individual configuration parameters (polling scheduler) and (c) a
listener registry where registered notification handlers are stored (Listener Registry).
Other parts may be added to this component to perform specific evaluation task that are
relevant to this service. For instance, a change of value sub-component could test for a
change of value whereas another component could serve specific algedonic signals
such as a heartbeat to interested (registered) applications. In any case, it has to be
stressed that none of these components should serve the underlying data to applications
but should act as a notification service. If an application needs to access the data after
being notified then it may requests these data via the Atom interface directly.

Skeleton Interface for Notification Listener
Interface NotificationListener {
 public notify(Object msg);
}

Simplified, the only one relevant configuration parameter for a generic push service is
the minimum polling interval. It may be passed directly as a long value representing an
interval in e.g. milliseconds. In addition, we have to assume that a dedicated scheduler
is present which is able to execute the needed methods at the proper time. The polling

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 17 of 54

configuration module, which utilises the scheduler, is responsible for executing itself and
relevant sub-components at the given frequency in order to serve listeners at the
requested intervals. Finally, every application which intends to utilise the push service
has to implement the NotificationListener interface, which includes just one method in
order to pass a generic notification message. For now it is assumed that the method
itself handles the overall notification mechanism independent of the fact that the receiver
is local or remote. For convenience, the skeleton class for a default PushService can be
found within the appendix.

• History Component

As the name suggests a history component may provide a history of the atoms values
which it is loaded into. To be generic the atoms history should comprise objects rather
than specific data types. While this limits the analytical functionality of the component it
ensures generic concept of the overall framework. In practice all standardised services
should be realised in a generic fashion simply because of the fact that the perception of
data, the usage thereof or the calculation / derivation of other data may differ between
applications. Thus services should be as generic as possible to be specialised via the
dynamic utilisation of specific evaluation functions which is again in line with the dynamic
service architecture provided.

Figure 8: History Service Architecture

Figure 8 depicts the generic architecture of a history component comprising access to
the atom the history should be maintained for, here visualised via the atom interface
indicating that the history service being a sub-service of atom could be hosted locally or
remotely depending on how it is loaded. This is beneficial in that the atom host does not
have enough resources to also host the history service. Other sub-components of the
history service are the history hash itself providing the data set, a polling scheduler
supervising when a new value should be taken and obviously a bus architecture that
links all sub-components together and also provides the functionality to further
orchestrate the components itself with other more application specific services. For the

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 18 of 54

sake of completeness a property component may be added that provides individual
configuration parameters.

Interestingly at this stage, the polling mechanisms described previously actually
comprises the atom interface as well as the polling scheduler. Thus the history
component could actually be implemented as a more specific solution of the push
service proving the orchestratability of generic services.

4.2 Knowledge Atom

4.2.1 ACE Atoms
Being the most basic concept of a knowledge network, a knowledge atom represents the
generic data access layer for Knowledge Networks. In a nutshell it contains or provides
access to the knowledge source object and relevant descriptions that provide the context
of the data or knowledge represented by it. As defined in Del.5.1, the sole purpose of a
knowledge atom is to provide generic access to a specific data source and to allow the
registration thereof into the scope of a knowledge network. It is not concerned with any
organisational aspects within or outside the knowledge network nor is it responsible for
the configuration, maintenance or (de-) registration thereof. To be more specific, a
knowledge atom provides access to data and knowledge, it is not concerned with the
sensing, construction, maintenance or organisation thereof.

Currently, data may be loaded into a local atom implementation called an Embedded
Atom or specific proxies may be provided that (a) realise access to the data wherever it
is hosted or generated and (b) expose the atom interface so that they can be used from
within the knowledge network. For more information on how such atoms are realize and
registered into the scope of a KN please refer to the appropriate user guide as provided
in the appendix.

At this stage it has to be stressed that all specific realizations are only temporary.
Considering that within Cascadas, basically everything will be realized via the concept of
ACE’s, atoms may also be realised as ACE’s. Alternatively, an ACE may choose to
publish data via the atom interface directly. In this case an ACE is not actually an atom
but provides certain data by this interface. This reflects a nice solution in a way that an
ACE does not have to “turn” into an atom to provide data and more importantly it also
allows publishing more than one atom from within the same ACE.

4.2.2 Sensor Atoms - micaZ
This section describes the software package needed to integrate real world sensors
nodes into knowledge networks. The chosen devices are CrossBow micaZ motes. They
are equipped with an 8bit CPU, 4Kb of memory, 512kb of EEprom storage, and a radio
implementing the Zigbee protocol. Each node can be extended with different sensor
boards. The most common boards provide readings for temperature, light, sound,
magnetic field and acceleration (seismic). Moreover, these nodes can be connected with
any external device with an analogical output through a proper I/O board. For the scope
of our demonstration we have used a simple sensor board which provides sound, light

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 19 of 54

and temperature readings. To integrate motes with the KN tool kit, three separated
pieces of code were produced.

The first one has to be executed over the actual sensors. It has been written using nesC
language and compiled over an event driven operating system called Tiny OS. The goal
of this part is to push towards a base station data packets containing environmental
readings. Each sensor periodically reads its own values, pack them into a Zigbee radio
packet and send it towards the base station. Moreover each node, in order to build a
fully fledged multi hop routing tree rooted at the base station, can act as a router
forwarding packets received from neighbours nodes. Using this kind of architecture we
can also show an example of a fully distributed knowledge network running directly over
the sensors. In particular we have implemented an algorithm to in-network aggregate
data values. In this way we can build over a flat WSN different regions characterized by
different patterns of sensed data. This kind of mechanism can be considered a sort of
low level knowledge network. A mobile user, or a service interacting directly with the
network, can in fact perceive the environment not only as a dispersed collection of single
nodes but as a simpler set of 'virtual' macro sensors represented by the regions. This is,
in our opinion, a clear example of knowledge organization, inspired to the principles of
knowledge networks, implemented at a lower abstraction level.

Once data packets, containing either simple sensor readings or more complex region
based aggregated data, arrive at the base station, the major design issue concerns
publishing them to the external world. We choose to use the HTTP interface. Each time
a packet coming from a sensor reaches the base station, a hash map data structure is
updated. The key values of this structure are sensors' ID and the values are arrays of
properties related to that particular sensor. The software running on the base station is
also used for the sake of managing properly the ageing of the data coming from the
sensor network. All the readings are time stamped and, if some data become too old,
they are discarded. All the sensors' data can be accessed from external services using
an HTTP request such as:

http://baseStationHost:port/sensors/sensorID/

Text 1: HTTP Request

The software, after checking that data is available and fresh, replies with a HTML page
organized as follows:

sensorid = 3

lastseen = Wed May 09 13:41:21 CEST 2007

sound = 76

light = 593

Text 2: HTTP response

The example shown in Text 2 describes only sound and light readings. Nevertheless,
any additional measure can be inserted with almost no additional effort.

http://localhost:9999/sensors/3/

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 20 of 54

Figure 9: Knowledge Network Explorer showing data coming from real sensors.

The final step to close the loop and make sensors' readings accessible from the
Knowledge Networks toolkit is to write a proper interface to the HTTP server running on
the base station. To reach the goal a generic HTTP KA was specialized into an
HTTPSensorAtom KA. This new java class is obviously able to build a connection to a
generic HTTP server but also to understand the syntax used from the based station to
publish the data. By this way, using our generic Knowledge Networks Explorer, we can
browse through a network fulfilled with data coming from a spread range of sources
including real sensors (as shown in picture below).

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 21 of 54

Figure 10: Knowledge Networks interaction with different sources. In this
case, zigbee sensors are accessed through a specialized HTPP interface. The

internal KC organise heterogeneous data.

It is worth emphasizing that whatever nesC code can be used over sensors. In our
current version (Figure 10), for example, data are periodically pushed from the network
to the base station which exposes them through the described HTTP interface. Actually,
this is only one possible way to interact with sensor nodes. We can for example program
the base station to wait for queries from the outside, translate them using some WSN
framework like TAG or Agilla (Figure 11), wait for an answer from the network and then
reply to the application which queried the data. Our knowledge network framework can
handle whatever data source with the only burden of writing the proper KA needed to
fetch data.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 22 of 54

Figure 11: Knowledge Networks interaction with different sources. In this case,
zigbee sensors are accessed through the Agilla Framework. The internal KC

organises heterogeneous data.

4.3 Knowledge Container
A Knowledge Container is the component of the knowledge network where the actual
organization of knowledge is facilitated. It will aggregate atoms as well as other
containers depending on generic or application specific concepts. Ideally it does not
access the underlying data which however may be bypassed for data related to e.g. the
geographical location of a sensor where the underlying organisational concept may be
the same as the actual data object provided by the atom. Two organisational concepts
have been explored so far and are described in this Section. While the first one offers a
more network oriented organisation that could be applied from within the atoms
themselves the other one is based on semantic meanings.

4.3.1 Network Based Organisation
A dedicated way of organizing knowledge that has been exploited in the context of
knowledge networks is network-based organization. Network-based organization
concerns giving KC the capability of identifying and enforcing direct relations between
KA’s that are somewhat “related” with each other. Such relations between KA might
generally derive from observed “matches” between the feature sets of different KA’s, and
from the logic exploited to evaluate such matches.

In general, we can assume the existence of a matching function MF that, applied on two
(or more) knowledge atoms KA1, KA2, determines if there is a relation between such
KAs. Depending on its specific characteristics, such function can return either a Boolean
or a sort of “distance” measure between KA1 and KA2. (e.g., Dist = MF(KA1, KA2)). By
relying on this pattern matching function, and by having the KC internal logic and

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 23 of 54

processes apply such function to the various KC in a knowledge network (even in a fully
distributed environment in which KAs can reside on different nodes), it is possible to self-
organize a network of relations between KAs. Such networks of relations can be used to
provide to application-level services a higher-level yet simplified view of the current
situation of a context.

We have already applied such form of knowledge network organization for performing
spatial data aggregation in sensor networks (as already described in Deliverable D5.1).
Data aggregation is a very general operation in sensor networks. The idea is to
aggregate sensors with similar readings, so as to provide services with compact
information about the environment, instead of the individual values of each sensor in
such environment. Over an existing environment fulfilled of sensing ACE’s (i.e., sensor
nodes acting as ACEs) exposing the KA interface we can inject a pattern-matching
algorithm to build links between logically correlated neighbour sensors (i.e., the KAs
representing these sensors). The pattern matching function “Distance” currently
exploited simply measure the distance between the valued sensed by sensors, and a
relation “rel” between two KA is reinforced is the distance is below a threshold “Th”,
weakened otherwise:

Pattern Matching Function - Distance

if Distance(v(si), v(sj)) < Th {

 rel(si,sj) = min(l(si,sj) + delta, 1)

} else {

 rel(si,sj) = max(l(si,sj) - delta, 0)

}

Eventually, having such process repeated over and over, lead to the self-partitioning of
KAs into distinct regions: KAs related by a “rel” of value 1 belong to the same region,
“rel” of values 0 identify frontiers between different regions.

Let us refer to Figure 12 to clarify the above concepts. In Figure 12 (a), one can see the
KA associated to sensor, where the arrows link the sensor couples between which to
apply a pattern-matching function (which, in the case of sensor networks, corresponds to
sensors in wireless range with each other, to which to apply the “Distance” function).
From Figure 12 (b), one can see that, eventually, the application of the
pattern-matching function lead to identifying relations (represented by red arrows)
between KAs. In the case of sensor networks, this implies identifying non-overlapping
regions of sensors related to each other (regions A, B, C, in the figure). From Figure 12
(c), one can see how one specific KC can be associated to each of the identified region,
to act as the access point to the data in this region, and as an aggregation point.
Interestingly, the same approach can also be applied at higher-levels, i.e., at the level of
KCs associated to group of related KAs (i.e., in the case of sensor networks, to
neighbour KCs representing neighbour regions). That is, it is possible to identify relations
between KCs (as from Figure 12 (d).

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 24 of 54

 (a) (b)

(c)
(d)

Figure 12: Network-based Self-Organisation
The details of the self-organized region formation algorithms applied to sensor networks
are described in more detail in [D5.1] and in [BicMZ07]. Additional experiments on
general pattern-matching functions and aggregation algorithms are being performed
within WP5.

4.3.2 Concept Based Organisation
The objective of the proposed knowledge network is to organise data in a way that
makes it easier for a user to retrieve context and situation aware collections of
knowledge. The two base components that are utilised to construct knowledge networks
are knowledge atoms and knowledge containers. While the former facilitates generic
access to data the latter is solely concerned with the organisation thereof. In theory, the
knowledge network will be hierarchical, grouping atoms based on their semantic
meaning. For that the knowledge in the atom will be represented by a set of semantic
keywords. The knowledge container may then contain links to the set of atoms it groups
together. Alternatively, the container may also reference other containers, thus creating
a hierarchical or network like architecture. Such a structure is depicted in Figure 13
showing a simple knowledge network that represents a weather sensor system.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 25 of 54

Weather

Temperature Wind Clouds

Force Direction Cover Rain

At
om

s

Knowledge Container

Figure 13: Example Knowledge Network (Weather)

This example shows the following elements. There are three types of sensors: one to
measure temperature, one to measure wind force and one to measure wind direction.
Note that there may be any number of actual sensors that are collectively grouped in the
respective categories. Wind force and wind direction can be grouped into wind, and wind
and temperature can then be grouped into weather. The weather element is a container
that contains other containers called temperature, wind and clouds. While the
Temperature container only contains atoms, wind and clouds are sub-grouped further as
depicted in the example shown.

Example Atom - Semantics

<Keywords>

 <Keyword>Weather.Wind.Force</Keyword>

 <Keyword>Europe.UK.Belfast</Keyword>

 <Keyword>GPS[Standardised GPS Information]</Keyword>

 <Keyword>metoffice.gov.uk</Keyword>

</Keywords>

The semantics describing a resource should follow a hierarchical dot-separated
namespace or alternatively may be represented in RDF thus allowing for more complex
representations as well as a better understanding about the state of the resource.
Constructing such relations from the bottom-up, that is from the data (atom) level,
requires that that each atom is self-descriptive in a way that it provides the semantics it
is based on. For instance, a KA representing the wind force @ location Belfast may
provide a set of keywords as shown above. Thus providing all necessary information to
either link or generate respective ontology’s as shown below.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 26 of 54

Figure 14: Example Ontology

Note that such an ontology is always shared, this means that no part of any given
construct is created or used only for a single object but always available for all objects
that are within the same organisational space. Thus, as shown, the respective ontology
of the example atom depicted may contain other concepts, e.g. the
Weather.Wind.Direction created through e.g. the atom depicted on the left. Alternatively,
containers may be added directly as visualised through the Europe.Italy container which
is not yet linked to any knowledge source. Thus knowledge network constructs may be
created n the following fashion

• Bottom-Up through self descriptive Knowledge Atoms: The obvious
advantage of this method is that the resulting hierarchical or network like
knowledge structures can be generated autonomously without any interference
from the user. However, if the semantics provided by the data layer is incorrect or
purposely falsified then the resulting knowledge structures are also incorrect.

• Top-Bottom through existing ontology’s: For instance, if an ontology is known
beforehand for a particular domain, then this ontology may be modelled via
knowledge containers and declared static in a way that it may not be altered by
internal self-organisation. While this renders the organisational space to be static
it also ensures that knowledge can only be mapped into the existing structures
thus avoiding the generation false relations. In addition, a user or application can
directly specify the type and structure of the knowledge of interest. This allows for
the generation of purpose build knowledge structures serving specific needs for
specific contexts.

• Mixed Construction and validation: In practice, individual relations or full scale
ontology’s cannot always be provided for any scenario. Furthermore, different
ontology’s may be required for different applications. Thus, generating KN’s
dynamically via self-descriptive knowledge atoms is always preferable.
Nevertheless, the resulting knowledge structures should be validated wherever
possible in order to provide a continuing quality of service. Such a service can be
performed at three different levels; (a) when creating a distinct relation, (b) as a

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 27 of 54

background service that constantly compares existing and validated knowledge
with the structures created and (c) at application level, where the knowledge
consumer provides the ontology’s the knowledge has to match.

The above has, so far, only dealt with static semantic concepts such as the location
(provided semantically), the purpose and the domain of the knowledge to be mapped.
However, other more dynamic concepts also have to be dealt with. Probably the best
example of this is GPS data that provide the geographical location of a resource as also
depicted in Figure 14. When static they may be translated into a more meaningful and
human understandable semantic representations such as addresses, town names etc.
On the other hand when used for movable resources (e.g. mobile phones and RFID
tags) such mapping is not always possible or desired. On the contrarily, GPS data can
be used directly for geographical mapping purposes, distance calculations, clustering
etc. For this to be used efficiently within knowledge networks such data should be linked
to active knowledge containers that utilise distinct algorithms that provide purpose based
organisation.

Finally, considering that knowledge atoms as well as knowledge containers are fully
independent entities (ACE’s after they have been integrated into the Cascades
framework), they may be hosted locally or fully distributed thus guaranteeing a
lightweight knowledge structure as well as scalability as each knowledge object operates
independently.

In order to explore and validate concept based organisation, a prototype has been
implemented that is part of the M18 software package [KNOrg]. Although not yet
integrated into the service architecture it shows that independent knowledge sources
can be successfully organised resulting in dynamic ontology’s constructs that can be
created queried efficiently. Subsequent steps will include a full integration into the
service architecture to explore the distributed organisation at a larger scale in more
detail.

5 Knowledge Execution

5.1 Knowledge Querying
Following the example depicted in Section 4.3.2, a KN may represent any number of
knowledge atoms that are organised based on various semantic concepts. Assuming
that this structure exists and is readily available, the question is how can it be most
efficiently queried? This section discusses some important aspects related to the
problem of querying a KN like structure to allow for efficient knowledge retrieval. While a
prototypical querying engine has already being developed it is not yet fully integrated
into the KN architecture and as such not part of the beta prototype.

5.1.1 Query Process
There are a number of query languages that can be used to query XML, which is used to
represent the knowledge that is embraced by a KN. One possibility is to have two
different phases to the querying. The first phase is the search through the network to find
the most suitable sources. The second phase is to actually query the sources. One

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 28 of 54

suggested approach is to firstly find all relevant sources and retrieve their addresses and
then, at a second stage, to query the sources directly. This is appealing for the following
reasons: We can separate the search process from the query process. This means that
we can use a different language to search rather than to query. If the knowledge is
stored as keywords, then a simple structure like RDF can be used to represent this. We
can then use one of several RDF query languages to navigate through it. Because this is
a simpler structure than XML, it means we can make the nodes in the network more
lightweight if they only have to process this information. The sources however may be
large XML documents with a lot of complexity. To properly query such documents a
more sophisticated query language is needed. However, because all of the relevant
sources are known beforehand, a heavyweight query engine as part of the client or root
node that does this part of the querying would be possible which also would not be a
direct part of the network as a whole. The main drawback to this approach is that it is
more centralised than distributed and so goes against an autonomic approach.

An alternative approach would be to perform the query search and actual query
execution through the network. The nodes in the network used for navigation will store
and process RDF only. These are the containers. We then have a set of atom leaf nodes
that access the sources directly. These do not perform any extra navigation but rather
query a source to retrieve relevant values. These nodes do not have to process RDF but
can be heterogeneous with respect to the query language and store a query engine
suitable to the source. If we have a complex XML document, then the query engine
might be something like XQuery or Xcerpt. If we have a simple sensor, then an RDF
query language could be utilised directly. This leaf node will receive a query request
from a parent node, convert it into a format suitable for its query engine, execute it and
then return the result. The result will be an XML reply leaving the only problem of
combining the replies into a consistent document. In a hierarchical network it is preferred
to allow references only in a downward manner, so as to prevent cycling in a search
process. However, links to parent components can exist but not be used as part of the
search process. Then, when a path is clearly defined, the backward reference can be
used to perform the navigation. If using a select-from-where statement, the centralised
and distributed approaches can be partially combined. The ‘where’ comparisons can be
evaluated locally at nodes that compare a source to an exact value, for example ‘value1
greater than 0’. Thus fewer nodes need to be returned.

The following scenario may describe what the heterogeneous approach would allow:
Say we have a number of temperature sensors distributed over e.g. Belfast and we have
a number of XML documents with knowledge on the buildings in Belfast and the people
that work in them. A possible query could look like “retrieve the temperature from
buildings where people work who wear ties and eat cornflakes” or in SQL like format
“Select weather.temperature, From weather Where weather.building in (Select
buildings.name From buildings Where buildings.people In (Select people.name From
people Where people.wear Equals ties and people.eat Equals cornflakes))”

This is a typical select-from-where statement. While XML processing would be desirable
for a complete system, it is not absolutely necessary for a test prototype. The select-
from-where statement that queries for simple values should suffice for most of the
required tests. If we enforce a nesting for processing then this could be done in

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 29 of 54

individual stages. We first query the people, then retrieve the buildings and query that
and then finally query the temperature sensors. When the query parts are sent through
the network, all of the keywords relating to the whole query should be sent with it, not
just the part currently being processed.

The query process will describe routes through the network that satisfy the query. If the
user is satisfied with the query result, then the knowledge network itself may be updated
to reflect this sort of successful knowledge retrieval. In fact, the network could be
modified in an experience based way based on its use. A relatively simple way to do this
is the following: We note the nodes visited to answer a query and construct links
between nodes commonly associated together. So if a user submits a query, the first
part is constructed and a path through the network is navigated. The sources process
the query and send the reply back through the network. The nodes that receive the reply
note that they have been used in processing this query. If the user then confirms that the
query result is acceptable, these nodes then permanently update a structure that stores
references to the other nodes used to answer the query (or query part).

5.1.2 Autonomic Querying
The knowledge network can use the querying process to autonomically organise itself
with respect to knowledge. This is done by dynamically creating links between nodes
that answer the same type of query. When a query is answered, the query engine can
inform the nodes that were used to answer it. Related nodes can then form links
between each other, which can be used as an organisational and optimising mechanism.
For example, if there exists 100 temperature sensors and only 1 is used as part of a
query, then only that single sensor could be linked to another part of the network while
the other sensors are not included. Consider the following example:

Figure 15: Example of Node Linkage through Querying

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 30 of 54

In this example we have a number of keywords semantically grouped together as shown
by the solid arrows. The query that is consistently executed is ABE(G). The nodes that
consistently answer this query advertise the keywords that they do not have. The other
nodes reply that they also answer the query and temporary links are set up. There may
be many nodes all of type A or type B or type E. We do not want node G to store
references to all of these nodes, so only the ones that answer the query are referenced.
After a communication, node ABCDEF sends the result to its sub-nodes that answered
the query and they can update their weights. If full paths are stored then only those
specific sources need to be informed. When it is discovered that this behaviour is
consistent, these atom nodes then store more permanent references to one another.
These are references to just single nodes not types of nodes and provide shortcuts
through the network. These references are shown by the dashed lines. If node A is then
used in some query that includes the keywords B, E and G, it also returns the references
to the other nodes B1, E and G and if their tree needs to be queried they can be looked
at first. This could help to speed up the query process and has the advantage of linking
parts of the network that would otherwise maybe not be obviously linked together. When
recording the references to sources, we can also store the path information, making it
easy to directly access the sources if they are later specified. At the same time, if there
exists a link that is then not subsequently used, the weight for it can be decreased until
the link is permanently removed. This can be done through the network structure again
as it was for the link creation. It could also be done by the source nodes communicating
with each other directly after a query answer to check that they both answered it.

Obviously, this type of reorganisation relies on the same queries being consistently
executed. For disperse data the queries may always be varied. But then there is no
reason to modify the network structure based on the queries if it is always queried in a
different manner.

5.1.3 The Query Language
XML is being used as the standard information representation mechanism for a
knowledge network. It should be noted that for testing, complex XML-based sources
may not be available or used. Thus a select-from-where statement that queries much
simpler source values will probably be suitable. However, in the wider context of
knowledge querying, XML-based query languages are important and so some will be
described in these sections. This report will focus on three potential query languages
that can be used to query XML data. These are OTK-RQL [OTK-RQL], SPARQL
[SPARQL] and Xcerpt [Xcerpt]. All three languages can query RDF [RDF], while Xcerpt
can also query XML in general. These languages will be assessed with regard to their
suitability for processing RDF and XML in the knowledge network in the project.

5.1.4 Ontology-Based Search
Although the construction of the knowledge network is a separate issue, some mention
of it should be made as it affects how the network is searched. We have a knowledge
network with nodes defined by sets of keywords. One possibility is for the parent nodes
to contain the keywords for the nodes in their subtrees. If this is not the case then we
may need to search the entire network to retrieve the relevant sources. The other option

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 31 of 54

is to have an ontology to provide the semantic relationships between the keywords. The
subtrees in the network essentially define the different ontology domains, or there may
be separate trees at different locations. Maybe the key construct for our ontology would
just be the ‘subclass’ construct, which would link the keywords of parent to child nodes.

The hierarchical structure seems to store the relationships between concepts quite well.
Maybe an advantage of an ontology is if there are unrelated concepts that can be linked
to each other. For example pasta and bolognaise sauce. Then if the user asks for
information on pasta, the bolognaise sauce node is also searched. But this is not a
subclass relationship and requires prior knowledge of the contents of the network. Our
method to dynamically link sources through stigmergy could be used to provide this sort
of information. Another advantage of using the ontology could be to define all of the
concepts a user can query. This gives the user an idea of what the network contains. If
two separate trees both use the same ontology but store different components of it, then
users querying the different trees can query over the whole ontology even if all
information is not available at that specific tree. Next is a summary of the main query
languages to be considered for a prototype implementation. The list of query languages
discussed is by no means complete but represents the languages that are seen as
mostly relevant for querying the proposed KN like structure.

OTK-RQL is an ontology-based language used for querying RDF. It was created as part
of the On-To-Knowledge project. It is an extension of the RQL RDF query language. The
project aims to achieve the goals of intelligent search instead of keyword matching,
query answering instead on information retrieval and support for document maintenance
and exchange. OTK-RQL queries ontologies written in DAML + OIL [DAML + OIL],
where the OIL Core is the minimum specification. OIL stands for Ontology Inference
Layer. RDF provides a simple data model for representing formal semantics of
information, i.e. meta-information. RDF Schema provides a simple ontology modelling
language on top of RDF that can be used to define vocabulary and structure of RDF. OIL
adds a simple description logic to RDF Schema. It allows you to define axioms that
logically describe classes, properties and their hierarchies. Sesame is a repository and
querying facility for RDF schema. It has a query engine for the RDF Query Language
(RQL). OTK-RQL provides a select-from-where filter and its syntax is like SQL. It
supports almost the complete RQL vocabulary with some differences. The answer is
returned as an RDF document. The main difference between OTK-RQL and RQL is the
support for multiple domain and range queries.

SPARQL is another query language used to query RDF. The current trend is for pattern-
based matching and SPARQL is based on pattern matching of graphs. SPARQL is used
more for information retrieval and does not use ontologies. It does however has a
describe operator that can return an RDF graph that describes the structure of one or
more sources combined together. This could be used to retrieve a kind of ontology of the
tree(s) being searched. Xcerpt is also a pattern-based query language that can query
both RDF and XML. As such it can be used for querying complex XML documents.
Xcerpt is also deductive and can deduce knowledge about its sources. Xcerpt requires
that the source locations be specified, so it could only be fully constructed after the
navigation phase.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 32 of 54

As a knowledge network may contain sources of complex types, a sophisticated
language is required. Something like Xcerpt may be capable of performing such a
method of querying. This language will always only be used at the source nodes. If we
have ontologies then we should generate these in the form of OIL and use OTK-RQL for
navigation as it is also deductive. If we choose not to use ontologies, then SPARQL has
the useful describe command that might be a help to the user to construct a query. For
example, keywords are flat, but the describe operator would return a structure. Also,
without ontologies the deductive element is missing and one should go for two pattern-
based approaches.

5.1.5 KN Query Interface
An interface can be provided to allow querying of the knowledge network. Depending on
the type of query to be executed we can allow a different type of interface. One type of
query will search simply nodes that contain certain concepts. Another type of query will
ask for specific value types for these nodes. Another type of query may ask a question
or require lightweight reasoning. There may be different ways to accommodate these
different query types, but they can all be specified within a select-from-where structure. If
asking just for navigation to specific concepts, then only the select and from parts need
to be used. For example, if the user asks ‘retrieve all nodes that relate to clothes’. This
could be specified as:

Select * from clothes.

If the user asks ‘retrieve all nodes that relate to clothes that describe red shirts’, then the
query might look like:

Select shirts from clothes where shirts.colour equals red.

The stigmergic linking that has been studied will also allow some basic reasoning. This
might allow the use to ask questions, such as ‘what is the best colour of shirt to wear in
the summer?’ Links that relate shirts to the concept of summer, for example, can be
retrieved and the shirt colours aggregated to give a best value. For example, if there a 5
links from shirts to the summer concept and 3 are red while 2 are blue, then the red
colour could be described as the best.

A relatively simple GUI will allow the user to specify all of these query types. The query
process will search for sources that answer each of the comparison parts in the ‘where’
clause in turn. Only sources that answer one comparison can be used for the other
query parts. The search process is guided by the hierarchical structure of the network
and also by any links that exist. The links can specify that only certain sources should be
looked at, thus reducing the search space. Linked features will also allow for memory
management, where sources can be restricted in the number of links they are allowed to
store, or even learning algorithms to learn certain parameters. Queries can be run with
or without the linking features.

While the current querying considers only simple value types, if more complex and
heterogeneous sources were to be used, then the atom would require its own query
engine to retrieve the required concepts from its XML-based source. This could be one

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 33 of 54

of the XML-based query languages already described. The process would then require a
search to find the sources that contain the concepts and then ask those sources to
retrieve the data relating to the query specification only. Some pattern-based mechanism
could then be used to combine the different replies.

5.1.6 Summary
The above has suggested a querying system for knowledge networks that takes
advantage of the hierarchical structure of the network. It suggests two different query
stages – one to traverse the network and one to query the sources. As it is applied to a
hierarchical structure, this will largely guide the search. One can move to the node that
closest matches the query specification based on e.g. keyword similarity. Because of
this, we have tried to improve the query search in an experience based way with respect
to directly linking sources for certain query types, which has been done in a stigmergic
and autonomic manner. There may be a number of sources that all offer the same
service, so it would be helpful to note that if a certain source is used with a certain query,
then other sources are also often used. This could speed up the query process or
possibly improve the quality of service. For the query language, the order of execution is
critical. In addition, keeping individual components of knowledge networks as lightweight
as possible is another important factor. Thus a query a language like Xcerpt may not be
ideal for knowledge containers. The knowledge atoms however may need to be more
heavyweight with regard to querying as they may have to query complex structures or
even databases. It should be noted that a select-from-where statement can be used to
query RDF as well, which may be the preferred language for storing container concepts.

The experience-based updating can be considered as an extra phase of querying. It is
only performed after a query is executed and offers self-optimisation via introspective
learning. The updating in effect also updates the ontologies created for the source
nodes. This is turn changes the knowledge stored in the network through its constructed
relations. But because it is done on a personal level for each source, it does not affect
the overall general organisational structure.

5.2 Knowledge Verification
Equipping applications with the ability to adapt to different situations requires information
about the applications’ environment. This information is called “context”. Any contextual
information has to be sensed, measured, or derived from a data source before it can be
used as an input for a context aware application. In the flow of this process errors can
occur at several points. Defective hardware, misinterpreted data, or unforeseen
circumstances may cause context failures. Faulty context data may lead to a malfunction
of a context-aware application. For this reason a method for context data verification is
required. Contextual data can be distinguished into low-level context and high-level
context, where low-level context comprises data directly derived from sensors and high-
level context is information inferred from low-level context. For example, the longitude
and latitude of a GPS data set is low-level, whereas the interpretation of this data, “at
home”, is high-level context.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 34 of 54

Figure 16: Groups of interrelated high-level contexts; because the “father’s”

activity “swimming” rarely happened in the “evening” and never “at home” the
context data “swimming” is suspicious

In our context verification approach we introduce context patterns, which are defined as
states a context group can reach. Each context group consists of interrelated high-level
contexts which can have different values and can therefore create different patterns.
Observing the context values and calculating their occurrence frequencies then enables
us to detect potentially faulty high-level contexts (cf. Figure 16). Thereafter, it is required
to locate the source of the error. In our approach, we assume that a high-level context
usually is inferred from several low-level contexts and a low-level context usually is
involved in the creation of several high-level contexts (cf. Figure 17). Following this and
given that we have located a faulty high-level context, we need to analyse all low-level
contexts from which the detected faulty high-level context is inferred. Each of them has
to be individually verified by analysing all inferred high-level contexts and the context
patterns of all groups they belong to. Detecting further anomalies then indicates that the
underlying low-level context is an error source.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 35 of 54

Figure 17: Inferring high-level context from low-level context

6 Integration with the ACE Framework
The KN software developed so far has to face, in the next few month, a notable
restructuring in order to make it inter-operable with the ACE framework and in order to
realize it in terms of ACEs, to exploit the additional autonomic features of ACE
components. Although this activity has not practically started yet, we have already clear
ideas on how to proceed, which we report in this section.

6.1 ACE Integration Process
The integration of the ACE model (WP1) and knowledge networks (WP5) will proceed in
two main directions:

• Firstly, an interface will be developed to retrieve, access and produce information
in the knowledge network that is compatible with the standard way adopted by
ACEs to interact with each other (i.e., GN-GA protocol and contracting).
Basically, this interface makes knowledge networks available and accessible like
any other ACE-based resource.

• Secondly, the core mechanisms of knowledge networks will be integrated on top
of the ACE architecture. This completes the integration in that the knowledge
network components (knowledge atoms and knowledge containers) are actually
ACEs themselves.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 36 of 54

6.2 Knowledge Network Interface
To describe the interface to the knowledge network it is fundamental to briefly recap how
ACEs interact with each other and with external resources. Of course, it would be
valuable if ACEs could access the knowledge network with the same mechanisms they
already have. The gateway is the ACE internal component in charge of communicating
with the external world. The gateway provides two communication mechanisms:

• An event-based, session-less mechanism supporting the GN-GA protocol and
other simple interactions. This mechanism is realized upon the services offered
by the REDS1 event-dispatching middleware.

• A point-to-point session-capable mechanism supporting complex interactions
among ACEs. This mechanism is realized via the MirrorAgent* functionalities
provided by the DIET agent framework (this is actually similar to Java RMI
functionalities).

The standard interaction procedure exploits both of the two services:

• The event-based mechanism is used to locate suitable interaction partners. This
typically involves (i) an ACE sending a GN (Goal Needed) message to advertise
its need for a specific goal, and (ii) other ACEs, that are able to execute such
goal, answer with a GA (Goal Achievable) message describing in detail the
goal/task they are willing to provide.

• The requesting ACE then selects the other ACE with which to interact, and uses
the point-to-point mechanism to actually invoke the service (the point-to-point
mechanism also support contracting to let the ACEs agree on the conditions
under which the service invocation will be realized).

Such a general interaction mechanism can be readily exploited to access the knowledge
network:

• The GN-GA protocol will be used by ACEs to locate the most appropriate
Knowledge Container (KC) to satisfy their knowledge need. Specifically we
subclass the GN and GA message classes to have knowledge network specific
message format: KNM (Knowledge Needed Message), KAM (Knowledge
Available Message).

a. KNM provides a template to express interest to a class of context
information (e.g., I want all the information related to a specific region, or
to a specific user)

b. KAM provides another template specifying which kind of information is
produced by a given entity.

The communication middleware (i.e., REDS) takes care of routing KNM
messages to matching KAM messages so that relevant information sources are
discovered.

1 See WP1 documentation for details.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 37 of 54

• Once suitable KCs have been discovered, they can be directly accessed via the
point-to-point mechanism to actually retrieve the requested information. Such
point to point interaction also allows negotiating on specific information access
modalities (e.g., quality of information, sampling rate, access rights, policies etc.).

Given this interaction mechanism, the knowledge network, and in particular KCs are
perceived by other components as if they were ACEs.

6.3 Realising Knowledge Network via ACEs.
The following step is to realise the core mechanisms and components of the knowledge
network on top of the ACE architecture. The ACE architecture as developed by WP1 is
depicted in Figure 18. In order to modify knowledge network components, namely KA
and KC according to this architecture (as well as any other ACE-based component) the
Self Model and the required Functionalities thereof has to be specified. All other
components are mainly static and constitute the backbone of any kind of ACE’s.

For a complete description of these ACE internal components, the reader should refer to
WP1 documentation. Here only the basic mechanism of ACE’s that are relevant to
knowledge networks are recapitulated:

• The ACE Self Model describes at an abstract level what the ACE is capable of
doing and how it realizes its functionalities.

• The Facilitator creates a Plan on the basis of the current system circumstances
(i.e., context) by loading specific behaviour from the Self Model. The Plan is
represented by means of a finite state automaton. (from another perspective, we
can say that the Self Model contains all the Plans the ACE is capable of
performing. The Facilitator selects one of these plans to be executed at a given
time for a specific purpose).

• The Reasoner is the component in charge of running the finite state automaton
triggering its transitions.

• Upon the triggering of a transition, the Plan indicates which Functionality has to
be called to achieve the transition.

All these components apart from the Self Model and the Functionalities are either
common to all the ACEs (and already implemented by WP1) or dynamically generated
(e.g. Plan from the Self Model).

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 38 of 54

Figure 18: ACE Architecture

6.4 Implementing Knowledge Atoms
At the most basic level KAs will be implemented according to the trivial Self Model (that
actually constitutes a single constant Plan) as depicted in Figure 19.

This Self Model mainly states the following actions:

• If receiving a KNM message that matches the kind of information the atom is able
to produce, then reply with a KAM message describing such kind of information

• If a query point-point message arrives, then execute the getValue functionality.

• The getValue functionality actually accesses the low level sensor machinery,
retrieves the result and sends it back to the requesting ACE. It is worth remarking
that since point-to-point messages are really sort of RMI invocation2, the sending
of the result back to the client is actually a simple return statement.

2 See WP1 documentation for details

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 39 of 54

Figure 19: Self-Model of a Knowledge Atom

6.5 Implementing Knowledge Containers
KC will be implemented according to the Self Model in Figure 20. The Self Model
basically states:

• If receiving a KNM message that matches the kind of information the atom is able
to produce, then reply with a KAM message describing such kind of information

• If a query point-point message arrives, then execute the queryAtoms
functionality.

• The queryAtoms functionality actually sends a point-to-point query message to
the atoms registered within this knowledge container (see point 4). The replies
will be combined according to a KC-specific policy – to be implemented within the
queryAtoms functionality – and the final result is returned to the enquired ACE.

• Every T seconds, the knowledge container looks for knowledge atoms (or other
knowledge containers) able to provide information that are suitable to its need. It
performs this by sending a KNM message specifying the kind of information it is
willing to aggregate (i.e., contain).

• Upon the receipt of suitable KAM messages the container calls the
storeAtomAddress functionality.

• The storeAtomAddress actually registers the atom in the container by storing its
address in a suitable repository. Registered atoms will be queried upon the
receipt of a query message (see point 2).

It is finally worth noticing that the above self models and functionalities are only a first
attempt of mapping knowledge network functionalities into the ACE model. In future
versions more advanced mapping taking into account more context-related information
would be developed.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 40 of 54

Figure 20: Self-Model of a Knowledge Container

7 Research Directions
Obviously, one of the main objectives for the reminder of the project is the integration of
the developed concepts, prototypes and algorithms into the overall ACE framework (as
described in Section 6) as well as synchronising individual aspects between work
packages towards a common demonstrator.

Internally, WP5 will concentrate on the following aspects for the next 6 month and
beyond (which to most extent correspond to what already stated in the roadmap of
[D5.1] and in the document of worl).

• Evaluation and refinement of existing components and algorithms;

• Add-on Services: As described earlier on KN’s are service oriented in a way
that specific solutions may be integrated into the KN toolset itself thus realising
specific functionality. From the discussion so far, it is clear that the amount of
information relevant for contextual knowledge and reasoning thereof are
characterized to be rather large, unstructured, unrelated and possible redundant.
This calls for advanced knowledge lifecycle mechanisms and for mechanisms to
ensure the consistency of sensed and newly derived knowledge. With respect to
the former, the issue is to evaluate how long the information should be held and
how much of its history should be stored for future use and for predictive
features. Simplified, it is the possibility of a system to “forget” things which is
proven to be often more difficult than making a system learn. With respect to the
latter, the issue is to evaluate discrepancies for inconsistent and incomplete
knowledge, and how to measure reliability and accuracy of information.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 41 of 54

• Context Verification: Current context verification method as addressed by UniK
will be further researched and implemented. We will develop a simulation
environment capable of investigating the context verification system. A scenario
within the scope of the overall CASCADAS scenario Pervasive Exhibitions will be
created and will form the basis for experiments. User behaviour and sensor data
will be simulated in order to map real world situations. All processed information
will be handled via knowledge networks. Multiple experiments are intended to be
performed to investigate the behaviour and to prove the correctness of the
context verification system. Our work can be further extended by investigating
additional aspects and properties with the help of experiments. One more
question that could be worked out is how to correct errors once they are
detected.

• Situation awareness: Applications and services need to take advantage from
knowledge organization along different dimensions e.g. the semantic and
temporal dimensions, or along additional application-specific dimensions. This
calls for more advanced algorithms that, ideally, can operate on multiple
dimensions thus providing situational knowledge derived from multiple contextual
levels. From the semantic viewpoint, it is necessary to integrate self-organization
algorithms that enable to discover and enact relations among initially
uncorrelated knowledge atoms. From the emerging network of such relations, it
may then be possible to acquire new knowledge about facts and situations,
which could be made available via knowledge containers. From the temporal
viewpoint, the basic idea is that the analysis (both spatial and semantic) of
contextual information about the past can be used to infer information about the
future. For instance, the analysis of the fact that a visitor at the exhibition has
already visited specific sections of an exhibition can be used not only to increase
the accuracy of its profile but also to reasonably predict what sections/events in
the exhibition he is most likely to visit next. Accordingly, one can tune the
information displayed on the screens close to her/him.

• Advanced Knowledge Execution and Optimisation: Bio-inspired mechanisms,
which incorporate concepts such as stigmergy, swarm intelligence and heartbeat
signals offer new perspectives that are relevant for the optimization and
adaptation of structures that are complex in nature, highly distributed and often
unrelated with each other or with the domain /situation they are used for. In
theory, they enable distinct optimization without the requirement for an intrinsic
stimulus, which allows for truly distributed self-mechanisms. Furthermore,
introducing autonomous features into systems where selective adaptation and
control mechanisms are difficult to implement makes such systems not only more
robust and reliable but often they make them usable in the first place. The main
objective for this type of work is to research such mechanisms in support of
autonomic principles. In particular the utilization of stigmergy to enable self-
organization, self-optimization and self-contextualization will be analysed. The
use of stigmergic overlay networks will be explored for optimizing knowledge
querying, enabling reasoning over knowledge structures and for constructing and
utilizing usage pattern thereof

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 42 of 54

Appendix A – User Guide

Knowledge
Networks

How to Create Your Own
Atom Realisation

Version 0.1

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 43 of 54

A.1 Knowledge Atom
Knowledge Atoms (KA) represent the generic data access layer for Knowledge Networks
(KN). Representing the most basic component of a knowledge network, the rough
structure of a knowledge atom is depicted in Figure 0. It contains a knowledge source
object and relevant descriptions that provide the context of the data or knowledge
represented by it. The sole purpose of a knowledge atom is to provide generic access to
a specific data source and to allow the registration thereof into the scope of a knowledge
network. It is not concerned with any organisational aspects within or outside the
knowledge network nor is it responsible for the configuration, maintenance or (de-)
registration thereof. To be more specific, a Knowledge Atom provides access to data
and knowledge, it is not concerned with the sensing, construction, maintenance or
organisation thereof.

Knowledge Source
Access / Description

Knowledge
Source

Context

- IDENT
- UUID
- Name
- Description

- Meta-Inf
- Keywords
- Concept
- Location

- Handling / Usage / Log
- Supervision

- Monitoring
- History

- Access / Security
- Quality of Context

Figure 21: Knowledge Atom

Simplified, KA’s may be grouped into two distinct types, namely embedded and remote
atoms. While these may appear to be the same to the outside, the way data is provided
differs. From a knowledge network point of view, an embedded KA stores the data it
serves locally (inside the network) while a remote KA provides its data based on the
concept that is behind its final realisation. In any case, for the latter, data only exists
wherever they are produced. If not for other reasons they do not appear in any way
inside the KN.

A.2 Embedded Knowledge Atom
The rational for this type of atom implementation is to serve data that is of a
(semi-)static nature. That is, it should be non-volatile and relatively small in size. As the
name suggests, relevant data is directly included within the atom’s runtime object (inside
the KN) and as such readily available on request. Some good examples of such data
include policies, rules, locations, etc. While these atoms may be altered, referenced or

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 44 of 54

cloned as desired, a sophisticated master data manager may be desired to preserve the
original instance thereof. To allow for the dynamic handling and provision of embedded
atom instances, a distinct java class has been complied which conforms to the generic
Atom specification. An XML construct, as shown below may be used to configure
individual atom instances with specific data. The construct provides distinct parts that
relate to the value and type of the data to be served, optional configuration parameters
as well as a section that is specific to knowledge networks. Although the size and
complexity of the “Value” section is not limited, it should be kept within reasonable limits
and instantiations of relevant objects may be refused if the size is outside the capabilities
of the hosting resource. The overall atom itself may be further configured and registered
via services as described later on.
 <Data>
 <Value>Atom value</Value> // Compulsory
 <Type>Data type of the atom value</Type> // Compulsory
 <Config>Configuration of the atom source</Config> // Optional
 <KNModel>Data specific to the concept of Knowledge Networks</KNModel> // Optional
 </Data>

XML Block 1: XML Specification - Embedded Atom

A.3 Remote Knowledge Atom
As the name suggests, remote atoms provide data that is not contained within their own
logic or memory space. The rational for this type of atom implementation is to enable
access to data stemming form various concepts, e.g. sensors, databases, software
modules, web page, etc. In this case the data source itself exposes the atom interface or
any other interface deemed necessary. Access to the recourse is then facilitated using a
specific atom realisation to be provided by the vendor or user which may be registered
into the scope of a KN. Due to the fact that the underlying data will be, at runtime,
requested from the underlying source, this type of atom realisation may be used to serve
volatile data independent of its size, complexity, location or context. The Atom instance
may be loaded and linked directly (specific realisation) to the data source or may be
hosted remotely (data source exposes the atom interface directly). A knowledge
requester will only communicate with the interface and is indifferent to the location of the
actual data or specific access mechanisms. Because of the fact that the underlying data
represents volatile concepts, it may not be altered or cloned from the outside. However,
it may be referenced as desired to allow for maximum access optimisation during
internal network knowledge discovery.
<Service>
 <Name>Name of the Atom Realisation </Name>
 <Description>Detailed Description</Description> // Optional
 <URI>URI where relevant class files may be loaded from</URI> // may be null for internal classes
 <ClassName>Class name to be instantiated</ClassName>
 <Parameters> // Optional
 <!--Constructer Paramenters-->
 <Parameter>
 <Name>Name of the Parameter</Name>
 <Type>Type of the Parameter</Type>
 <Value>Value of the Parameter</Value>
 </Parameter>

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 45 of 54

 </Parameters>
<Services>

XML Block 2: XML Specification - Remote Atom
To provide for distinct remote atom realisations, dedicated proxy classes have been
compiled which can be used as a base class for specific implementations. Alternatively,
individual realisations may implement the atom interface, as shown in Code Block 1, or
simply conform to the specification of the atom interface without actually implementing it.
In this case access to the methods is realised via reflection. Specific atom realisations
may finally be used to instantiate the generic atom proxy within the knowledge network.
An XML construct, as shown below may be used to configure the proxy object advising
on what atom realisations may be loaded and how they should be configured.

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 46 of 54

public interface Atom {
 /**
 * Convenience method to test if the Atom is available.
 * @return true if the Atom is available, otherwise false;
 */
 public boolean isAlive();

 /**
 * This method provides an XML based description about the value of the Atom and its type.
 * The structure of the XML object has yet to be specified.
 * params can be used to pass relevant parameters.
 * @return The Atoms value following the following xml format.
 *
 * <PRE>{@code
 * <Data>
 * <Value>
 * The Value of the Atom
 * </Value>
 * <Type>
 * The Type of the Atom
 * </Type>
 * </Data>
 *}</PRE>
 */
 public Element getValue(Vector params);
 /**
 * This method provides an XML based description about the type of the value the Atom provides.
 * The structure of the XML object has yet to be specified.
 * @return The Atoms type following the following xml format.
 * <PRE>{@code
 * <Type>
 * The Type of the Atom
 * </Type>
 *}</PRE>
 */
 public Element getType();
 /**
 * This method provides an XML based description about the Atom source (not its value).
 * The structure of the XML object has yet to be specified.
 * @return A description about the Atom source following the following xml format.
 *
 * <PRE>{@code
 * <Config>
 * This Section is open and may differ for each Atom.
 * Standardised content may be defined at a later stage
 * </Config>
 *}</PRE>
 */
 public Element getConfig();
}

Code Block 1: Atom Interface

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 47 of 54

Currently, four specific realisations have been compiled and may be used as base
classes. These are (a) an implementation to serve embedded data as described
previously (EmbeddedAtomImpl), (b) an RPC solution that connects to RPC based web
servers (RPCAtomImpl), (c) a service that accesses specific and publicly available web
services (WSAtomImpl) and (d) a sensor implementation which allows access to
specific types of MicaMots. The overall atom itself may be further configured and
registered as described later on. Within the context of Cascadas, it is envisioned that all
but (a) will be replaced by a specific ACE solution which will serve as a generic
component where data is gathered from. Nevertheless, other solutions may also be
catered for in order to provide access to legacy systems.

A.4 Atom Registration
Within the current RPC based solution as well as within the overall ACE model, atoms
represent services (or jobs in DIET terms) which may be configured using the XML
construct shown below. The atom service itself may be added or registered to a running
RPC based knowledge network by calling “addComponent(Element knComponent)” on
the respective network instance.
<KNComponent>
 <Ident>
 <UUID>Unique Identifier</UUID>
 <Type>Atom</Type>
 <AccessInfo>
 <URI>URI specifying the location of the Atom Instance</URI>
 </AccessInfo>
 </Ident>
 <Atom>
 <Service>
 <!--Atom Realisation as specified earlier-->
 </Service>
 </Atom>
 <Service>
 <!--Additional Services that may be loaded and linked to the Atom-->
 <!—currently, this should only be used within WP5-->
 </Service>
</KNComponent>

XML Block 3: Atom Service Specification
While embedded atom realisations may be loaded as well as registered to the scope of a
knowledge network, remote atoms should only be registered. The atom interface itself
should be linked to the data source itself or if possible, embedded therein. This would
allow the fully distributed and lightweight construction of network like structures at a later
stage. However, to allow for simulated data sources, distinct atom realisations (remote
atoms) may also be dynamically loaded. This functionality however will be depreciated at
a later stage.

A.5 Atom Add-On Services
One of the objectives was to keep individual atom implementations as lightweight as
possible. Because of this, the basic atom realisation will only have a basic functionality
which is only relevant to the provision of data itself. To make the concept of atoms as a

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 48 of 54

generic access layer for knowledge networks completely generic however, there will be
times when extra functionality will need to be added to satisfy the user requirements.
Thus individual atoms may be orchestrated by (un-)loading and linking other services to
the overall atom instance. This can be done at initialisation as well as at runtime. In both
cases individual services have to be provided as executable code and also have to be
described via XML conforming to the structure shown below. Using this construct a
service can be added by simply calling the addComponent method on the respective
atom object, passing the XML description as a parameter. Note that this can be done
directly or via RPC. Respective methods may then be explored and executed utilising
the service explorer and execution manager provided by the RPC framework.
<Services>
 <!--Extra services the component can provided as added components-->
 <Service>
 <Name>The name of a service this component provides as an add-on</Name>
 <Description>Sementic description of the service</Description>
 <URI>The address of the service, can be null for a local service</URI>
 <ClassName>The Java class name of the service object</ClassName>
 <Parameters>
 <!--Intitialisation parameters of the service-->
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 <Methods>
 <!--A list of methods for the service-->
 <Method>
 <!--A single method specification-->
 <Name>The methods name</Name>
 <Description>Sementic description of the method</Description>
 <Return>The return type of the method </Return>
 <Parameters>
 <!--A list of parameters for the method-->
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 </Method>
 </Methods>
 </Service>
</Servies>

XML Block 4: Atom Add-On Services Specification

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 49 of 54

Appendix B – Examples

B.1 Embedded Atom
<KNComponent>
 <Ident>
 <UUID>Embedded_Test_Atom</UUID>
 <Type>Atom</Type>
 <AccessInfo>
 <URI>http://Localhost:8888</URI>
 </AccessInfo>
 </Ident>
 <Atom>
 <Data>
 <Value>
 Our central objective with CASCADAS is to identify, develop, and evaluate a general-purpose
 abstraction for autonomic communication services, in which components autonomously achieve
 self-organisation and self-adaptation towards the provision of adaptive and situated
 communication- intensive services. We will achieve this objective by developing a common
 abstraction, called an ACE (Autonomic Communication Element), which represents the
 cornerstone of our component model. We will also use four key, underpinning scientific principles
 in CASCADAS, which are situation awareness, semantic self-organisation, self-similarity, and
 autonomic componentware to help guide the project.
 </Value>
 <Type>java.lang.String</Type>
 <Config>Confidential</Config>
 <KNModel>
 <Keywords>
 <Type>Sensor</Type>
 <Key>Weather</Key>
 <Key>Wind</Key>
 <Key>Wind_Direction</Key>
 <City>Berlin-Schoenefeld</City>
 <Country>Germany</Country>
 </Keywords>
 </KNModel>
 </Data>
 </Atom>
</KNComponent>

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 50 of 54

B.2 RPC Atom and Add-On Service
<KNComponent>
 <Ident>
 <UUID>Unique Identifier</UUID>
 <Type>Atom</Type>
 <AccessInfo>
 <URI>URI specifying the location of the Atom Instance</URI>
 </AccessInfo>
 </Ident>
 <Atom>
 <!--Atom Realisation as specified earlier-->
 <Service>
 <Name>RPC_Atom</Name>
 <Description>Atom service</Description>
 <URI>null</URI>
 <ClassName>org.cas.kn.impl.services.atoms.Atom_RPC</ClassName>
 <Parameters>
 <Parameter>
 <Name>name</Name>
 <Type>java.lang.String</Type>
 <Value>Wind_Force</Value>
 </Parameter>
 <Parameter>
 <Name>uri</Name>
 <Type>java.lang.String</Type>
 <Value>http://127.0.0.1:8888</Value>
 </Parameter>
 </Parameters>
 </Service>
 </Atom>
 <Service>
 <!--Additional Services that may be loaded and linked to the Atom-->
 <Name>MetaInf</Name>
 <Description>null</Description>
 <URI>null</URI>
 <ClassName>org.cas.kn.impl.services.DefaultMetaInfService</ClassName>
 <Parameters>
 <Parameter>
 <Name>ServiceConfig</Name>
 <Type>org.jdom.Element</Type>
 <Value>
 <MetaInf>
 <Description>
 <Name>Wind_Force.Karlovy Vary.Czech Republic</Name>
 </Description>
 <Keywords>
 <Type>Sensor</Type>
 <Key>Weather</Key>
 <Key>Wind</Key>
 <Key>Wind_Force</Key>
 <City>Karlovy Vary</City>
 <Country>Czech Republic</Country>
 </Keywords>
 </MetaInf>
 </Value>
 </Parameter>
 </Parameters>
 </Service>
</ Service

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 51 of 54

B.3 Skeleton Class for Push Mechanism
Class PushService {

 private Object lastValue;
 private long pollPeriod;
 private ArrayList receivers; //array of NotificationListeners

public PushService(long pollPeriod, NotificationListener receiver) {
 this.lastValue = null;
 this.pollPeriod = pollPeriod;
 receivers = new ArrayList();
 start();

}

 public registerListener(NotificationListener nl) {
 receivers.add(nl);
 }

 public unregisterListener(NotificationListener nl) {
 receivers.remove(nl);
 }

 public setPollPeriod(long pollPeriod) {
 this.pollPeriod = pollPeriod;
 }

 public getPollPeriod() {
 return pollPeriod;
 }

 private sendAll(Object currentValue) {
 int index;
 NotificationListener nl
 if (currentValue != lastValue) {
 for (index = 0; index < receivers.size(); index++) {
 nl = (NotificationListener) receivers.get(index);
 nl.notify(currentValue);
 }
 }

 lastValue = currentValue;

 }

 private start() {
 sendAll(getValue());
 schedule(start(), pollPeriod);
 }
}

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 52 of 54

Appendix C – Class Structures

C.1 Atom

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 53 of 54

C.2 KN Service

IST IP CASCADAS

“Bringing Autonomic Services to
Life”

WP5: Knowledge
Networks

Del 5.2 Extended Beta
Release Software for
Knowledge Networks

Page 54 of 54

C.3 Overall Framework

	1.1 Purpose and Scope
	1.2 Reference Documents
	1.3 Acronyms & Definitions
	1.4 Document History
	1.5 Document overview
	2 Knowledge Networks: Status of Things
	3 Beta Prototype Overview
	3.1 Execution Space
	3.2 Distributed Communication Software
	4 Structural Components
	4.1 Service Architecture
	4.1.1 Example Services

	4.2 Knowledge Atom
	4.2.1 ACE Atoms
	4.2.2 Sensor Atoms - micaZ

	4.3 Knowledge Container
	4.3.1 Network Based Organisation
	4.3.2 Concept Based Organisation

	5 Knowledge Execution
	5.1 Knowledge Querying
	5.1.1 Query Process
	5.1.2 Autonomic Querying
	5.1.3 The Query Language
	5.1.4 Ontology-Based Search
	5.1.5 KN Query Interface
	5.1.6 Summary

	5.2 Knowledge Verification

	6 Integration with the ACE Framework
	6.1 ACE Integration Process
	6.2 Knowledge Network Interface
	6.3 Realising Knowledge Network via ACEs.
	6.4 Implementing Knowledge Atoms
	6.5 Implementing Knowledge Containers

	7 Research Directions
	Appendix A – User Guide
	A.1 Knowledge Atom
	A.2 Embedded Knowledge Atom
	A.3 Remote Knowledge Atom
	A.4 Atom Registration
	A.5 Atom Add-On Services

	 Appendix B – Examples
	B.1 Embedded Atom
	 B.2 RPC Atom and Add-On Service
	B.3 Skeleton Class for Push Mechanism

	Appendix C – Class Structures
	C.1 Atom
	 C.2 KN Service
	 C.3 Overall Framework

