

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 1 of 43

Deliverable D4.2: open-source toolkit for security in
CASCADAS.

 Status and Version: Version 1.0, Final

 Date of issue: 02.07.2007

 Distribution: Public

 Author(s): Name Partner

 Pietro Michiardi Institut Eurecom

 Roberto Cascella UNITN

 Ricardo Lent ICL

 Christos Xenakis NKUA

 Sanjay Rawat UNITN

 Mauro Brunato UNITN

 Ioannis Stavrakakis NKUA

 Roberto Battiti UNITN

 Checked by: Bruno Crispo UNITN

Table of Contents

1 Introduction 3

1.1 Purpose and Scope 3

1.2 Reference Material 4
1.2.1 Reference Documents 4
1.2.2 Acronyms 6
1.2.3 Definitions 6

1.3 Document History 6

1.4 Document overview 7

2 Basic security services 7

2.1 Integrity 8

2.2 Authentication 8

2.3 Confidentiality 9

2.4 Non repudiation 9

3 Basic cryptographic functions 9

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 2 of 43

3.1 Ciphering algorithms 9

3.2 Hash functions 10

3.3 Random Number Generators 10

4 An overview of Key management 11

4.1 Diffie-Hellman Key Exchange Protocol 13

4.2 Public Key Infrastructure 13

4.3 Manual configuration 14

5 Overview of Access Control 14

5.1 Public Key cryptography 15

5.2 Trust Management 15

5.3 Single sign-on 16

6 Practical considerations: Processing overhead of the basic ciphering algorithms 17

6.1 Introduction 17
6.1.1 DES and 3DES 17
6.1.2 AES 18
6.1.3 HMAC-MD5 20
6.1.4 HMAC-SHA-1 21
6.1.5 Comparison of the processing overhead 22

6.2 Simulation study 23

6.3 Analytic model of an IPsec-equipped MS 27
6.3.1 First queue (processor) 27
6.3.2 Second queue (transmitter) 28

7 Integration of Security in the ACE model 30

7.1 ACE conceptual model 31

7.2 Security ACE 31
7.2.1 Communication Model 32
7.2.2 Functionality Repository 33

7.3 Example of Security ACE 34

8 CASCADAS Autonomic toolkit and application case scenario 39

8.1 Auction-pervasive advertisement scenario 39

9 Cryptographic libraries 40

10 Conclusion 42

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 3 of 43

1 Introduction

Traditionally, security has often been neglected during the early stages of the design of a
system, mechanism, protocol or algorithm. It is in general well known that the hard task of
coming up with a working prototype of a new (maybe revolutionary) system is a challenge
per-se, while its secure operation is often left aside relegating the choice of pertinent
attacker models and countermeasures as add-on mechanisms that can be plugged in after
several trials of the un-secure system.

In CASCADAS, the partners involved in WP4, in a joint effort with the whole project
consortium, came up with a first deliverable (D4.1) [28] in which a wide range of security
problems related to the very nature of autonomic systems has been dissected. Not only
numerous attacker models have been considered, ranging from malicious entities,
targeting at disrupting the correct functioning the CASCADAS system as a whole or aiming
at thwarting in particular the most sensible parts of it, to selfish entities, whose target is to
maximize their utility in participating to the system or minimize their costs. But also
numerous research directions have been investigated, tackling problems that are specific
to the very nature of an autonomic system. These initially widespread research directions
have been narrowed down after the first year of the project, yet they remain intellectually
important and technically challenging problems that need to be carefully addressed during
the whole project: they constitute the added-value, from a research stand point, of the WP4
activities in the security domain for the CASCADAS project.

However, in order to protect the system from traditional attacks that mine the system by
exploiting communication vulnerabilities or by improper use of messages and resources, in
the following of this deliverable (which follows up some basic considerations that were
made already in deliverable D4.1) we focus on basic security problems that are common to
any communicating systems and that range from information security and
communication security services. Furthermore, we present a relevant case study that
focus on IPSec, a security framework for end-to-end communications that is suitable for an
evolved version of the CASCADAS architecture.

In the following sections, we introduce, explain and provide practical examples of those
basic security services that are needed by the founding components of the CASCADAS
architecture (namely the ACEs), to securely communicate, to securely store data, and to
securely grant access to resources.

1.1 Purpose and Scope

This document is intended as a practical guide for all the CASCADAS partners to help in
understanding what are the most common security services that are needed for a
(autonomic) communicating system. The approach that we take in this Deliverable is to use
current technology. The reader of this Deliverable should not look for innovative methods to
achieve well-known security goals that affect today and future communication systems;
rather, we provide an engineering guide whose aim is to come as a solid ground for a joint
implementation effort, towards the integration of the many components that constitute the
CASCADAS architecture.

In our effort to come up with hands-on examples of typical security problems of a
communicating system, we selected those cryptographic libraries that are compatible with
the development environment chosen for the project. For these libraries, we explain how
the basic constructs and interfaces can be used by other partners to integrate and
complement their software components to achieve the basic security levels required by the

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 4 of 43

application scenarios defined as prominent examples of the CASCADAS system.
Nonetheless, the integration effort needs to be carried out by all parties involved in the
implementation of the CASCADAS demonstrator.

Lastly, we also focus on practical considerations that need to be pondered when deciding
which security service or cryptographic function needs to be selected to achieve a specific
goal, both taking as a reference the Goal Achievable / Goal Needed philosophy, and more
practical considerations that are concerned with application performance, storage and
computational requirements and so on. Also note the case study section wherein we focus
on practical considerations and performance analysis of deploying an IPSec framework.

1.2 Reference Material

1.2.1 Reference Documents

[1] O. Elkeelany et. all, “Performance Analysis of IPSec Protocol: Encryption and
Authentication,” IEEE Communications Conference (ICC 2002), pp. 1164-1168,
2002.

[2] S. Kent, R. Atkinson, “Security Architecture for the Internet Protocol,” RFC 2401,
Nov. 1998.

[3] E. Danielyan, “Goodbye DES, Welcome AES,” Cisco The Internet Protocol Journal,
vol. 4, no. 2, June. 2001, pp 15-21.

[4] S. Frankel, R. Glenn, S. Kelly “The AES-CBC Cipher Algorithm and Its Use with
IPsec,” RFC 3602, Sept. 2003.

[5] R. Phan, “Impossible differential cryptanalysis of 7-round Advanced Encryption
Standard (AES),” Information Processing Letters, Vol 91 Issue 1, July 2004, pp 33-
38.

[6] D. Bertsekas, R. Gallager, “Data Networks”, Prentice Hall, 1992.
[7] US National Bureau of Standards, “Data Encryption Standard,” Federal Information

Processing Standard (FIPS) publication 46-2, Dec. 1993,
http://www.itl.nist.gov/fipspubs/fip46-2.htm

[8] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC1321, Apr 1992.
[9] D. Eastlake, P. Jones, “US Secure Hash Algorithm 1 (SHA1),” RFC 3174, Sept.

2001.
[10] C. Madson, R. Glenn, “The Use of HMAC-MD5-96 within ESP and AH,” RFC 2403,

Nov. 1998
[11] C. Madson, R. Glenn, “The Use of HMAC-SHA-1-96 within ESP and AH,” RFC

2404, Nov. 1998
[12] National Institute of Standards and Technology (NIST), “Advanced Encryption

Standard (AES),” Federal Information Processing Standard (FIPS) publication 197,
Nov. 2001, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[13] F. Granelli, G. Boato, “A novel methodology for analysis of the computational
complexity of block ciphers: Rijndael, Camellia and Shacal-2 compared,” 3rd
Conference on Security and Network Architectures (SAR’04), June 2004,
http://eprints.biblio.unitn.it/archive/00000514/01/DIT-04-004.pdf

[14] J. Daemen, V. Rijmen, “The Design of Rijndael”, Springer, 2002.
[15] C. Lu, S. Tseng, “ Integrated Design of AES (Advanced Encryption Standard)

Encrypter and Decrypter, ” Proc. of the IEEE International Conference on
Application-Specific Systems, Architectures, and Processors (ASAP’02), 2002.

[16] ETSI,Universal Mobile Telecommunication System (UMTS);Selection Procedures

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 5 of 43

for the Choice of Radio Transmission Technologies of the UMTS, Technical Report
TR 101 112 v3.2.0,1998.

[17] ARM microprocessor solutions from ARM Ltd, http://www.arm.com/products/CPUs
[18] National Institute of Standard, (NIST), Cryptographic Toolkit, Random Number

Generation, http://csrc.nist.gov/CryptoToolkit/tkrng.html
[19] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.

Recommendation for Key Management - PArt 1: General. NIST Special Publication
800-57, May 2006. see http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-
Part1.pdf.

[20] Dan Boneh. Java cryptography extension 1.2 -api specification & reference. On-line
Tutorial. see http://crypto.stanford.edu/˜dabo/courses/cs255_winter00/JCE-
1.2.htm.

[21] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform.
Theory, IT-22: 644– 654, November 1976.

[22] Ueli M. Maurer and Stefan Wolf. The Diffie-Hellman protocol. Designs, Codes and
Cryptography, 19:147–171, 2000.

[23] DocJar Services. Crypto java docs. On-line Tutorial. see
 http://www.docjar.com/docs/api/javax/crypto/overview-summary.html.
[24] The Java Tutorials. Lesson: Api and tools use for secure code and file exchanges.

On-line Tutorial. see
http://java.sun.com/docs/books/tutorial/security/sigcert/index.html.

[25] The Bouncy Castle Crypto java http://www.bouncycastle.org/java.html
[26] Java Cryptography Architecture. API Specification & Reference.

http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html
[27] CASCADAS Consortium. D1.1. Report on state-of-art, requirements and ACE

model. January 2007.
[28] CASCADAS Consortium. D4.1. Security Architecture. January 2007
[29] Pretty good privacy. World Wide Web: http://www.pgpi.org.
[30] Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In NSPW '97:

Proceedings of the 1997 workshop on New security paradigms, pages 48{60, New
York, NY, USA, 1997. ACM Press.

[31] C. Adams and S. Farrell. Internet x.509 public key infrastructure: Certificate
management protocols. RFC 2510. Technical report, 1999.

[32] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. IEEE
Symposium on Security and Privacy, pages 164{173, 1996. 1081-6011 1996;
Annual: 1 issue per year IEEE COMPUTER SOCIETY USA

[33] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The role
of trust management in distributed systems security. pages 185{210, 1999.

[34] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu
Ylonen. SPKI certificate theory. Technical report, IETF, Sept. 1999. RFC 2693

[35] W. Josephson, E. Sirer, and F. Schneider. Peer-to-peer authentication with a
distributed single sign-on service. In International Workshop on Peer-to-Peer
Systems, 2004

[36] B. C. Neuman and T. Ts'o. Kerberos: An authentication service for computer
networks. IEEE Communications Magazine, 32(9):33, 1994. 0163-6804

[37] T. A. Parker. Single sign-on systems-the technologies and the products. In Security
and Detection, European Convention, pages 151{155, 1995.

[38] R. S. Sandhu and P. Samarati. Access control: Principles and practice. IEEE
Communications Magazine, 32(9):40, 1994. 0163-6804

[39] Giorgos Zacharia and Pattie Maes. Trust management through reputation
mechanisms. Applied Artificial Intelligence, (14):881{907, 2000.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 6 of 43

[40] Christos Xenakis, Nikos Laoutaris, Lazaros Merakos, Ioannis Stavrakakis, “A
Generic Characterization of the Overheads Imposed by IPsec and Associated
Cryptographic Algorithms,” Computer Networks, Elsevier Science, Vol. 50, No. 17,
Dec 2006, pp. 3225-3241.

1.2.2 Acronyms

TMF Telemanagement Forum

SKC Symmetric Key Cryptography

PKC Public Key Cryptography

PKI Public Key Infrastructure

DH Diffie-Hellman

DC Digital Certificate

1.2.3 Definitions

TMF Telemanagement Forum , formerly NMF, Network Management Forum

1.3 Document History

Version Date Authors Comment

0.1 11/06/2007 Pietro Michiardi Draft Document

0.2 14/06/2007 Sanjay Rawat Key Management
Section

0.3 19/06/2007 Roberto Cascella Draft Section 7 and 8

0.4 21/06/2007 Christos Xenakis Update on section 6

0.5 20/06/2007 Pietro Michiardi Update on section 2

0.6 21/06/2007 Roberto Cascella Update on references

0.7 26/06/2007 Pietro Michiardi Updated conclusion

0.8 02/07/2007 Roberto Cascella Document checking

1.0 06/07/2007 Pietro Michiardi Final editing

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 7 of 43

1.4 Document overview

Keeping in mind our original goal, this Deliverable is concise and technical, and its
structure can be summarized as follows:

Section 2 describes the basic security services we provide for the CASCADAS
architecture, its components, and its communication protocols.

Section 3 is dedicated to the description of the cryptographic functions that are required by
the security services outlined in Section 2.

Section 4 reviews the fundamental problem of key management and distribution, the
indispensable ingredient that is required for security services to function properly.

With the aim of reviewing the most common techniques in protecting resources available in
the (distributed) components that constitute the CASCADAS framework, in Section 5 we
delve into the problem of access control and present several practical techniques to
achieve resource preservation and control their usage by remote and possibly un-secure
parties.

Section 6 discusses on practical considerations that need to be made when deciding which
kind of security service to implement in CASCADAS components and the impact of this
choice on system performance and requirements. In this section we provide also a case
study that is related to the use of IPSec as a secure, end-to-end, communication
framework that is well suited for future development of the project, in which a business
oriented approach can be of value.

Section 7 gives an overview of the ACE model and protocol of communication and
describes how a security library is included in an ACE. Section 8 discusses how security is
applied to the case scenario envisioned for CASCADAS.

Finally, Section 9 describes cryptographic functions and libraries that are open source in
nature and that can be seamlessly integrated in the CASCADAS framework.

2 Basic security services

Traditionally, security has been reckoned an important issue for infrastructure networks
(i.e. networks in which dedicated components, such as routers, provide the basic network
operation), especially for those running security-sensitive applications.

Similarly, the security of an infrastructure-less network (such as the one addressed by the
CASCADAS project) and the applications designed for such type of dedicated networks, is
of paramount importance.

The basic security services that we target in the framework of CASCADAS focus on the
protection of code, data and resources of a system. These services need to be determined
using global attributes (such as privacy, confidentiality, anonymity, integrity, accountability
and availability) in order to specify the appropriate level of security, in view of the different
type of CASCADAS components. It should be noted that this Section is a follow up of what
has been presented in the Deliverable D4.1 [28].

An autonomic communication system such as the one we target in the CASCADAS project
may need to keep any data stored on a node, carried by an agent, or exchanged between
system components. For this reason, system components must be able to ensure that their
communications remain confidential if required.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 8 of 43

Except for confidentiality, an autonomic system should be able to provide nodes with
anonymity. It should keep a node's identity secret from other nodes, but it maintains a form
of reversible anonymity where it can determine the node's identity, if necessary and legal.
However, there are many situations in which the participants are unwilling to engage in
transactions with anonymous counterparts. Purchasers of goods and services may want to
protect their privacy by remaining anonymous, but credit agencies would not extend credit
to anonymous consumers without being able to verify their credit history and credit
worthiness.

A node should provide data integrity to protect it against unauthorized modification or
tampering. In addition, the secure operation of autonomic systems depends on the integrity
of local and remote nodes.

Not only agents are targeted by attacks that originate from a node, but also the opposite.
For this reason, system access controls must be in place to protect the integrity of the node
from unauthorized users and from network worms, trojan horses and computer viruses.
The agents should not be allowed to violate the node's resources (e.g., files, network
resources, etc) and they should have only restricted access to them.

In the following, we present a common understanding of the basic security services and
provide a brief overview of them. It is also important to relate the following concepts with
what will be presented in Section 6, wherein practical considerations (especially that are
concerned with computational requirements) are discussed with respect to the basic
security services addressed by this Document.

2.1 Integrity

Integrity guarantees that a message being transferred is never corrupted. A message could
be corrupted because of benign failures or because of malicious attacks on the network.

Practically, integrity is achieved by appending to a message an un-forgeable digest of the
original message that has the following property: the modification of a single bit in the
original message would invalidate the message digest, and inform of a recipient of an
integrity attack. Message digest takes the form of a hash function, which has the property
of “translating” a message from its original form (the domain of the hash function) to a
concise and unique summary of the message (the co-domain of the hash function). In
Section 7 we describe how to use in practice hash functions using the java cryptographic
library we suggest for the CASCADAS project.

2.2 Authentication

Authentication enables a node to ensure the identity of the peer node it is communicating
with. Without authentication, an adversary could masquerade a node, thus gaining
unauthorized access to resource and sensitive information and interfering with the correct
operation of other nodes.

As a typical example a message can be considered authentic when it is digitally signed,
using for example a RSA signature. In the following sections we provide practical examples
on how to generate or obtain a digital certificate proving the identity of a peer or node of the
system and how to use the cryptographic keying material to digitally sign a message.

Authentication can be also defined for data exchanged between parties that share a
common secret. For instance, to ensure that data are coming from an entity that knows the
shared secret, an authenticated digest of the message is created using for example a

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 9 of 43

HMAC. This specific case is presented in more details in Section 7 where we show how
data authentication can be applied in the context of the ACE component.

2.3 Confidentiality

Confidentiality ensures that certain information is never disclosed to unauthorized entities.
Network transmission of sensitive information, such as strategic or economically valuable
information, requires confidentiality. Leakage of such information to an eavesdropper could
have severe consequences.

In the following sections we discuss in detail how confidentiality can be achieved through
message encryption: several encryption techniques are discussed (both symmetric and
asymmetric, depending on the keying material used and on the performance required).

2.4 Non repudiation

Non-repudiation ensures that the origin of a message cannot deny having sent the
message. There are other security goals (e.g., authorization, intrusion detection, etc...) that
are of concern to certain applications that we will discuss later in this section.

Similarly to a digital signature, non-repudiation of the origin can be achieved using the
cryptographic library proposed for the project. Non-repudiation of receipt can be a more
difficult problem that requires the design of a dedicated protocol: depending on the
application requirements, the non-repudiation protocol should be centralized or not.

3 Basic cryptographic functions

3.1 Ciphering algorithms

The Data Encryption Standard (DES) algorithm, [7], is a symmetric (shared secret key)
block cipher with block and key size of 64 bits (8 of the 64 bits of the key are used for odd
parity, reducing the effective key length). Although widely used, DES has been
compromised on several occasions in the past; in fact there exists specialized hardware for
breaking it in a few hours [9]. This has lead to the introduction of triple DES (3DES), which
is no more than a triple repetition of the basic DES encryption: first the data block is DES-
encrypted using an initial key, then the encrypted block is decrypted using a second
(different) key and then the new block is re-encrypted using the initial key. This process is
equivalent to using a larger effective key length of 112 bits. The obvious disadvantage of
3DES is that it runs three times slower than DES on a given platform.

The Rijndael algorithm, selected as the algorithm of choice for the new Advanced
Encryption Standard (AES), [3,4,12], is one of the newest components of IPsec. Rijndael is
a symmetric block cipher that supports different key and block sizes (128, 192, or 256 bits).
The AES standardized version of Rijndael, however, is tied to a fixed block size of 128 bits.
The initial block is passed through a round transformation function, which is repeated 10
times (respectively, 12 or 14) under a key length of 128 bits (respectively, 192 or 256).
Rijndael combines an increased resistance against attacks with an implementation
simplicity and, thus, high execution rate. It has proved to be quite durable against
differential, truncated differential, linear, interpolation, and Square attacks, [3,5]. Rijndael is

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 10 of 43

quite versatile as it may also serve as a Message Authentication Code (MAC) algorithm, as
a hash function and as a pseudo random number generator.

3.2 Hash functions

The Message Digest (MD5) [8] and Secure Hash Algorithm 1 (SHA-1), [9], implement so
called “one-way hash functions” and are usually used in conjunction with the above
cryptographic algorithms for performing authentication. Both of them process input text
blocks of 512 bits to generate 128-bit and 160-bit hash values, respectively, which verify
the correct message transfer. Both apply padding to make the plaintext a multiple of 512
bits, but they cannot be directly used as MAC algorithms, as they do not include a secret
key. For that reason, they are used in conjunction with keyed-Hashing for Message
Authentication (HMAC), [10, 11]. HMAC is a secret key authentication algorithm that
provides a framework for incorporating various hashing functions. The combined HMAC-
MD5 and HMAC-SHA-1 mechanisms are in position to offer data origin authentication and
integrity protection services.

3.3 Random Number Generators

A cryptographically secure pseudo-random number generator (CSPRNG) is a pseudo-
random number generator (PRNG) with properties that make it suitable for use in
cryptography.

Many aspects of cryptography require random numbers, for example:

• Key generation
• Nonces
• Salts in certain signature schemes.
• One-time pads

The "quality" of the randomness required for these applications varies. For example
creating a nonce in some protocols needs only uniqueness. On the other hand, generation
of a master key requires a higher quality, such as more entropy. And in the case of one-
time pads, the information-theoretic guarantee of perfect secrecy only holds if the key
material is obtained from a true random source with high entropy.

Ideally, the generation of random numbers in CSPRNGs uses entropy obtained from a high
quality source, which might be a hardware random number generator or perhaps
unpredictable system processes — though unexpected correlations have been found in
several such ostensibly independent processes. From an information theoretic point of
view, the amount of randomness, the entropy that can be generated is equal to the entropy
provided by the system. But sometimes, in practical situations, more random numbers are
needed than there is entropy available. Also the processes to extract randomness from a
running system are slow in actual practice. In such instances, a CSPRNG can sometimes
be used. A CSPRNG can "stretch" the available entropy over more bits.

When all the entropy we have is available before algorithm execution begins, we really
have a stream cipher. However some crypto system designs allow for the addition of
entropy during execution, in which case it is not a stream cipher equivalent and cannot be
used as one. Stream cipher and CSPRNG design is thus closely related.

Several CSPRNGs have been standardized. For example [18],

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 11 of 43

• FIPS 186-2
• NIST SP 800-90: Hash_DRBG, HMAC_DRBG, CTR_DRBG and Dual_EC_DRBG.
• ANSI X9.17-1985 Appendix C
• ANSI X9.31-1998 Appendix A.2.4
• ANSI X9.62-1998 Annex A.4, obsoleted by ANSI X9.62-2005, Annex D

(HMAC_DRBG)

4 An overview of Key management

Symmetric-key cryptography (SKC) has advantage over asymmetric-key cryptography
(public key cryptography, PKC) mainly due to faster encryption and relatively smaller key
size. The same key is used to encrypt and decrypt the message; this implies that before
encrypting the message, the key should be distributed among the participants to have a
secure communication. Therefore, SKC poses the problem of key distribution. In practice,
there are other problems, like generating secure and strong keys, storing them in reliable
manner, distribution etc, that need to be addressed well.

Key management is the title that covers all the problems stated above [1]. To achieve
secure key distribution, both SKC and PKC are used in practice. As keys are the
fundamental to many primitives, like, authentication, confidentiality, authorization, integrity
etc, there are various types on keys, mentioned in the literature [1] and each of these
requires a different level of security and management.

Following are the types of keys:

• Private signature keys are the private keys of asymmetric (public) key pairs that
are used by public key algorithms to generate digital signatures with possible long-
term implications. When properly handled, private signature keys can be used to
provide authentication, integrity and non-repudiation.

• Public signature verification key is the public key of an asymmetric (public) key
pair that is used by a public key algorithm to verify digital signatures, either to
authenticate a user's identity, to determine the integrity of the data, for non-
repudiation, or a combination thereof.

• Symmetric authentication keys are used with symmetric key algorithms to
provide assurance of the integrity and source of messages, communication
sessions, or stored data.

• Private authentication key is the private key of an asymmetric (public) key pair
that is used with a public key algorithm to provide assurance as to the integrity of
information, and the identity of the originating entity or the source of messages,
communication sessions, or stored data.

• Public authentication key is the public key of an asymmetric (public) key pair that
is used with a public key algorithm to determine the integrity of information and to
authenticate the identity of entities, or the source of messages, communication
sessions, or stored data.

• Symmetric data encryption keys are used with symmetric key algorithms to apply
confidentiality protection to information.

• Symmetric key wrapping keys are used to encrypt other keys using symmetric
key algorithms. Key wrapping keys are also known as key encrypting keys.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 12 of 43

• Symmetric and asymmetric random number generation keys are keys used to
generate random numbers.

• Symmetric master key is used to derive other symmetric keys (e.g., data
encryption keys, key wrapping keys, or authentication keys) using symmetric
cryptographic methods.

• Private Key transport keys are the private keys of asymmetric (public) key pairs
that are used to decrypt keys that have been encrypted with the associated public
key using a public key algorithm. Key transport keys are usually used to establish
keys (e.g., key wrapping keys, data encryption keys or MAC keys) and, optionally,
other keying material (e.g., Initialization Vectors).

• Public key transport keys are the public keys of asymmetric (public) key pairs that
are used to encrypt keys using a public key algorithm. These keys are used to
establish keys (e.g., key wrapping keys, data encryption keys or MAC keys) and,
optionally, other keying material (e.g., Initialization Vectors).

• Symmetric key agreement keys are used to establish keys (e.g., key wrapping
keys, data encryption keys, or MAC keys) and, optionally, other keying material
(e.g., Initialization Vectors) using a symmetric key agreement algorithm.

• Private static key agreement keys are the private keys of asymmetric (public) key
pairs that are used to establish keys (e.g., key wrapping keys, data encryption keys,
or MAC keys) and, optionally, other keying material (e.g., Initialization Vectors).

• Public static key agreement keys are the public keys of asymmetric (public) key
pairs that are used to establish keys (e.g., key wrapping keys, data encryption keys,
or MAC keys) and, optionally, other keying material (e.g., Initialization Vectors).

• Private ephemeral key agreement keys are the private keys of asymmetric
(public) key pairs that are used only once10 to establish one or more keys (e.g., key
wrapping keys, data encryption keys, or MAC keys) and, optionally, other keying
material (e.g., Initialization Vectors).

• Public ephemeral key agreement keys are the public keys of asymmetric key
pairs that are used in a single key establishment transaction to establish one or
more keys (e.g., key wrapping keys, data encryption keys, or MAC keys) and,
optionally, other keying material (e.g., Initialization Vectors).

• Symmetric authorization keys are used to provide privileges to an entity using a
symmetric cryptographic method. The authorization key is known by the entity
responsible for monitoring and granting access privileges for authorized entities and
by the entity seeking access to resources.

• Private authorization key is the private key of an asymmetric (public) key pair that
is used to provide privileges to an entity.

• Public authorization key is the public key of an asymmetric (public) key pair that is
used to verify privileges for an entity that knows the associated private authorization
key.

The reason for defining so many types is the observation that same key should not be used
for various different purposes. It weakens the security of the key. However, for most of our
purpose, we care more about Symmetric data encryption key, Public key transport key,

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 13 of 43

Symmetric key wrapping key, Private signature key and Public signature verification key.
For the sake of simplicity and clarity, we divide the above keys into two sets of keys -
symmetric key (Symmetric data encryption key, Symmetric key wrapping key) and public-
key pair (Public key transport key, Private signature key and Public signature verification
key).

In the following sections, we describe a widely used symmetric key exchange protocol,
called Diffie-Hellman Key Exchange Protocol, followed the by Public Key Infrastructure,
which details the various components required to used public-key cryptography in practice.
We will also provide few pointers to Java implementation of PKC/PKI in Section 9.

4.1 Diffie-Hellman Key Exchange Protocol

In 1976, Diffie and Hellman presented their seminal paper to lay the foundations of public-
key cryptography [21]. They proposed a method to publicly exchange the key, now

popularly known as DH Key Exchange Protocol. The protocol allows two participants A

and B to generate a secret key K over an insecure channel. The shared key K , then,
can be used as symmetric key to be used in other cryptographic schemes. The protocol
goes as follows [22]:

Let G be a cyclic group of order | |G and generator g . In order to generate a secret key, A

and B secretly choose numbers As and Bs respectively, randomly from the interval | |[]G0, .

A computes A
s

A g=K and B computes B
s

B g=K . They exchange the numbers, so

generated, to calculate K=K=K=K=K B
s

ABA
A

s

BAB . In this way, both share a secret over

an insecure, public channel. There have been many proposals on the choice of different
groups that can be used in DH protocol [22], for example, multiplicative groups of large
finite fields, multiplicative group of residues modulo a composite number, elliptic curves
over finite fields, the Jacobian of a hyper-elliptic curve over a finite field, and the class
group of imaginary quadratic fields.

In order for an adversary to know the secret key K , the obvious (but not easiest) method

is to calculate the discrete log, i.e. given g and a , calculate s such that a=g s . There

are few methods, like Pollard's rho-methods, lambda-method to calculate discrete log and,

therefore, it is suggested to use a large exponents in the group
*

pZ with randomly chosen

p [22]. For other practical issues related to, for example, life and size of key please refer

to NIST recommendations in [1].

4.2 Public Key Infrastructure

Public-key infrastructure (PKI) refers to the functionalities and components that enable a
set of users (more precisely, entities) to exchange information securely and in an authentic
way over an insecure medium, like Internet. The need of PKI arises due to the difficulty of
distributing secret key among parties to communicate securely, which involves
confidentiality and integrity of data, and authentication of parties involved in the
communication.

A PKI mainly consists of the following components:

1. A digital certificate that binds the identity of the user to its public key.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 14 of 43

2. A certificate authority (CA) that issues and verifies digital certificate. A certificate
includes the public key or information about the public key.

3. A registration authority (RA) that acts as the verifier for the certificate authority
before a digital certificate is issued to a requester.

4. One or more directories where the certificates (with their public keys) are held.

5. A certificate management system.

A digital certificate (DC) typically consists of user's public key, credentials related to their
rights and privileges, information about the guaranteeing authority and a time range of
validity. It is digitally signed by a trusted third part (CA) and the industry standard for DC is
X.509. One example of widely accepted CA is Verisign. DCs are published via directory
service (LDAP) that can be queried by users to know the status of any DC. The same is
useful to know if a certificate is still valid or has been revoked. PGP is an example of PKI,
which is based on mutual trust among the users.

4.3 Manual configuration

In this section, we provide details on some procedures or guidelines to perform secure
communication in the absence of an in-built infrastructure for providing security. If there is
no security infrastructure available, the nodes have to manage security mechanisms
manually. Under such conditions, we do not assume the presence of PKI related
functioning and nodes try to establish secure communication with minimum but sufficient
security. We can envisage the following scenarios:

• There is a node X that can be considered to be present all the time. The nodes
share a symmetric key with this node. Whenever any node A wants to communicate
with other node B, they can agree on a shared key K by using node X as an
intermediate node. Any new node needs to contact node X to obtain the shared
key.

• If the nodes form a group and there is a shared common key to communicate within
the group, every new node has to contact one existing member of the group to get
the common key.

The first point assumes the presence of a trusted node that is present all the time during
the existence of the network. This may not be valid always. The second point avoids the
presence of such a node, but introduces a problem to be solved. Whenever a node leaves
the group, the common shared key has to be changed. This involves agreeing on a key
and distributing that key to all the present members of the group. If the group exists for a
short period of time and there is not much mobility, the second scheme provides a good
option. Therefore, depending on the scenario, one may use any of the above mentioned
procedures

5 Overview of Access Control

A system of ACEs is heterogeneous in nature, and therefore is susceptible to security
threats common to all open distributed systems. The autonomy enables one to make
independent choices to participate in creating or using a service; this does not preclude an
ACE from unrestrained selfish behaviour. Access control pertains to efforts in minimising
such undesirable outcomes in the system.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 15 of 43

Authorised entities can safely collaborate to offer/access services, while entities with less
authority may be restricted in their activities. The process of authorisation comprises two
components, authentication and access control: the first is the process of verifying an
entity's identity that it is truly who it claims to be; the second is the process of deciding what
resources or services that it can access, after authentication.

Traditionally, in systems where all players are well-known in advance, these components
have been treated as distinct and implemented separately. For example, Kerberos [36] is
an authentication protocol that uses a third party trusted entity, an authentication
server(AS), to establish a client's identity with an application server. The application server
would thereafter determine what operations or services the client is allowed to access,
typically defined using an access control list (ACL) [38].

However open distributed systems have more difficulties in defining and implementing
authorisation rules than traditional systems. The heterogeneity and dynamics of such
system introduces new players, and as a result, new opportunities for collaboration in
creating services. The unknown entities may pose a higher threat of security; however if
access control were extremely strict, there is a possibility of wasted opportunities.

In light of such situations, the idea of trust management [32][33] advocates integrating
authentication and access control for increased scalability, better delegation, and improved
expressibility. Safely verifying an entity's identity is on itself insufficient to determine the
access rights that should be given to it, especially when the entity is unknown. The
appropriate mechanism should require the entity to carry some credentials, in the form of
tickets, certificates or digital signatures that introduces the entity and describes its access
permissions to another party.

5.1 Public Key cryptography

The X.509 [31] standard for Public Key Infrastructure (PKI) describes digital certificates as
a form of credentials that an entity carries. The essence of the standard relies on the
asymmetric property of the public key cryptography. A pair of keys, public and private, is
used; messages encrypted with one key can only be decrypted using the counterpart, and
knowledge of one key cannot be used to reverse-engineer the counterpart.

Therefore an entity that (digitally) signs a message, by encrypting with its private key,
assures message integrity and non-repudiation.

An entity obtains a certificate from a certificate authority (CA), a third party trusted server,
to authenticate itself with other entities. The certificate is a digitally signed message from
the CA with its private key, such that the integrity is assured. Like Kerberos [36] earlier, this
mechanism relies on implicitly trusting a third-party server where certifying activities are
centralised, both of which leave much to be desired in open distributed systems. By binding
an entity's identity to its public key in a X.509 certificate, the standard defines the
authentication protocol; it does not dictate any access permission rules.

Pretty Good Privacy (PGP) [1] certificate systems relieve the need for a centralised server.
Instead certificates are issued by entities themselves, and trust is developed when one
produces a certificate signed by another trusted entity; thus promoting transitivity of trust.

5.2 Trust Management

The SPKI/SDSI [34] standard uses certificates to authenticate and authorise; it binds the
entity's public key with its authorisation within the certificate. A verifier reading a certificate

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 16 of 43

learns the permissions of the carrying entity, and determines its access rights accordingly.
Along these lines, the PolicyMaker and KeyNote [32][33] implement a trust-management
engine that offers more programmability to express privileges, restrictions and policies. An
entity may delegate authority on its services or resources to several external certificate
issuers. Any other entity that requests for access must produce these certificates to
establish trust; the trust-management engine checks for the request's compliance with local
policies which hold the highest overriding authority. These systems offer programmability
that grants application developers expressibility in defining policies while maintaining
application-independence in the implementation.

On a different level of abstraction, Abdul-Rahman et. al. proposed a decentralised trust
model [30] that is applicable in an open, distributed systems, in which entities manage their
own trusts. The model allows for recommendation-based build up of trusts, however
argues against direct transitivity.

There are two types of trusts: a direct trust between A and B; or recommendation trust that
describes how much A trusts B as a good recommender. Trust is transitive upon
recommendation when some conditions are met: B sends A an explicit recommendation
about C; A trusts B as a good recommender; and A makes its choice on how much to trust
C. Trust is multi-category, and multi-valued within each category.

A closely related concept to trust management is that of reputation management [39]. An
entity's reputation is its asset that can be used to obtain some future services or resources;
therefore it strives to build a reputation by serving others in return. All entities report their
observations or experiences of interactions with other entities to the system which
dynamically rates the reputation. The system is a repository of information that helps
entities assess and manage risks when interacting with others.

In autonomous distributed systems, these models of trust allow entities that may be
complete strangers to obtain more information about each other beyond the basic binary
trust (complete trust or mistrust), to evaluate the risks involved, to weigh the advantages of
a possible collaboration, and to finally make a rational decision.

5.3 Single sign-on

When a client has to obtain services from a server, it has to authenticate itself for service,
typically using a login and password combination. When the number of servers is big, this
becomes a tedious repetitive process, in addition to the increased security risk of
submitting password many times and user's password fatigue. Single sign-on (SSO) is an
idea that a client authenticates itself once to the distributed system and the proof of
authentication is automatically propagated to each server requesting verification.

The simplest non-conventional SSO system is one that uses scripts [37] at client's
workstation, such that the process of submitting login/password pair is simulated by the
script for each login. Although this requires least change to the underlying system
mechanism, it poses serious security threat because the password has to be stored in the
script and transmitted each time. The alternative is ticket-based SSO system, such as
Kerberos [36]. When a user first logs in, the authentication server (AS) sends it a ticket-
granting ticket. User then submits this ticket to a ticket granting server (TGS) to request for
service tickets for each application server that it needs access to. All the tickets cannot be
tampered with, nor replicated without being discovered; therefore are strong digital
credentials. The user's password is only requested once, and the workstation does not
store this information once the tickets are obtained.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 17 of 43

Between the commercially available SSO systems, using a centralised authentication
server is a common practice but the underlying protocol and how credentials are
exchanged may differ.

The X.509 PKI's digital certificates are an alternative form of credentials to the Kerberos
tickets. The Cornell single sign-on (CorSSO) [35] is an effort to distribute the identity
checking process to several authentication servers that reside in separate domains.

6 Practical considerations: Processing overhead of the basic
ciphering algorithms

6.1 Introduction

This section presents an assessment of the processing overhead of the basic ciphering
algorithms and evaluates the feasibility of deploying them on mobile devices, which are
characterized by limited processing resources. The most prominent ciphering algorithms
such as Data Encryption Standard (DES), Advanced Encryption Standard (AES), Message
Digest (MD5) and Secure Hash Algorithm 1 (SHA-1), are presented and analyzed. The
analysis considers their processing requirements (referred to as processing overhead) so
as to facilitate a comparative performance evaluation, independently of specific
implementations and across different algorithms. This analysis is incorporated in a
simulation study that attempts to assess the feasibility of deploying ciphering algorithms on
mobile devices and networks. A simple analytic model of a mobile device that performs
security functions is also derived yielding analytical results in line with the simulative ones
and providing for an alternative approach for assessing the performance of security
deployment on mobile devices and networks. In the following section, the processing
overheads introduced by the above algorithms are examined, quantifying the impact of
security on the underlying devices.

This section is of paramount importance for the successful development and integration of
basic security services in the CASCADAS framework, in which we assume that
heterogeneous devices, some of them with very limited resources (see also the application
case studies we discuss later on the in the Deliverable), will need to implement and carry
on securely their activities.

6.1.1 DES and 3DES

The DES cipher uses a key of 56 bits, and a block of 64 bits. Since DES is a Feistel cipher,
it requires the same amount of processing for both encryption and decryption. 3DES
results from a triple execution of DES and, thus, requires three times more processing. Let
TDES and T3DES denote the number of operations required for encrypting one block of user
data with DES and 3DES respectively. The analysis of the two ciphers that appears in [2]
has shown that TDES=2697 and T3DES=8091. Let Sd denote the size of an unencrypted user
data packet and let UDES(Sd) and U3DES(Sd) denote the corresponding numbers of
operations required to encrypt it with DES and 3DES. Then clearly,

() (1) T
S

SU DES

d

dDES ×

 ×
=

64

8
 , ())(T

S
SU DES

d
dDES 2

64

8
33 ×

 ×
=

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 18 of 43

(denotes the ceil function). Consider now a processor that can perform CP Millions
Instruction Per Second (MIPS), and let tDES (Sd, CP) and t3DES (Sd, CP) denote the time
required by this processor for encrypting one user packet of length Sd with DES and 3DES
respectively. Then,

())(
C

T

S
C St

P

DESd
PdDES 3

64

8
, ×

 ×
= , ())(

C

T

S
C St

P

DESd
PdDES 4

64

8
, 3

3 ×

 ×
=

6.1.2 AES

Rijndael is an iterated block cipher with a block of length 4Nb bytes (or Nb (32-bit)
words) and a variable key of length 4Nk bytes. The encryption of each block of the data
involves the following: (a) an initialization phase; (b) Nr-1 iterations of the basic encryption
processing of the algorithm; (c) a finalization phase. The version of the Rijndael algorithm
that was integrated as part of the AES encryption standard [18] uses a block of 128 bits
(i.e., Nb=4) and a key of 128, 192, or 256 bits (i.e., Nk=4, 6, or 8). Depending on the
selected key length, the AES standard defines the number of rounds for phase (b) as
follows: Nr(128)=10, Nr(196)=12, Nr(256)=14. In [13] the authors have analyzed the
Rijndael encryption and have derived simple expressions for TRij, the computational effort
required for encrypting one block of data with this particular cipher. They have expressed
this computational effort as a function of the block size, the key size, and the number of
processing cycles required for performing basic operations such as a byte-wise AND (Ta),
a byte-wise OR (To), and a byte-wise shift (Ts). The resulting general expression is:

TRij-ENC =

(46 Nb Nr -30 Nb) Ta +

[31 Nb Nr + 12 (Nr -1) – 20 Nb] To +

[64 Nb Nr + 96 (Nr -1) – 61 Nb)] Ts

By assuming that each basic operation requires one processing cycle, i.e., Ta=To=Ts=1, we
can derive the corresponding number of processing cycles required for encrypting one
block of data with each one of the three standardized flavours of AES (for different key
lengths):

TAES-ENC(128)=6168

TAES-ENC(192)=7512

TAES-ENC(256)=8856

Using the same definitions and notation as with DES and 3DES, we can write:

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 19 of 43

() ENCAES
d

dENCAES T
S

SU −− ×

 ×
=

128

8 (5)

and,

()
P

ENCAESd
PdENCAES

C

T

S
CSt −

− ×

 ×
=

128

8
, , (6)

where TAES-ENC can take either of the following values TAES-ENC (128), TAES-ENC (196), or TAES-

ENC (256), depending on the selected key length.

An important difference of Rijndael as compared to other ciphers such as DES and 3DES,
is that Rijndael has a non-Feistel structure, meaning that the decryption process makes
use of partially different code, which allows for only partial re-use of the encoding circuitry
that implements the cipher. The implementation differences are identified in phase (b) of
the decryption code, and in particular in the InvMixColumns operation, which uses a
different polynomial structure as compared to the corresponding MixColumns operation of
the encryption code and, thus, leads to an increased complexity for the decryption. By
using the analysis presented in [13], we can obtain an expression for the number of
processing cycles for decrypting one block of data.

TRij-DEC = TRij + 96 Nb Ta + (Nr-1)× (72 Nb To - 32Nb Ts) (7)

The above expression (Eq. (7)) points to the fact that the Rijndael decryption is
computationally more expensive than the encryption (the actual difference being 96 Nb Ta +
72 Nb To - 32Nb Ts operations for each of the Nr-1 rounds of phase (b)). Using this
expression, we can obtain the corresponding number of processing cycles required for
decrypting one block of data with each one of the three standardized flavours of AES (for
different key lengths):

TAES-DEC(128)=10992

TAES-DEC(192)=13408

TAES-DEC(256)=15824

From these values, we can obtain UAES-DEC (Sd) and tAES-DEC (Sd) similarly to the encryption
case. Notice that the number of operations required for the decryption is significantly higher
than for the encryption. Thus, there have been some efforts for reducing this asymmetry
through faster implementations (see for example [13, 14, 15]).

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 20 of 43

6.1.3 HMAC-MD5

A common MAC algorithm is the combined HMAC-MD5. The first step in the MD5
algorithm is padding the original message for its size to become a multiple of 512 bits with
the last 64 bits of the last block indicating the length of the message. Then, the algorithm
produces a 128-bit hash value. The hash computation and the hash verification in MD5 are
equivalent procedures and, thus, they consume the same amount of time. The total
number of operations required for MD5 processing per block (512 bits), TMD5 , is 720 plus
24 operations for initialization and termination [1].

The combined HMAC-MD5 algorithm is formulated as follows:

MD5(Ko, MD5(K i , Text))

where

Ki = Key ⊕ ipad

Ko = Key ⊕ opad

Ki and Ko are two extended forms (512-bit) of the input Key, which are generated by
“exclusive oring” the Key with ipad (the inner padding (512 bits)) and opad (the outer
padding (512 bits)) respectively. Key is an arbitrary size secret key shared by a sender and

a receiver, and ⊕ denotes the XOR operation.

For a user packet of size Sd bytes, the number of input blocks for the inner MD5, nk , is

KssS

n
spd

k

 +++×
=

512

8
 (8)

where sp is the size (in bits) of the padding field, ss is the size (in bits) of the field that
specifies the message length, and K is the size (in bits) of the extra appended inner form of
the key.

In the outer MD5, the output of the inner MD5 (128-bit digest) is appended to Ko.
According to MD5, this is padded to two 512-bit blocks. Thus, the total number of
operations in applying the combined HMAC-MD5, THMAC-MD5(nk), and, UHMAC-MD5(Sd), as a
function of the number of input blocks nk, and the user packet size Sd , are

THMAC-MD5 (nk) = 32 + (2 + nk)× 744 (9)

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 21 of 43

()
()

S

 744 SU d
dMDHMAC

 +×
×+ 2264 =−

512

648
5

 (10)

The factor 32 in Eq. (9) derives from the XOR operations performed to produce the
inner and the outer keys, Ki and Ko . Specifically, it results from the division of the size of
XOR operands (512 bits) by the word length supported by the processor (i.e. it is assumed
to be 32 bits). The outcome of the division (i.e., 16) is multiplied by 2, as the XOR operation
occurs twice (one for Ki and one for Ko). Finally, the required authentication and verification
time for HMAC-MD5, tHMAC-MD5 (nk ,CP), as a function of the number of input blocks and the
processor speed , is

()
()

C

744n232
C nt

P

k
PkMDHMAC

 ×++
=− ,5

 (11)

6.1.4 HMAC-SHA-1

The functionality of SHA-1 is similar to that of MD5, and both algorithms use the same
block size and padding procedure. However, SHA-1 employs five 4-byte intermediate
registers instead of four that are used in MD5 and, thus, the produced message digest is
160-bits long. For each input block of size of 512 bits, the total number of operations
required for SHA-1 processing, TSHA-1 , is 900 plus 210 operations for initialization and
termination [1].

The combined HMAC-SHA-1 algorithm is formulated as follows:

SHA-1(Ko, SHA-1(K i , Text)),

where the keys Ki and Ko are computed similar to those used in HMAC-MD5 algorithm.

For an input text of size Sd bytes, the number of input blocks for the inner SHA-1, nk , is
given by Eq. (8). In the outer SHA-1, the output of the inner SHA-1 (160-bit digest) is
appended to Ko , and the outcome is padded to two 512-bit blocks. Thus, the total number
of operations required for applying the combined HMAC-SHA-1 processing, THMAC-SHA-1(nk),
and, UHMAC-SHA-1(Sd), as a function of the number of input blocks nk and the user packet
size Sd , are given similarly to the HMAC-MD5.

THMAC-SHA-1 (nk) = 32 + (2 + nk)× 1110 (12)

()
()

)(1
512

64S8
 11103362SU d

dSHAHMAC 31

 +×
×+ =−−

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 22 of 43

Likewise, the required authentication and verification time for HMAC-SHA-1, tHMAC-SHA-1
(nk ,CP), as a function of the number of input blocks and the processor speed, is

()
()

)(1
C

1110n232
C nt

P

k
PkSHAHMAC 4,1

 ×++
=−−

6.1.5 Comparison of the processing overhead

This section presents a comparison of the processing overhead of the previously
analyzed algorithms. Error! Reference source not found. shows the total number of
operations required by a processor to performs (a) DES and 3DES, (b) AES with variable
key length for both encryption and decryption process, and (c) the combined HMAC-MD5
and HMAC-SHA-1 algorithms, as a function of user packet size; the plotted values have
been obtained from Eqs (1), (2), (5), (10) and (13). The various padding operations that are
employed by all algorithms produce the stepped behaviour that appears in the graphs. The
height of step depends on the selected block size of the employed algorithm and, thus, the
authentication algorithms exhibit bigger steps than the confidentiality algorithms (the
authentication algorithms have a block size of 512 bits, whereas the confidentiality
algorithms have block sizes of 64 or 128 bits). From the presented figures it becomes clear
that the confidentiality services consume significantly more processing resources than the
authentication. 3DES and AES decryption with 256-bit key impose the highest processing
overhead and are followed by AES decryption with shorter key lengths (192, 128-bit), AES
encryption with key lengths 256, 192, 128-bit, and the DES algorithm. Finally, regarding
authentication services the combined HMAC-SHA-1 algorithm requires more processing
resources compared to the HMAC-MD5.

0 200 400 600 800 1000 1200 1400

0,0

2,0x10
5

4,0x10
5

6,0x10
5

8,0x10
5

1,0x10
6

1,2x10
6

1,4x10
6

1,6x10
6

 3DES

 DES

N
u
m

b
e

r
o
f
o

p
e

ra
ti
o
n

s

User packet size (bytes)

0 200 400 600 800 1000 1200 1400

0,0

2,0x10
5

4,0x10
5

6,0x10
5

8,0x10
5

1,0x10
6

1,2x10
6

1,4x10
6

1,6x10
6

 AES(256) Dec

 AES(192) Dec

 AES(128) Dec

 AES(256) Enc

 AES(192) Enc

 AES(128) Enc

N
u

m
b
e
r

o
f
o
p

e
ra

ti
o
n

s

User packet size (bytes)

(a) (b)

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 23 of 43

0 250 500 750 1000 1250 1500

0,0

4,0x10
3

8,0x10
3

1,2x10
4

1,6x10
4

2,0x10
4

2,4x10
4

2,8x10
4

3,2x10
4

 HMAC-MD5

 HMAC-SHA-1

N
u

m
b
e
r

o
f
o
p

e
ra

ti
o

n
s

User packet size (bytes)

(c)

Fig. 1: The number of operations required to perform (a) DES and 3DES, (b) AES with
variable key length for both encryption and decryption process, and (c) HMAC-MD5 and

HMAC-SHA-1 as a function of user packet size.

6.2 Simulation study

Fig. 2 depicts a block diagram of the mobile device that is considered in the following
simulation study. The model consists of the following components: (i) a traffic generator for
the creation of non-real time traffic according to the parameters that are defined in a next
paragraph; (ii) a security processor queue where user data packets accumulate before
entering the processor that applies the cryptographic algorithm; (iii) a transmitter queue
where the encrypted packets accumulate before being transmitted over the wireless
channel.

The conduct of simulation is useful because of a variety of parameters that influence the
system performance except for the generated traffic load and the service rate of the
queues. More specifically, the security schemes that require significant processing
resources mainly delay data transmission in the security processor queue. On the other
hand, in the “lighter” security schemes, data packets spend more time in the transmitter
queue.

The employed simulated traffic represents non-real time user traffic according to the
reference model defined by the 3GPP in [16]. It is assumed that there exists an active user
that generates packet sessions. Each session involves bursty sequences of packets. The
mean user data rate is denoted λdata and ranges from 128 Kbit/s to 2 Mbit/s. Packet inter-
arrival times between subsequent user packets in a packet call are modeled by an i.i.d.
random variable that follows an exponential distribution with parameter µd. The sizes of
user packets are modeled by an i.i.d. random variable Sd that follows the truncated Pareto
distribution fSd(x):

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 24 of 43

=

<≤

=
+

mx
m

k

mxk
x

ka

xf a

a

a

Sd

,

,

)(
1

 (15)

The parameters k and m define the minimum and the maximum user data packets
respectively and the parameter a defines the skewness of the distribution (the default
values are a=1.1, k=81.5 bytes and m= 66666 bytes [16]). The average packet size is
µn=480 bytes, and the radio channel capacity is 2 Mbps. The mobile device is assumed to
be equipped with an embedded processor with a processing rate Cp in the range of 100 to
500 Millions of Instructions Per Second (MIPS) [17]. Table 2 summarizes the values of the
basic simulation parameters.

Generator Sec Statistics

Security

processor
Transmitter

Trx

Fig. 2: Model of a security equipped processor.

A total of twenty seven (27) different security scenarios are considered. They include
several different cryptographic algorithms that provide different levels of security: (i) no
security, (ii) pure confidentiality (DES, 3DES and AES with variable key length for the
encryption and decryption process), pure authentication (MD5 and SHA1), and combined
confidentiality and authentication (DES+MD5, 3DES+MD5, DES+SHA1, 3DES+SHA1,
AES(128)Enc+MD5, AES(128)Enc+SHA1, AES(192)Enc+MD5, etc). The evaluation of the
different scenarios is based on the following performance metrics: (i) the system
throughput, and (ii) the packet latency. In the next paragraphs we summarize our
observations from the simulation experiments.

Simulation parameters Base values

Mean data rate λdata 128 Kbit/s – 2 Mbps

MS processing speed CMS 100 – 500 MIPS

Average size of datagram µn 480 bytes

Radio channel capacity 2 Mbps

Table 1: Simulation parameters setting

In the majority of the employed security scenarios, the encryption and decryption are
symmetric processes and, thus, they consume the same amount of processing. For that
reason we have selected to develop a simulation model that represents only the

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 25 of 43

encryption, and use it as a basis for the accomplished performance evaluation and the
comparison of the different security scenarios. However, as mentioned previously, the AES
cipher has a non-Feistel structure and the decryption is computationally more expensive
than encryption. Thus, both AES processes (encryption and decryption) with all the
possible key lengths (i.e., 128, 192, 256) are applied to the developed simulation model.
This fact facilitates the assessment of the computational difference between the encryption
and the decryption process in AES, and the comparison of both AES processes with the
rest of the employed ciphering algorithms.

Fig. 3 depicts the system throughput as a function of the processing speed of the
mobile device for the above security scenarios. One may observe that the more
“lightweight” security schemes like MD5, SHA1, DES, DES+MD5 and DES+SHA1 do not
degrade the system throughput, as they add a rather limited amount of processing (see
Fig. 3 (a)). This points to the fact that a processing rate of 100 MIPS and above should be
enough for handling the added processing of these lightweight schemes. For the above
combinations of security schemes and processing rates, the bottleneck in terms of
throughput is dictated by the capacity of the radio channel. Stronger encryption schemes
like 3DES, 3DES+MD5 and 3DES+SHA1 provide for an increased resistance against
attacks but pose higher processing requirements and, thus, reduce the system throughput
when the MS processing rate is below 300 MIPS (which appears to be the borderline
minimum for employing these schemes).

-

0

500

1000

1500

2000

3DES+MD5

3DES+SHA13DES

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t
(K

b
p

s
)

Millions Instruction Per Second in MS (MIPS)

100 -500 50
0

40
0

30
0

20
0

10
0

50
0

40
0

30
0

20
0

10
0

D
E
S+S

H
A
1

D
E
S+M

D
5

D
ES

SH
A1

M
D
5

N
o

Sec
ur

ity

0

500

1000

1500

2000

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t
(K

b
p
s
)

Millions Instruction Per Second in MS (MIPS)

20
0

A
ES(2

56
) D

ec

A
ES(1

92
) D

ec

A
ES(1

28
) D

ec

20
0

- 5
0010

0

AES
(2

56
) E

nc

AES
(1

92
) E

nc

10
0

- 5
00

A
ES(1

28
) E

nc

10
0

20
0

- 5
00

10
0

20
0

- 5
00 10

0

30
0

- 5
00

10
0

20
0

30
0

- 5
00

(a) (b)

Fig. 3: System throughput as a function of the processing speed of the mobile device for
different security scenarios like (a) no security, MD5, SHA1, DES, DES+MD5, DES+SHA1,

3DES, 3DES+MD5 and 3DES+SHA1, (b) AES with different key size for both encryption
and decryption process.

As with 3DES, the AES protection is resource consuming and, thus, can lower the
system throughput when there isn’t sufficient processing capability at the mobile device
(see Fig. 3 (b)). The throughput, however, is generally higher under AES than under 3DES,
despite the fact that AES provides for a much stronger encryption than 3DES [2,4]. The
encryption process of AES presents higher throughput values compared to the decryption.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 26 of 43

The lightest flavour of AES, i.e., the one that provides encryption with a key length of 128
bits, has almost no effect on the system’s throughput. Increasing the key length, however,
puts more strain on the processor and this can translate into reduced throughput.
Combining confidentiality with authentication services by adding MD5 or SHA-1 to AES
increases even more the strain on the processor. This extra strain is, however, relatively
small as compared to the one imposed by the encryption scheme and thus is hardly visible
on the figures.

Except for its impact on the system’s throughput, a security scheme increases the total
delay for transmitting a user packet. Fig. 4 shows the total delay as a function of the user
data rate for the various security schemes and a processing rate of 100 MIPS. Sole
application of authentication services, like MD5 and SHA1, hardly has an impact on the
total delay (see Fig. 4 (a)). The same applies for DES and AES encryption with 128-bit key
(labeled AES(128)Enc in the corresponding figure) both of which have a similar behavior,
and add marginally to the total delay as compared to the no-security scenario. The AES
encryption with larger key lengths (AES(192)Enc, AES(256)Enc), the AES decryption with
variable key lengths (AES(128)Dec, AES(192)Dec, AES(256)Dec) and 3DES have
stronger impact on the total delay. Moreover, these scenarios under sufficiently high user
data rates lead to excessive delay values, which point to the fact that the user data rate
has exceeded the maximum capacity of the MS.

0 500 1000 1500 2000 2500

0

200

400

600

800

Processing rate 100 MIPS

M
e

a
n

 t
o
ta

l
d

e
la

y
 (

m
s)

 Data rate (kbps)

 No Security

 MD5 or SHA1

 DES

 AES(128) Enc

 AES(192) Enc

 AES(256) Enc

 AES(128) Dec

 AES(192) Dec

 AES(256) Dec

 3DES

0 500 1000 1500 2000 2500

0

200

400

600

800
Processing rate 100 MIPS

 No Security

 DES

 DES+SHA1

 AES(128) Enc

 AES(128) Enc + SHA1

M
e
a
n
 t
o
ta

l
d
e
la

y
 (

m
s
)

 Data rate (kbps)

(a) (b)

Fig. 4: Mean total delay as a function of mean data rate for 100 MIPS processing rate
at the MS and (a) MD5, SHA1, DES, AES and 3DES (b) DES, DES+SHA1, AES and

AES+SHA1

Fig. 4 (b) presents the total delay of the combined confidentiality and authentication
security services using DES+SHA1 and AES(128)Enc+SHA1 algorithms, as a function of
the user data rate and for a processing rate of 100 MIPS. It compares the above total delay
values to the total delay of the pure confidentiality security services using DES and
AES(128)Enc algorithms, respectively. Observed that the addition of authentication
security services hardly increases the total packet delay values, since authentication

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 27 of 43

represents a relatively lightweight (from the processing overhead point of view) security
service.

For a greater MS processing rate of 200 MIPS, there is a similar qualitative behavior as
with the abovementioned 100 MIPS case. However, the absolute delay values become
smaller, owing to the shorter time spent on the IPsec processor queue. In fact, with such a
processing rate, some of the lightweight security schemes incur a total delay that
approaches the one of the no security scenario (see Fig. 5 (a)). Increasing the MS
processing rate further to 500 MIPS (Fig. 5 (b)), pushes the delay curves of the various
security schemes very close to the no security curve, which means that in this case, IPsec
has almost a negligible impact on the system’s performance with respect to the delay.

0 500 1000 1500 2000 2500

0

200

400

600

800

Processing rate 200 MIPS

M
e
a

n
 t
o

ta
l
d

e
la

y
 (

m
s
)

 Data rate (kbps)

 No Security

 MD5 or SHA1

 DES

 AES(128) Enc

 AES(192) Enc

 AES(256) Enc

 AES(128) Dec

 AES(192) Dec

 AES(256) Dec

 3DES

0 500 1000 1500 2000 2500

0

200

400

600

800

Processing rate 500 MIPS
M

e
a

n
 t
o
ta

l
d

e
la

y
 (

m
s
)

 Data rate (kbps)

 No Security

 MD5 or SHA1

 DES

 AES(128) Enc

 AES(192) Enc

 AES(256) Enc

 AES(128) Dec

 AES(192) Dec

 AES(256) Dec

 3DES

(a) (b)

Fig. 5: Mean total delay as a function of mean data rate for MD5, SHA1, DES, AES
and 3DES and (a) 200 (b) 500 MIPS processing rate at the MS.

6.3 Analytic model of an IPsec-equipped MS

The goal of this Section Is to provide a case study that is oriented to an enhanced version
of the basic components of the CASCADAS framework: in most commercial applications,
end-to-end security is required in order to obtain increased protection against external and
internal attacks. IPSec is a de-facto standard (we do not present un-necessary details on
IPSec in this Deliverable) that lacks any substantial validation when executed in a
resource-constrained environment. For this reason, we develop a simple analytic model for
the abstract mobile device that is depicted in Fig. 2. The analysis is carried out by modeling
each one of the two queues of the tandem as an independent M/G/1 queue. The analysis
aims at both verifying the simulation results and providing a faster alternative to them.

6.3.1 First queue (processor)

The first queue is an M/G/1 queue with the following characteristics: (i) a Poisson arrival
process of rate λ for modeling the arrivals of data packets from the user; (ii) i.i.d. service
times X1 with expected value E{X1} and expected square value E{X1

2}. Let µ1 denote the
constant service rate of the server of the first queue (to be defined in detail shortly). Then
E{X1} and E{X1

2} can be written as functions of µ1 and fSd(x), the probability density function

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 28 of 43

of user packets which are assumed to be following a truncated Pareto distribution with
parameters k, m, a. Thus,

∫ +==
−

−
m

k

a

am

kmmka

S mkmdxxf
x

XE a

aa

d 1)1(

)(

1

1 /)/()(}{
1

µ
µ µ

 (16)

∫ +=

=

−

−
m

k

a

am

mkkma

S mkmdxxf
x

XE a

aa

d

2

1

2

)2(

)(

2

1

2

1 /)/()(}{ 2
1

22

µ
µ µ

 (17)

Let W1 denote the mean total delay at the first queue (queuing and transmission
components); W1 is given by the well known Pollaczek-Khinchin (P-K) formula, i.e.,

}){1(2

}{
}{

1

2

1
11

XE

XE
XEW

λ

λ

−
+= (18)

The service rate µ1 of the security processor queue depends on: (i) the speed of the
processor (Cp) in instructions per second; (ii) the block-size NX used by the employed
cryptographic algorithm X for encrypting user data (iii) the number of instructions required
by the cryptographic algorithm X for encrypting one block of user data of size NX (in the
previous section this quantity has been denoted TX). The exact relationship giving µ1 is µ1=
(NX/8) (Cp/TX). An important observation with regard to the expression of E{X1} and E{X1

2}

is that a user packet of size x requires the processing of x/Nb blocks of data under a
block-cipher with block size Nb. In order to simplify the derivation, we have neglected the
ceiling function and, thus, the analytic model may account for up to minus one blocks per
user packet. As will be shown later, this approximation has a rather minor effect on the
accuracy of the model and, thus, is worth performing it in order to simplify the analysis.

6.3.2 Second queue (transmitter)

The arrival process of the transmitter queue is given by the output process of the IPsec
processor queue and, thus, is no longer a Poisson process. We will employ an
independence approximation and assume it to be Poisson nevertheless. The basis for
making this assumption is that under heavy load conditions and highly variable service
times at the first queue, the independence approximation can produce usable results in
terms of accuracy1. The aforementioned conditions hold to a large extent true for our
application and, thus, as will be shown in the sequel, the numerical results from our
approximate analytic model compare favourably to the simulations results of the actual
system. This makes the approximate analytic model a useful tool for conducting a first
qualitative analysis of a mobile device without having to resort to laborious simulations.

1
 Such approximations are known to be leading to a smaller average delay than the actual system of two

queues in tandem and this is also the case in our results here Error! Reference source not found..

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 29 of 43

More security schemes (possibly future ones) and different parameter sets can thus be
evaluated quickly without needing a simulation study.

Under the above-mentioned approximation, the second queue becomes too an M/G/1
queue with the same Poisson arrival process and i.i.d. service times X2 that correspond to
the time that is required for transmitting the IPsec-protected user packets over the wireless
link. To write E{X2} and E{X2

2} we will take into consideration the following facts: (i) the
wireless channel has a constant transmission rate of µ2 bytes per second and (ii) the user
data packets have sizes that correspond to a truncated Pareto distribution. For the second
queue, however, the truncated Pareto distribution will be a shifted version of the original
one (the shifting being on the x-axis), because each transmitted packet has an additional
space overhead of R bytes due to the encryption related information inserted by the
employed security scheme. Thus,

∫
+

+
−

−+−+−
=

+
=

m

k

a

a

aa

S

mkRm

am

aRRkamaRRmak
dxxf

Rx
XE

d

222

2

)/)((

)1(

)()(
)(}{

µµµ
 (19)

2

2

2

2

2

2

2

2

2

)/()(

)2)(1(
)(}{

µµµ

am

k

aS

mkRm

aam

CBA
dxxf

Rx
XE

d

+
+

−−

++
=

 +
= ∫ (20)

The parameters A, B and C used in Eq. (20) are as follows:

RakmkRamC

kamakmRmaRmaRmRamkB

mRakmakakmRkaRkRakA

aa

aaaaaa

aaaaaa

42

234

223

2

2222222

22222222

+−=

−+−−+−=

++−++−=

To produce numerical results from the analytic model, we will use the analysis of the space
overhead that appears in Sect. 3 in order to identify the appropriate values for R. To
simplify our model, however, we will let R capture only the fixed part of the space
overhead; this will have the effect of considering a slightly smaller space overhead than the
actual..

The delay at the second queue, W2, is then easily obtained by the P-K formula. The overall
delay (encryption and transmission components) is then taken from W=W1+W2.

In Fig. 6 we plot the total delay obtained from the above analysis against the one obtained
from the simulation experiments of the previous section. We show results for 100, 200 and
500 MIPS for some indicative scenarios such as DES, AES(256)Enc and 3DES. One may
easily conclude that the analytic results capture satisfactorily the qualitative behavior in
terms of the delay. Observe, however, that the absolute delay values are slightly lower in
the analysis than in the simulation. This is in accordance to our expectation and owes to (i)
the use of the independence approximation for the arrival process of the second queue; (ii)

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 30 of 43

the disregard of the ceiling function in the computation of the number of encryption blocks
that correspond to one user packet of size Sd, and (iii) the disregard of the ceiling function
in the computation of the space overhead that is added to each protected packet.

0 500 1000 1500 2000

0

200

400

600

800

1000

Processing rate 100 MIPS

T
o
ta

l
d

e
la

y
 (

m
s
)

 Data rate (kbps)

 DES - Simulation

 DES - Analytical

 AES(256) Enc - Simulation

 AES(256) Enc - Analytical

 3DES - Simulation

 3DES - Analytical

0 500 1000 1500 2000

0

200

400

600

Processing rate 200 MIPS

T
o
ta

l
d
e
la

y
 (

m
s
)

 Data rate (kbps)

 DES - Simulation

 DES - Analytical

 AES(256) Enc - Simulation

 AES(256) Enc - Analytical

 3DES - Simulation

 3DES - Analytical

(a) (b)

0 500 1000 1500 2000

0

200

400

600

800

1000

Processing rate 500 MIPS

T
o
ta

l
d
e

la
y
 (

m
s
)

 Data rate (kbps)

 DES - Simulation

 DES - Analytical

 AES(256) Enc - Simulation

 AES(256) Enc - Analytical

 3DES - Simulation

 3DES - Analytical

(c)

Fig. 6: Total delay obtained from the analytical and the simulation model as a function
of the actual data rate for DES, AES(256) Enc and 3DES security scenarios and for (a) 100

MIPS (b) 200 MIPS and (c) 500 MIPS processing rate at the mobile device.

7 Integration of Security in the ACE model

The integration of security into the CASCADAS framework consists in deploying ACEs that
implement specific functionalities to protect the system for external attacks. As it is defined
in the Security Architecture [28], ACEs of type B have the key role of providing “hard”
security services. This consists in embedding cryptographic algorithms and cryptographic

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 31 of 43

functionalities into the so called Repository Functionality of the ACE [27]. Thus, the
services provided by ACEs of type B are invoked only when security needs to be in place.
To give a broader view of the concept of security, first this deliverable briefly describes the
ACE conceptual model and then an example is presented to show the integration of a
security functionality in a ACE.

7.1 ACE conceptual model

As defined in [27] complex service functionalities are created by ACEs which collaborate
and exploit their own capabilities. In this sense, two possible compositions of simple
service functionalities are possible:

1. ACEs collaborate loosely to provide a service, while every single ACE remains
visible as an independent entity (external model).

2. ACEs aggregate to form a new ACE by providing a service through mutual
collaboration (internal model).

The specific functionalities of an ACE are described in the Specific Part which consists of
the Functionality Repository and the Self-Model. In the first case, ACEs communicate their
capabilities and exploit externally their functionalities to provide a complex service. The
second case is more complex as it requires the formation of the so called composed ACE
which groups all specific functionalities of the aggregated ACEs in the Functionality
Repository.

The communication of ACEs is defined by means of the Goal Achievable (GA) and Goal
Needed (GN) protocol which consists in ACEs advertising the capabilities they can provide
in order to form complex services. More details on the ACE conceptual model can be found
in [27] and in the upcoming prototype implementation provided by Work Package 1.

7.2 Security ACE

The deployment of a security ACE follows the general model and structure defined for
ACE. This ensures easy development and, at the same time, it guarantees porting
capabilities of security in a common ACE structure. The reason behind this choice is that
security is not required in all the communications ACEs are involved and security can be
either “aggregated” or simply “exploited” when requested. Moreover, this enables the use
of different cryptographic primitives in different contexts which are given by the
communication settings, device capabilities and content of the communication. As we have
discussed in Section 6, not all basic ciphering algorithms are suitable for the
communication with mobile devices, which are characterized by limited processing
resources. Thus, it is important for an ACE to choose the best option in terms of
cryptographic algorithm available.

Other design choices have been considered for the deployment of security functionalities,
e.g. the introduction of specific “hard” cryptographic mechanisms in the Gateway,
component that handles the communication of the ACE. This choice would have
guaranteed the easy-use of cryptographic functions at the cost of non-flexible control over
the algorithm for ciphering/deciphering, signing and hashing information. The static choice
of including the above mentioned capabilities into the Gateway implies that the
replacement of the algorithm or the function could only be achieved with the creation of
multiple instances of the same service ACE, which implements different cryptographic
primitives. Moreover, the communication context may not require protection for the service
itself or messages and security would increase computational complexity unnecessarily.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 32 of 43

Herein, for the sake of clarity, we describe security services without distinction between the
internal and the external model of the ACE as this will simplify the discussion of the
solution concept, but it will not limit the description of the applicability of the security
functionality. Moreover, we assume the co-existence of multiple ACEs in one trusted
domain, like a laptop. These ACEs aggregate or exploit each other capabilities to form
complex services on demand. Services can be formed also across trusted domains but one
secure aggregate component should exist in each trust domain to ensure security is in
place if required. However, tiny devices may represent an exception to this model as they
can embed few ACEs, none of which implements security due to hardware constrain
capabilities. The concept of trusted domain will be clarified in Section 8 where we discuss
security in the application scenario designed to demonstrate CASCADAS features.

7.2.1 Communication Model

The Communication Model for security ACEs follows the Goal Achievable (GA) and Goal
Needed (GN) message exchange protocol defined in [27]. ACEs discovery other ACEs by
issuing a Goal Achievable message that states which services it can provide to another
ACE. This ACE can match the GA with the specific functionalities declared in the Goal
Needed messages to complete its function. As discussed in the CASCADAS Security
Architecture document [28], we have maintained low level granularity for the definition of
the capabilities of the “security” ACE: each simple component has one possible operation
or service implemented in the functionality repository.

Main task of a “security” ACE is to provide security services to other ACEs. The message
that is used by an ACE to state what kind of job it is able to provide is specified in the Goal
Achievable: It has a semantic description of the job. For the purpose of security, the
description of the service is seen within a general framework that includes a set of several
ACEs and more detailed description that characterize the ACE itself. For instance, the Goal
Achievable for an ACE might be a symmetric cipher function (general description)
implementing DES (characterizing function).

As discussed above, the execution of a security service may require functionalities that are
not included in the ACE. The Goal Needed is a sort of request, with a semantic description
attached, which specifies what kind of functionalities the ACE needs from other ACEs, to
achieve its goals. This implies that any ACE should be able, given a GA, to semantically
match it with its Goal Needed (GN) in order to properly answer to the received GA
message.

As defined above, the specification of the service is semantically described and it is part of
the Goal Achievable. However, the same functionality defined in the repository can
accomplish different tasks if combined with other ACEs. For instance, a symmetric key
algorithm like TripleDes can use as input a key of 168 or of 112 bytes or better a HMAC
can use different hash functions, e.g. SHA-1 and MD5, to provide data integrity and data
authentication. A complex example can be given by an ACE 1 which can provide data
authentication and integrity, but to authenticate the data it needs a shared key between the
source (ACE 1) and destination (ACE 2); for instance, this shared key can be derived with
the Diffie-Hellmann key agreement protocol (see Section 4.1) specified in other ACEs, see
Fig. 7. In this last example the Goal Needed of ACE 1 and 2 will specify Diffie-Hellman and
it will match the Goal Achievable of ACE 3 and ACE 4.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 33 of 43

Fig. 7: ACE Communication Model: ACE 1 and ACE 2 want to communicate securely.
They exploit the capabilities of ACE 3 and 4 to agree on a symmetric key used to provide

data authentication and integrity during the message exchange.

This formation of complex services enables the malfunctioning components to be replaced
easily and different algorithms or functions can be aggregate or exploited in accordance to
the context of communication. For instance, in the example depicted in Fig. 7 ACEs 1 and
2 can use either SHA-1 or MD5 as hash functions by considering what is available in their
trusted domain.

7.2.2 Functionality Repository

The Functionality Repository enables specific functionalities to get deployed into the ACE
instance and get accessed via ACE events model studied in Work Package 1. It has two
distinct roles as storage for the functionality and the underlying classes, and as internal
element of ACE as it has an interface for the communication with other organs2 inside the
ACE.

The deployment of the security functionality follows the framework defined in Work
Package 1. The library that includes the classes of the functionality is stored in the
Repository Functionality as well as a configuration file formatted in XML that describes the
functionality implemented in the library. The XML file represents the internal view of the
functionality for other components. Each functionality is identified by a unique name
inserted in the XML descriptor as well as the input parameters and the output. The output
consists of the results obtained from the execution of the functionality and it states what
events should be created in response.

2
 We refer to the terminology used for the ACE model. Organs are the internal components of the ACE.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 34 of 43

7.3 Example of Security ACE

This section discusses the porting of a functionality implementing security into the ACE.
Herein, we focus on the definition of the XML descriptor for the security functionality which
follows the guidelines for the deployment of ACEs. We also discuss the Self-Model XML
description for the same security functionality which defines what are the states of the
service and more important contains the specification of the Goal Achievable and Goal
Needed. Specific cases can be derived from this example easily. Then, we discuss how
ACEs are used in the scenario shown in Fig. 7.

 1 <functionality id="HMACDigest">

 2 <black-box-description>
 3 <input>
 4 <param name="algorithm" type="java.lang.String"/>
 5 <param name="provider" type="java.lang.String"/>
 6 <param name="key" type="javax.crypto.SecretKey"/>
 7 <param name="message" type="byte[]"/>

 8 </input>
 9 <output name="digest" type="byte[]"/>
10 </black-box-description>
11 <advanced-call-details>
12 <call class-name="cascadas.security.HMACDigest" method-name="digestHMAC">

13 <arg ref="message"/>
14 </call>
15 <functionality-return ref="digest"/>
16 </advanced-call-details>
17 </functionality>

Fig. 8: XML description of the ACE that implements HMAC

Fig. 8 shows the code that describes the functionalities of a ACE capable of calculating the
HMAC value of a message given a shared key as input. The functionality is identified by
the unique id (line 01) and the input parameters and output are specified in the black-box-
description. In this specific example, the ACE requires as input the specific algorithm (e.g.
HMAC-MD5 or HMAC-SHA1), the provider that implements the cryptographic functions
and the shared key.

 1 <selfModel>
 2 <plan id="Plan1" default="true">
 3 <states>

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 35 of 43

 4 <!-- All possible states of the Plan1 are defined here -->
 5 <state id="state1">
 6 <friendlyName>Ready</friendlyName>

 7 <confidence>1</confidence>
 8 </state>
 9 <state id="state2">
10 <friendlyName>HMACDigest</friendlyName>
11 <confidence>1</confidence>

12 </state>
13 </states>
14 <transitions>
15 <!-- All possible transitions of the Plan1 are defined here -->
16 <transition id="tr1">
17 <source>state1</source>

18 <destination>state2</destination>
19 <condition></condition>
20 <guard_condition></guard_condition>
21
<action>HMACDigest(algorithm=HmacSHA1_provider=BC_message=message)</action>

22 <goal_needed>
23 <Assert>
24 <And>
25 <Atom closure="universal">
26 <Rel>GN</Rel>
27 <slot>

28 <Ind>SharedKey</Ind>
29 <Var>?key</Var>
30 </slot>
31 </Atom>
32 </And>

33 </Assert>
34 </goal_needed>
35 <goal_achieved>SHA1_HMACDigest</goal_achieved>
36 </transition>
37 </transitions>
38 <!-- ======== PLAN CREATION RULES ========== -->

…………….

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 36 of 43

63 <!-- ======== PLAN MODIFICATION RULES ========== -->
…………….
67 </plan>

68 </selfModel>

Fig. 9: Self-Model description of the ACE that implements HMAC

The Goal Achievable and the Goal Needed for this functionality are specified in Fig. 9. In
this case the Goal Achievable is simply the possibility to generate message authentication
and integrity while the Goal Needed is the creation of a shared key between two entities
that can be used to authenticate the data. This key can be generated by using the
capabilities of another ACE described by the XML code in Fig. 10. This ACE is capable of
generating a key giving as input the algorithm and the java provider used for the
implementation.

 1 <functionality id="GeneretorKeys">
 2 <black-box-description>

 3 <input>
 4 <param name="algorithm" type="java.lang.String"/>
 5 <param name="provider" type="java.lang.String"/>
 6 </input>
 7 <output name="key" type="javax.crypto.SecretKey"/>
 8 </black-box-description>

 9 <simple-call-details class-name="cascadas.security.GeneretorKeys" method-
name="generation"/>
10 <functionality-return ref="key"/>
11 <output-event-mappings>
12 <mapping event="cascadas.ace.event.ServiceResponseEvent">

13 <value ref="key"/>
14 </mapping>
15 </output-event-mappings>

16 </functionality>

Fig. 10: XML description of the ACE with Key Generation functionalities

The ACE capable of generating Keys does not have any Goal Needed specified as shown
in Fig. 10, but its Goal Achievable matches the Goal Needed of the ACE implementing
HMAC.

 1 <selfModel>

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 37 of 43

 2 <plan id="Plan1" default="true">
 3 <states>
 4 <!-- All possible states of the Plan1 are defined here -->

 5 <state id="state1">
 6 <friendlyName>Ready</friendlyName>
 7 <confidence>1</confidence>
 8 </state>
 9 <state id="state2">

10 <friendlyName>GeneratorKeys</friendlyName>
11 <confidence>1</confidence>
12 </state>
13 </states>
14 <transitions>
15 <!-- All possible transitions of the Plan1 are defined here -->

16 <transition id="tr1">
17 <source>state1</source>
18 <destination>state2</destination>
19 <condition></condition>
20 <guard_condition></guard_condition>

21 <action>GeneratorKeys(algorithm=HmacSHA1_provider=BC)</action>
22 <goal_needed></goal_needed>
23 <goal_achieved>Key</goal_achieved>
24 </transition>
25 </transitions>
26 <!-- ======== PLAN CREATION RULES ========== -->

………….
55 </plan>

56 </selfModel>

Fig. 11: Self Model description of the ACE that implements a key generation functionality

In Fig. 7 we have presented an example of two ACEs that want to exchange data in such a
way that the data are authenticated and modification during the transmission can be
detected. The ACE specified in Fig. 8 is used to ensure data authentication and integrity.
The input shared key for the communication can be generated by exploiting the
functionalities of the ACE described in Fig. 10. However, more complex protocols can be
used to generate keys as depicted in Fig. 12, where it is described the ACE that
implements Diffie-Hellman key agreement protocol.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 38 of 43

 1 <functionality id="KeyAgreementDH">
 2 <black-box-description>
 3 <input>

 4 <param name="algorithm" type="java.lang.String"/>
 5 <param name="provider" type="java.lang.String"/>
 6 <param name="parameters" type="java.lang.String"/>
 7 <param name="fileName" type="java.lang.String"/>
 8 <param name="sharedKey" type="javax.crypto.SecretKey"/>

 9 <param name="publicKey" type="java.security.PublicKey"/>
10 <param name="privateKey" type="java.security.PrivateKey"/>
11 <param name="keyPair" type="java.security.KeyPair"/>
12 </input>
13 <output name="sharedkey" type="javax.crypto.SecretKey"/>
14 </black-box-description>

15 <advanced-call-details>
16 <call class-name="cascadas.security.KeyAgreementDH" method-
name="genDhParams">
17 <return ref="parameters"/>
18 </call>

19 <call class-name="cascadas.security.KeyAgreementDH" method-
name="writeParameters">
20 <arg ref="parameters"/>
21 <arg ref="fileName"/>
22 </call>
23 <call class-name="cascadas.security.KeyAgreementDH" method-

name="genDHKeys">
24 <arg ref="parameters"/>
25 <return ref="keyPair"/>
26 </call>
27 <call class-name="cascadas.security.KeyAgreementDH" method-

name="writeKeyToFile">
28 <arg ref="sharedKey"/>
29 <arg ref="fileName"/>
30 </call>
31 <call class-name="cascadas.security.KeyAgreementDH" method-name="agreement">
32 <arg ref="privateKey"/>

33 <arg ref="publicKey"/>

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 39 of 43

34 <return ref="sharedKey"/>
35 </call>
36 </advanced-call-details>

37 <output-event-mappings>
38 <mapping event="cascadas.ace.event.ServiceResponseEvent">
39 <value ref="sharedKey"/>
40 </mapping>
41 </output-event-mappings>

42 </functionality>

Fig. 12: XML description of the ACE that implements Diffie-Hellman

8 CASCADAS Autonomic toolkit and application case
scenario

This section summarizes the contribution of WP4 to the CASCADAS autonomic toolkit with
particular emphasis to the application scenario. As presented in the previous section, the
role of WP4 is focused on the delivery of libraries that implement basic cryptographic
functions to secure the CASACADAS system. The first version of the Open Secure
CASCADAS toolkit consists in a practical selection of cryptographic algorithms and hash
functions with respect to the heterogeneous nature of the devices. This will help to
understand what the performances of these algorithms and functions are with respect to
key size, device capabilities and cryptosystem type.

As shown in Section 7.3, security functionalities can be defined in line with the definition of
the ACEs provided by WP1. The work targets the Specific Part (Repository Functionality
and Self-Model) of the ACE structure. Security functionalities will be part of the “Specific
Interface” which contains security functionalities, implemented in the “Specific Feature” by
means of cryptographic libraries, which characterize the ACE behaviour, as described in
Section 0. For the sake of clarity we have presented a semantic description of the job the
ACE is able to do (GA) and the indispensable and essential actions and conditions to
accomplish it (GN), as defined in Section 0.

The first release of the Open Secure Toolkit is centred on ACEs of type B, as they provide
specific cryptographic protection of the CASCADAS system. The application of the security
functionalities to the application testbed could be done on demand. We foresee security
services as network and application services that can be aggregated and used when
needed. The definition and the implementation of the security components are compliant
with the ACEs structure.

8.1 Auction-pervasive advertisement scenario

In the context of the auction-based pervasive scenario, security has a key role to ensure
the protection of the information (bids) and to control the system as a whole. ACEs need to
interact in a secure way to place bids and to communicate so that no intruders can
impersonate bidders. We propose to exploit the security features implemented in specific
cryptographic ACEs, identified as ACEs of type B in the security architecture [28], to

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 40 of 43

provide security services to nodes if requested. Herein, we suggest security features in the
context of the proposed scenario. These concepts might be useful as guidelines for the
developers to implement security features in the application.

To comply with the requirement of light ACEs, simple functionalities for each ACE, we
envision the formation of virtual security domains constituted by ACEs under the same
administrative control that have different capabilities and form the aggregated component.
This new aggregate component will participate in the auction as bidder.

An example of virtual security domain is a user’s laptop running several ACEs with different
functions which aggregate to implement the required complex functionality: one ACE that is
capable of participating in the bidding process, one ACE that has symmetric key encryption
functionalities, one ACE that implements a Diffie-Hellman key establishment protocol, one
ACE that functions as PRGN, one ACE that is capable of computing HMAC, and so on.
The ACEs can communicate among each other without any encryption as they belong to
the same pre-trusted domain and the message exchange (GA-GN protocol) is local.

With this setting in mind, we can envision that the seller will exploit the capabilities of the
ACE implementing signatures to digitally sign the advertisement message that is sent to
the Auction Center. The Auction Center will use a hash function-capable ACE to send the
List of Actual items to enforce the integrity of the list.

Due to the time-critical settings in the auction-pervasive scenario, we cannot rely on time-
demanding computation algorithms for the bidders when they bid. The auctioneer will
eventually inform bidders about the current price, thus, the bid message might not be
encrypted, but the content of the message needs to be protected from forgery and to be
authenticated. A solution to guarantee message integrity and authentication is to use
HMAC for data authentication and data integrity. However, this requires the bidder to share
a symmetric key with the auctioneer: this key will be generated by the bidder itself (ACE
PRGN), encrypted with the public key of the auctioneer (disseminated by the Auction
Center with the list of items) and signed by the bidder. This will ensure that only the
auctioneer can read the key and this key can be used for subsequent messages, because
if a bidder is interested in an item he is likely to participate actively in the auction.

Finally, the seller will inform the bidders when the auction ends by signing the proper
message. In case of repudiation of a bid, the Auction Center will behave as third party as
the seller will send the highest bid to the Auction Center with the message digitally signed
by the winning bidder.

9 Cryptographic libraries

In this section, we provide some details of implementing above concepts in practice. This
documentation is based on the Java Cryptography Architecture [26] which specifies how to
develop cryptographic functionalities for the Java Platform. Sun provides a Java
Cryptography Extension for the implementation of encryption, key generation, key
agreement and Message Authentication Code algorithms. The name of the Sun provider is
“SunJCE” which is already specified in the security functionalities of Java during the
installation and it the implemented classes are contained in the javax.crypto package. The
Java Cryptography Architecture has a built-in support to extend the cryptographic
implementation by using functionalities developed by other providers, which we exploit to
use the cryptographic algorithms implemented by Bouncy Castle [25]. In particular, this

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 41 of 43

support consists in guaranteeing implementation interoperability among different providers,
like the use of keys or verification of signatures and so on.

For the CASCADAS autonomic toolkit, we have considered both the Sun Java
Cryptographic extension (SunJCE provider) and the Bouncy Castle Crypto (BC provider)
as they provide the implementation of most of the cryptographic algorithms available and
an extensible documentation for the classes and methods. As introduced above, the
interoperability of providers enables the specification of cryptographic providers either in
during the development of the application or statically in the java security policy. The first
solution has been adopted to develop sample security features, implemented by the
Bouncy Castle provider, which are available in the CASCADAS repository at
trunk\WP4\Security-examples\

Hereafter, we present some examples based on Java crypto class and on Bouncy Castle
crypto class to generate Keys and Certificates in Java and how to use them. We will be
mainly referring to sources of information [20][23][24][25].

Basic steps in sending information securely are as follows:

• Generate public-key, private-key pair and obtain a digital certificate.

• Agree upon a symmetric encryption scheme (e.g. AES), hash scheme (e.g. MD5)
and signature scheme (e.g RSA).

• Generate a shared key (by using DH key exchange protocol) and use that to
encrypt the information (a digital document).

• Calculate the hash of the information.

• Sign the hash with private key.

• Send encrypted text, along with the signed copy of it.

The task of generating the key-pair and Digital Certificates DC are related to PKI, and java
keytool tool can be used to perform these steps [24]. The keytool tool can be used to:

• Create private keys and their associated public key certificates:
keytool -genkey command.

• Issue certificate requests, which you send to the appropriate certification authority:
keytool –certreq command.

• Import certificate replies, obtained from the certification authority you contacted
keytool -import command.

• Import public key certificates belonging to other parties as trusted certificates
keytool -import command.

• Manage your keystore.

Java's JCE and BouncyCastle crypto provide a class KeyAgreement to implement the DH
protocol [20][25]. The following steps are involved:

• The method KeyGenerator can be used to generate public keys to be used for

shared key. KeyAgreement objects are created using the getInstance factory

methods of the KeyAgreement class. getInstance takes as its argument the

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 42 of 43

name of a key agreement algorithm. public static KeyAgreement

getInstance(String algorithm);

• To initialize a KeyAgreement object, we use one of its init methods. For DH

algorithm, we also pass prime modulus p and a base generator g as its parameters:
public void init(Key key, AlgorithmParameterSpecparams);

• In the next phase, we call the doPhase method:
public Key doPhase(Key key, boolean lastPhase);

The key parameter contains the key to be processed by that phase. In most cases,
this is the public key of one of the other parties involved in the key agreement. The
lastPhase parameter specifies whether or not the phase to be executed is the last

one in the key agreement: A value of FALSE indicates that this is not the last phase

of the key agreement (there are more phases to follow), and a value of TRUE
indicates that this is the last phase of the key agreement and the key agreement is
completed. In the example of Diffie-Hellman between two parties, we call doPhase

once, with lastPhase set to TRUE. In the example of Diffie-Hellman between

three parties, we call doPhase twice: the first time with lastPhase set to FALSE,

the 2nd time with lastPhase set to TRUE.

• We compute the shared secret by calling one of the generateSecret methods:
public byte[] generateSecret();
public SecretKey generateSecret(String algorithm);

We can use Java Package javax.crypto.interfaces to generate various

intermediate parameters, e.g. prime p, generator g by calling its interfaces [23]:

• DHKey: This interface marks public/private keys in the Diffie-Hellman key exchange
algorithm.

• DHPrivateKey: This interface marks a private key in the Diffie-Hellman key
exchange algorithm.

• DHPublicKey: This interface marks a public key in the Diffie-Hellman key-exchange
algorithm.

An implementation of Diffie-Hellman is given in the CASCADAS repository as reference to
show the easy use of security features.

10 Conclusion

In this deliverable we presented the basic security functions and services that can be
readily integrated in the CASCADAS software framework. The goal of this deliverable is to
provide practical, hands-on experience on the use of software libraries (compatible with the
development environment selected for the project) that offer basic security services to
applications and communication protocols. We purposely flavored the Deliverable to lean
towards engineering problems when deploying secure applications: hence, this deliverable
does not represent the research effort that the Partners involved in Work-Package 4 are
carrying on.

This first release of the software toolkit for security also includes a detailed analysis of
performance issues that are of paramount importance: for every security service or
cryptographic function we provided experimental proof of its performance and we greatly

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Open-source toolkit for security in

CASCADAS

Page 43 of 43

discussed on best-practices when enhancing an existing application or protocol with
security mechanisms.

We enriched this deliverable with a case study that focus on resource-constrained
environment in which the autonomic services deployed using the CASCADAS architecture
would require strong ent-to-end security. For this purpose, we present an analytical and
simulation-based analysis of the IPSec framework, when used to secure communications
between mobile devices. This case study is well suited for the application scenario that we
target in the project.

Finally we discussed how to integrate an open-source cryptographic library in the ACE
model of CASCADAS, with an example on how to establish a secure communication
channel. Moreover, we pinned down how security services can be integrated in the
application scenarios devised for the demonstration of CASCADAS activities.

