

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 1 of 28

Deliverable D3.3

Software Implementation of Modules for Adaptive
(T3.1) Aggregation and Unit Differentiation (T3.2)

 Status and Version: Final Version

 Date of issue: 29.03.2008

 Distribution: Public

 Author(s): Name Partner

 Elisabetta Di Nitto DEI

 Daniel Dubois DEI

 Raffaela Mirandola DEI

 Checked by: F. Zambonelli, A. Manzalini UNIMORE, TI

Abstract
This document constitutes the textual part of Deliverable D3.3.

D3.3 software, and other related documentations (e.g. Readme), are available at:

https://152.66.87.177/repositories/cascadas/trunk/wp3/D3.3

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 2 of 28

Table of Contents
1 Introduction..3
2 Self-Aggregation as an ACE Functionality..3
3 Clustering Algorithms...5

3.1 Original Clustering Algorithm ..5

3.2 Fast Clustering ..6

3.3 Accurate Clustering...7

3.4 Adaptive Clustering ...8

4 Simulation Framework ..9
4.1 Architecture ...9

4.2 Implementation..10

4.3 Distributing Issues...12

4.4 Manager Node ..14
4.4.1 Clustering Manager Overview...14
4.4.2 Topologies...16
4.4.3 Analyzers ..18

5 Simulations ..18
5.1 Input Parameters...18

5.2 Performance Indexes ..19

5.3 Execution ..21
5.3.1 Simulator Frontend Usage ..22
5.3.2 Single Broker Execution Example...24
5.3.3 Multiple Brokers Execution Example...26
5.3.4 Interpretation of Results ..27

6 Bibliography...28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 3 of 28

1 Introduction

The purpose of this document is to give a formalization of a standard self-aggregation
algorithm interface. This interface has been used in a distributed framework that is able to
simulate these algorithms in a distributed setting. To accomplish this goal we have used a
simplified ACE Model, however a new more general purpose interface is under
development to be integrated more easily in WP1 toolkit. The final aim of the simulation
framework is not only to provide an environment to develop and test new algorithms, but
also to build a knowledge base that can be used by ACEs in choosing the best clustering
strategy for their particular situation.

2 Self-Aggregation as an ACE Functionality

In the context of the WP1 Toolkit the aim of this work is to provide self-aggregation
algorithms as functionalities that can be used by ACEs in order to create cluster of nodes
of compatible types. The notion of compatibility is defined as equality in the case of normal
clustering and inequality in the case of reverse-clustering. The type is application specific
and can be defined as a common goal, a common functionality or any other characteristic
of an ACE.

ACE-to-Algorithm communication is achieved by initializing the algorithm with a reference
to the local ACE, so the algorithm can access basic ACE methods, like methods to send
messages to other ACEs, to send replies to received message, and to retrieve replies to
their own messages.

Algorithms running on different ACEs can communicate by using a message event protocol
in which each event message contains the source ACE, the destination ACE, the
command name and its parameters. Each algorithm is registered on the ACE as a listener
for event messages, therefore as soon as a message is received from another ACE an
event is fired on the algorithm.

Figure 1 shows how the communication works among algorithms of different nodes: the
algorithm asks its ACE to send a message using the communicator object that is part of the
ACE, then the receiving ACE will fire the message event of its own algorithm. A message
can also be replied to provide a synchronous communication mechanism, in this case the
reply can be retrieved directly from the ACE after the message has been sent.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Figure 1: Communication schema for Algorithm-to-Algorithm communication

In Table 1 it is possible to see the methods of the ClusteringAlgorithm interface with a brief
explanation. The protocol used for exchanging messages among them is left to the
implementation.

initializeAlgorithm(
 instanceId : String,
 aceInterface : AceCoreInterface
)

Initializes the algorithm.
“instanceId” is an identification for the algorithm
instance inside the node.
“aceInterface” is used to communicate with the ACE.

finalizeAlgorithm() Terminates the algorithm.

messageEvent(message :
 AceMessage)

Notifies the algorithm that a new event message has
been received.

isCompleted() : Boolean Checks if the algorithm is completed and can be
safely removed from the ACE.

setOption(name : String,
 value : Object)

Sets an implementation dependent algorithm
options.

getOption(name : String) : Object Gets implementation dependent algorithm options.

setNeighbors(neighbors : AceList) Sets the list of neighbor nodes.

getNeighbors() : AceList Gets the list of neighbor nodes.

getInstanceId() : String Get the instance identification: it is used to
distinguish different instances of the same algorithm
inside the node.

Table 1: ClusteringAlgorithm interface1

1 For information regarding other classes and interfaces please refer to the JavaDOC documentation
that comes with this document.

Page 4 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

The life cycle of the algorithm that implements the ClusteringAlgorithm interface should
respect this schema:

Initialization Step
The algorithm is instantiated and it receives
information about the local node, an ID that
identifies the current instance of the algorithm
(to solve ambiguity when there are parallel
executions of the same algorithm in the same
ACE) and an interface used to communicate
with its local ACE.

Tuning Step
In this step some algorithm proprieties can be
optionally set by who is loading the algorithm.

Results Step
Optional step. The algorithm report its results to
the local node or on a remote node (useful to
perform algorithm analysis).

Self-Organizing Step
The algorithm participates to the self-
organization of the system by sending and
receiving event messages.

Finalizing Step
In this step the algorithm terminates cleanly its
execution, stops its threads and marks itself as
completed. Only a completed algorithm can be
safely unloaded.

3 Clustering Algorithms

This section presents several clustering algorithms. The first of them is the original (Saffre,
et al., 2006) algorithm that has already been presented in the D3.1 deliverable, while the
others are variants of it that in certain situations can behave better than the original
version. Details on those variants can be found in (Dubois, 2007).

3.1 Original Clustering Algorithm
The purpose of this algorithm is to cluster a network of ACE nodes according to a particular
criteria. In our simulator we have nodes characterized by an ID and a Type, therefore the
clustering algorithm will add links between nodes with the same type and removes links
between nodes with different types. This algorithm has two different implementations:
Passive and Active (known also as On Demand). The first uses a protocol with less
messages, but needs an upper bound on the number of maximum neighbors to avoid
reaching scale-free topologies, the seconds exchanges more messages, but, for the
reasons explained in D3.1 WP3 deliverable, does not need an upper bound.

Page 5 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Passive Clustering
1. a random node elects itself as the matchmaker node;

2. the matchmaker node chooses two neighbors that have the same type;

3. the matchmaker makes the two chosen neighbors establish a new link;

4. the matchmaker removes a link between itself and one of the chosen neighbors.

Active Clustering
1. a random node elects itself as the initiator node;

2. the initiator node elects a matchmaker node among its neighbors;

3. the matchmaker node chooses one neighbor that shares the same type with the
initiator node;

4. the matchmaker makes the initiator and the chosen neighbor establish a new link;

5. the matchmaker removes a link between itself and the chosen neighbor.

Passive Original Algorithm:
matchmaker = LOCALNODE

for i=1 to NUM_ITERATIONS

do

 if (matchmaker has two neighbors n1 and n2 such that n1.type == n2.type) then

 add link between n1 and n2

 remove link between matchmaker and n1

 fi

od

Active Original Algorithm:
initiator = LOCALNODE

for i=1 to NUM_ITERATIONS

do

 if (initiator has a neighbor n1) then

 matchmaker = n1

 if ((matchmaker has a neighbor n2 such that n2.type == initiator.type) AND

 (n2 != initiator)) then

 add a link between initiator and n2

 remove a link between matchmaker and n2

 fi

 fi

od

3.2 Fast Clustering
This algorithm is similar to original Clustering, but enforces the following additional
constraint: the matchmaker cannot choose neighbors that share the same type of it. This
additional constraint makes impossible to remove links between nodes of the same type.
The advantage of this algorithm is that it improves the overall clustering of the network in
the fastest way, the disadvantage is that it can get stuck in local clustering maximums
because it is too constrained.

Page 6 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Passive Fast Algorithm:
matchmaker = LOCALNODE

for i=1 to NUM_ITERATIONS

do

 if ((matchmaker has two neighbors n1 and n2 such that n1.type == n2.type) AND

 (matchmaker.type != n1.type)) then

 add link between n1 and n2

 remove link between matchmaker and n1

 fi

od

Active Fast Algorithm:
initiator = LOCALNODE

for i=1 to NUM_ITERATIONS

do

 if (initiator has a neighbor n1) then

 matchmaker = n1

 if ((matchmaker has a neighbor n2 such that n2.type == initiator.type) AND

 (n2 != initiator) AND matchmaker.type != n2.type) then

 add a link between initiator and n2

 remove a link between matchmaker and n2

 fi

 fi

od

3.3 Accurate Clustering
This algorithm is based on the original Clustering, but relaxes some of its constraints: the
matchmaker is now able to create links between neighbors of different type unless it does
not have to disconnect a node with the same type. This additional constraint adds “noisy”
links to the network, but does not increase the number of links between nodes of different
type. The advantage of this algorithm is that it does not get stuck in local clustering
maximums, however the additional noise slows it down, therefore it requires more
messages to converge.

Page 7 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Passive Accurate Algorithm:
matchmaker = LOCALNODE

for i=1 to NUM_ITERATIONS

do

 if ((matchmaker has two neighbors n1 and n2) AND (matchmaker.type != n1.type)) then

 add link between n1 and n2

 remove link between matchmaker and n1

 fi

od

Active Fast Algorithm:
initiator = LOCALNODE

for i=1 to NUM_ITERATIONS

do

 if (initiator has a neighbor n1) then

 matchmaker = n1

 if ((matchmaker has a neighbor n2 such that n2.type != matchmaker.type) AND

 (n2 != initiator)) then

 add a link between initiator and n2

 remove a link between matchmaker and n2

 fi

 fi

od

3.4 Adaptive Clustering
This algorithm is modelled as a FSM in which the node starts behaving as the most
constrained algorithm (Fast Clustering) until that algorithm becomes stuck. In such event
the algorithm switches to a medium constrained algorithm (Original Clustering) and, as
soon as it becomes stuck again, it switches to the less constrained one (Accurate
Clustering). If the node earns a new link then the algorithm is changed again to the most
constrained. This FSM can be seen in Figure 2 and the meaning of the transitions is
described below:

• Failure: triggered when an algorithm is not able to iterate because its constraints
does not make possible to choose valid neighbors;

• Success: triggered when an algorithm is able to complete an iteration;

• New Neighbors: triggered when a new neighbor has been added.

Page 8 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Figure 2: Adaptive Clustering FSM

4 Simulation Framework

The purpose of this framework is to simulate and run simplified ACEs in different nodes of
an existing network with the purpose of running self-organizing clustering algorithms. The
main requirements of this framework are:

• transparency to the network and to the middleware used to run it;

• unique standard interface for algorithms to provide generality and possibility of reuse;

• autonomic clustering algorithms and performance indicators are fully modularized.

4.1 Architecture

Figure 3: Simulation Framework High-Level Conceptual Model

In Figure 3 it is possible to see the main components of the simplified ACE conceptual
model that we used.

ACE
This component represents the node of the system, identified by an ID and a type. It can
be conceptually seen as an active component equipped with all the instruments to
communicate with other nodes and to start/stop algorithms. In the real implementation (as
shown in Figure 4) it is implemented by classes AceCore and AceNode.

Page 9 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

ACETYPE
This component simply represents the type of an ACE. Its implementation is strictly
application dependent.

ID
This component identifies univocally the current ACE.

GROUP/LIST OF NEIGHBORS
This component specifies the belonging of the current ACE to one or more groups. This
concept can be used to allow ACE-to-ACE cooperation in cooperative self-organization
algorithms.

CLUSTERING ALGORITHM
This component is completely abstract and can represent any kind of self-organization
algorithm of the simulated system. It is able to modify the state of the ACE and to
communicate to other ACEs.

4.2 Implementation
After explaining the high-level model we propose a possible implementation of it. The
implementation we are going to discuss has been developed using a software life-cycle
based on prototyping and the JUnit Framework for testing and validation.

The UML class diagram in Figure 4 introduces the architecture that will be explained in
the following paragraphs.

Figure 4: UML Class Diagram of Simulator Architecture

Page 10 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 11 of 28

AceCoreInterface
The purpose of this interface is to act as an aggregation point for the node itself, the
algorithms, and the communicator. It does not implement any algorithm, but it simply
creates the basement for them. The final aim is to easily replace this component with the
WP1 ACE prototype.

The most important functions provided by this component are:

1. starts a connection to the middleware using the communicator specified in the
constructor;

2. instantiates a new AceNode using the AceType specified in the constructor;

3. starts the first algorithm2 specified in the constructor;

4. starts a thread pool in order to receive message events from the middleware without
blocking;

5. gently shuts down the node and disconnects the middleware when all algorithms are
completed.

AceNode
This class is a simple immutable class representing an ACE. It is used in all aggregation
lists, for example to provide the neighbor lists of a node and statistical information about
the current state and every node transition.

It does not contain any runnable code except redefined compareTo and equals
methods. The final purpose is having a single object that can identify univocally an ACE.

AceType
This is a class that represents the type of an ACE. The type can be, for example, one of
the following information:

• capabilities of the ACE;

• goals of the ACE;

• any kind of structured information.

For simplicity our prototype uses the AceType mainly to represent strings and numbers, but
any type of information can be used. From a high-level point of view the AceType can be
seen also as part of the Knowledge Base of the ACE that can be accessed by every
algorithm.

AceCommunicator Interface
This interface provides all the high level communication methods needed by an ACE to
allow ACE-to-ACE communication. Its purpose is to provide methods for the following
communication-related actions:

• connecting/disconnecting to/from the middleware;

• sending a message to the middleware;

• replying to a previously received message (synchronous messaging);

2At least one algorithm must be specified in order to keep the AceCore running. In fact it
terminates when all loaded algorithms are completed.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 12 of 28

• retrieving new messages and replies.

The ID information that appears in the interface represents the node identifier used inside
the middleware, which can be, for example, the host-name of the local machine.

AceMessage Class
The AceMessage class is not middleware-dependent: the reason for this choice is that
every middleware has already its internal message format and that the AceCommunicator
implementing classes can act also as message translators.

Messages contain the following information:

• Source: the ID of the sending ACE (it is the ID used inside AceNode and not the ID
used inside the middleware);

• Destination: the ID of the destination ACE or the special ID of the broadcast address;

• Command: an algorithm-dependent command;

• Parameter: a command-dependent parameter: it can be any serializable object;

• Flag: additional optional information.

AceRepliableObject Class
In the previous paragraph we have seen that a node is not only able to send messages,
but it is also able to reply to existing ones. To enable this mechanism a new
AceRepliableObject class has been introduced: it is a container for all middleware-
dependent data required to take advantage of the reply mechanism (if available). The task
of creating instances of this class is delegated to the AceCommunicator middleware-
dependent implementing class.

4.3 Distributing Issues

The sequence diagrams in Figure 5 and Figure 6 show new protocol implementations of
the clustering algorithms for the simulation framework, these new protocols have only four
message exchanges for the passive version and five message exchanges for the active
version. Nevertheless using the algorithms may not be as simple as it seems: an
autonomic distributed environment introduces problems that have not been investigated
yet. These problems are:

• when to start an algorithm iteration;

• what to do in the event of a failure;

• how to prevent synchronization issues.

Synchronization issues can be easily avoided by adding a lock flag to each node: when an
initiator starts its iteration, it will lock itself and related nodes in order to protect from
unwanted commands coming from other nodes. In fact, a locked node will refuse all
commands issued by nodes that are not involved in the iteration.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Figure 5: Passive Clustering Sequence Diagram

Figure 6: Active "On Demand" Clustering Sequence Diagram

To handle problems like dying nodes, impossible iterations, and message losses, all
critical messages exchanged by the nodes must be confirmed with a reply. In the
eventuality of a timeout no changes are performed.

Another problem that has been encountered was the temporizing problem: this problem
consists in choosing the right amount of time to wait between starting a new iteration of the
algorithm. To solve this problem we forced each node to stay idle for a random amount of
time between an iteration and the subsequent one.

Page 13 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 14 of 28

4.4 Manager Node
Until now we have seen the architecture of the framework and examples of algorithms, but
we did not mention anything about what components are dedicated to the management of
the simulation and the gathering of the results. To fulfill the remaining requirements of the
framework the concept of Manager should be introduced.

4.4.1 Clustering Manager Overview
The Manager is that piece of software that instructs all other nodes to start a particular
algorithm, it also provides remote initialization functions to generate the initial status of the
whole environment and finally it can analyze and store the data produced during the
simulation.

In Figure 7 we will provide an example of manager architecture that can be suitable for
the clustering algorithms: the Clustering Manager.

The architecture displayed in the class diagram of Figure 7 is divided into three main
macro-components:

• Manager;

• Topologies;

• Analyzers.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Figure 7: Clustering Manager class diagram

Manager Class

The Manager class implements the ClusteringAlgorithm interface and it is seen as a
clustering algorithm. During the simulations it performs the following tasks:

1. it sends to the broadcast address a discover request: all the nodes will reply with a
serialized version of their AceNode class;

2. it sends to all discovered nodes a message event that instructs them to load the
specified algorithm (Clustering) in order to be ready for its execution;

3. it loads a topology algorithm using the TopologyHelper class;

4. it starts the topology algorithm in order to create an initial list of neighbors in every
node;

5. it starts at regular intervals all the required steps of the clustering algorithms until the
value of homogeneity converges to a fixed value;

6. it monitors the events that are being executed in remote nodes in order to keep track
of changes in the network topology;

7. it finally prints the results of the simulation.

Page 15 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Figure 8: Manager Sequence Diagram

4.4.2 Topologies

A topology algorithm is defined as a function that creates a list of links from a list of nodes.
The Topology interface is used in the clustering manager to implement topology
algorithms that will be used to initialize the network. As can be seen in the sequence
diagram of Figure 8 the manager node will use the TopologyHelper class as a wrapper for
loading and using the topologies.

Random Topology

Page 16 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

This is the simplest topology. This algorithm creates random links between the nodes
making it possible to have various types of topologies like, for example, partitioned graphs
and singletons.

Torus Topology

The torus topology algorithm will create links in order to form a main donut-like loop. If
the number of links is greater or equal to the number of nodes, the additional links are
created in such a way that the single loop becomes a chain-shaped loop.

Figure 9: Torus Topology Example

Spiral Topology

The spiral topology algorithm is very similar to the torus one, but it forms a “broken”
loop. All nodes can be seen as part of a spiral, that can become a chain-shaped spiral if
the total number of links is greater than the number of nodes.

Figure 10: Spiral Topology Example

Scale-free Topology

 The Scale-free topology (Barabasi, et al., 1999) is a topology similar to real-world
networks in which there are supernodes (or hubs) and normal nodes. This network
topology is characterized by the following relation: where P(k) is the probability γ-k~P(k)

Page 17 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

of a generic node to be linked to k neighbors and γ is a generic constant that is between 2
and 3 for most real networks.

Figure 11: Scale-Free Topology Example

4.4.3 Analyzers
The analyzers are the last components of the manager. Their purpose is to manage all the
data that the manager receives from the other running algorithms. This data is pretty
useless if it is not organized, structured and presented to the final user, since having “good”
data is the primary aim of the entire simulation process. In the following paragraph we will
point out the most important details about the clustering manager analyzers.

Topology Analyzer
This analyzer will use the updated network topology to calculate topology-related
performance indexes like homogeneity and optimality.

Results Analyzer
This analyzer is used to select the performance indexes to show when the simulation is
completed. The same information will be used to create a CSV file ready to be analyzed
using the favorite spreadsheet or database application in order to perform some data
mining and produce graphical results.

5 Simulations

5.1 Input Parameters
In order to use a systematic approach we need to identify which input data we can use to
start different simulations. To perform this work we have to think about the eventual
characteristics and needs of possible real systems that will host the algorithms. According
to the clustering example we can argue that:

• initial network topologies are important;

• the number of nodes in the network is important;

• the number of types, and therefore the initial homogeneity of the system is important.

All these important characteristics are parameterized in the simulation framework and can
therefore be used as possible input data for observing the algorithms behaviors. Table 2
shows possible values for the input parameters.

Page 18 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

INPUT PARAMETERS EXAMPLE VALUES

Time unit 5 seconds

Maximum execution time 100 seconds

Number of types 2, 4, 6, 8, 10, 12, 16

Number of nodes 100

Number of links 150, 200, 250

Topology algorithm random, torus, spiral, scale-free

Topology initialization random, deterministic seed

Max number of neighbor 6, unlimited

Number of tests 20

Table 2: Input Parameters

5.2 Performance Indexes
Homogeneity
This performance index represents the level of the network clustering related to nodes
having neighbors of the same type (Saffre, et al., 2006). This index is a number between 0
and 1: lower values mean a reverse-clustered network, while higher values mean a
clustered network.

The formula that calculates this index is the following:

N

nodev
h

N

i
i∑

== 1

)(

Where N is the total number of nodes, v(x) is the total number of nodes of the same
type linked to x and L is the total number of links in the system.

Optimality
This index has the same purposes of the homogeneity index, it is algorithm-related and it is
a number between 0 and 1. 0 means that the algorithm is far from its goal, 1 means that it
has completely reached its goal (Dubois, 2007).

The formula that calculates this index for the clustering problem is the following:

steringoptimalClu

Clustering h
hoptimality =

Where h is homogeneity, while is the homogeneity created by an optimal
clustering algorithm to the same topology.

steringoptimalCluh

Page 19 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Unlike the homogeneity, this index can always reach its upper bound even if the
homogeneity of the network cannot go beyond a particular value. An optimality of 100%
means that the algorithm behaves like the optimal algorithm.

eringverseClustoptimal

eringverseClust h
hoptimality

Re
Re 1

1
−

−
=

Even for reverse clustering the optimality meaning remains the same: bounded between
0 and 1 with 1 as its goal value.

Total Messages
This index simply measures the total number of messages that have been sent by all the
nodes of the system. Sometimes an algorithm with a good optimality may use too many
network resources: this can be quite bad in production environments based on wireless
networks, where the data flow should be kept as low as possible.

Useful Messages
This index provides information about the network load. It is calculated in the following way:

gestotalmessa

messagessuccessfulagesusefulmess =

Where totalmessages is the performance index previously introduced, while
successfulmessages is the total number of messages and replies that have been
completed without errors.

This index is bounded by 0 and 1 and it represents the quantity of useful information
that is being transmitted by the network. Lower values mean that the algorithm is not
behaving efficiently because a lot of junk-messages are flooding the underlying
middleware.

Time of Convergence
Another important index is the time of convergence. It measures the elapsed time between
the algorithm execution and its convergence. We assume that a clustering algorithm is
convergent when the homogeneity of the network does not change over 3% for 30
consecutive simulation seconds.

Useful Iterations
This indicator is similar to the useful messages one, with the difference that it counts
iterations instead of messages. This index is very correlated to the messages one,
however it has been useful during the optimization phase of the algorithms to decide the
optimum number of iterations that provides a good compromise between speed and
iteration failures.

Links-variance
This index gives information about how the node degree differs among the nodes.

N

L
Nd

linksv

N

i
i∑

=

−
= 1

2)2(

Page 20 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 21 of 28

Where N is the total number of nodes, L is the total number of links, and di is the
number of neighbors of node i. A high value of this index means that there are many super
nodes, a value of zero means that all the nodes have the same number of neighbors.

Domains number
This indicator gives the number of groups of interconnected nodes with the same type,
where the group must have at least two nodes (Saffre, et al., 2006).

Average/variance of domains size
These indicators give the mean and the variance for the size of all domains.

5.3 Execution
This section explains how to use the framework to start different types of simulations.

The class used to start the simulator is the Main class found in the manager package.
The typical operations of the class are the following:

• starting one of more middleware brokers (REDS) and relative connections between
them in order to constitute a homogeneous network of brokers;

• instantiation of one or more AceCore classes representing the “active” nodes of the
system;

• for each node of the system a new AceCommunicator is created to connect the
node to the respective broker;

• another AceCore that runs the clustering manager algorithm is connected to the
broker: it will start, manage and terminate the simulation process;

• according to the events received from the manager all the nodes start executing the
clustering algorithm until they receive a stop event command;

• finally the manager prints the results and the application is terminated.

The execution steps done by the main class are exemplified in the sequence diagram in
Figure 12.

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Figure 12: Startup Sequence Diagram

5.3.1 Simulator Frontend Usage
The command line frontend offers the possibility to configure the manager algorithm
according to particular parameters. It allows to select which algorithm must be executed
and which performance indexes should be generated.

Looking at Table 3 it is possible to visualize a list of commands with relative
descriptions. From the above commands it is evident that a simulation can be started using
three different modes:

1. using only a local broker, specifying only the local port where the new middleware
instance will be started (using options -startreds true and -port);

2. using only a remote broker, specifying the address and the port of the remote broker
where all the local nodes will be connected to (using options -startreds false, -
address and -port);

3. using both a local and a remote broker, specifying the local port for the new local
middleware instance and the URL of the remote broker that is going to be connected
to the local one (using options -startreds true, -port and -neighbor).

Page 22 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 23 of 28

Option Description

-address <...> set the address of the broker

-algorithm <...> set the name of the algorithm to start (only Clustering available)

-algparams <...> set the parameters for the algorithm

See Table 4 for additional information about these parameters

-debug <true/false> show debug messages

-duration <number> set the duration for an algorithm step in ms

-help print usage information

-initialfile <....> write the initial topology to the specified file

-linksnumber <number> set the number of links

-neighbor <...> set the URL of a neighbor broker

-nodesname <name> set the name prefix of the local nodes

-port <number> set the port of the broker

-results <...> select the output results for the algorithm

-resultsfile <...> write the simulation results to a CSV file

-seed <number> set the seed used by the random number generator

-startmanager <true/false> enable or disable the manager algorithm

-startreds <true/false> start a new REDS instance

-steps <number> set the maximum number of algorithm steps

-topology <...> set the initial topology (RandomTopology, TorusTopology,
SpiralTopology, ScaleFreeTopology)

-transitionsfile <...> write transitions to the specified file

-typesnumber <number> set the number of different types

-visual <true/false> display the algorithm in a GUI

Table 3: Command-line Options
Clustering
Algorithm parameter

Type of value Example of values

active Boolean True: active mode

False: passive mode

reverse Boolean True: reverse clustering

False: normal clustering

optimization String “saffre”: Original (Saffre, et al., 2006) algorithm

“fast”: Fast algorithm

“accurate”: Accurate algorithm

“adaptive”: Adaptive algorithm

maxneighbors Integer <=0: unlimited neighbors

>0: limited neighbors

Table 4: Clustering Algorithm Parameters

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

In all three situations only one simulator should enable the manager algorithm, with the
additional requirements that it must be the last node to connect to the network (all the
simulators except the one that runs the manager algorithm should be started using -
startmanager false option). In the eventuality that more than one simulator are
connecting from the same machine, it is necessary to modify the name of the nodes using
-nodesname option in order to prevent name collisions.

5.3.2 Single Broker Execution Example

Figure 13: Single Broker Scenario

In this paragraph a single-broker simulation with the following characteristics will be
presented:

• 100 total nodes divided into 3 different types with 150 links and distributed using a
random topology;

• the selected algorithm is the adaptive active reverse clustering;

• the simulation will keep running until homogeneity convergence is reached.

The command that will run the described configuration is the following:

 ./asf -nodesnumber 100 -linksnumber 150 -duration 10000 -typesnumber 3

 -algorithm Clustering -algparams active=true,mode=accurate,reverse=true
 -topology RandomTopology
 -results homogeneity,roptimality,messages,usefulmessages

After some time it is possible to read an output like the following one:

 *** ACE SIMULATION FRAMEWORK CONFIGURATION ***

 Start Local REDS: enabled

 REDS Address: 127.0.0.1

 REDS Port: 2000

 Nodes Name Prefix: node

 Number of nodes: 100

Page 24 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 25 of 28

 Number of types: 3

Debug Logging Status: disabled

 Start Configurator: enabled

 Number of links: 150

 Topology Name: RandomTopology

 Results: homogeneity,roptimality,messages,usefulmessages

 Algorithm Name: Clustering

Algorithm Parameters: active=true,mode=adaptive,reverse=true

 Initialization seed: 1627062523

 Step Duration: 10000 ms

 Max Number of Steps: unlimited

 Initial State File: initial.txt

 Transitions File: transitions.txt

 Results CSV File: results.csv

[REDS] Broker started

[MAIN] Loading 100 nodes

[MANAGER] Loading Clustering class in all nodes.

[MANAGER] Applying RandomTopology topology to 100 nodes. Max 150 links.

[MANAGER] Starting Clustering algorithm (max unlimited steps of 10000 ms)

*** ALGORITHM RESULTS ***

 nodesnumber : 100

 linksnumber : 150

 typesnumber : 3

 topology : RandomTopology

 seed : 1627062523

 algorithm : Clustering

 algparams : active=true,mode=adaptive,reverse=true

 time : 0

 homogeneity : 0.32666666666666666

 roptimality : 0.6733333333333333

 messages : 0

usefulmessages : 0

... we skip some intermediate steps here ...

*** ALGORITHM RESULTS ***

 nodesnumber : 100

 linksnumber : 150

 typesnumber : 3

 topology : RandomTopology

 seed : 1627062523

 algorithm : Clustering

 algparams : active=true,mode=adaptive,reverse=true

 time : 40000

 homogeneity : 0.006622516556291391

 roptimality : 0.9933774834437086

 messages : 2182

usefulmessages : 0.7089825847846013

*** CONVERGENCE REACHED! ***

*** End of Statistics ***

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

5.3.3 Multiple Brokers Execution Example

Figure 14: Multiple Brokers Scenario

In this simulation example we will consider a network composed by three different
brokers. Every broker will be started in a distinct simulator using a different machine, this
way we will achieve the goal of having a more realistic situation for the simulations.

The parameters of the following simulation are the following:

• 150 total nodes (50 for each simulator/broker) divided into 2 types and 200 links
distributed over a spiral topology;

• the algorithm used is the fast passive clustering.

This time we will start three instances of the simulator running the following
commands on three different machines.

 Machine 1 (10.69.0.72):
 ./asf -nodesnumber 50 -typesnumber 2 -port 2000

 -startreds true -startmanager false

Machine 2 (10.69.0.73):
 ./asf -nodesnumber 50 -typesnumber 2 -port 2000

 -startreds true -startmanager false -neighbor reds-tcp:10.69.0.72:2000

Machine 3 (10.69.0.74):
 ./asf -nodesnumber 50 -linksnumber 200 -duration 10000 -typesnumber 2

-algorithm Clustering -algparams active=false,mode=fast,reverse=false

-topology SpiralTopology -results homogeneity,optimality,messages,usefulmessages

-starred true -startmanager true -neighbor reds-tcp:10.69.0.73:2000

Page 26 of 28

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 27 of 28

As we have seen, only Machine 3 is actually executing the manager algorithm and, after
some time, it is the only machine to produce some output:

 *** ALGORITHM RESULTS ***

 nodesnumber : 150
 linksnumber : 200
 typesnumber : 2
 topology : SpiralTopology
 seed : 1627062523
 algorithm : Clustering
 algparams : active=false,mode=fast,reverse=false
 time : 0
 homogeneity : 0.28
 optimality : 0.28140703517587945
 messages : 0
usefulmessages : 0

... we skip some intermediate steps here ...

*** ALGORITHM RESULTS ***

 nodesnumber : 150
 linksnumber : 200
 typesnumber : 2
 topology : SpiralTopology
 seed : 1627062523
 algorithm : Clustering
 algparams : active=false,mode=fast,reverse=false
 time : 30000
 homogeneity : 0.5778894472361809
 optimality : 0.586734693877551
 messages : 12058
usefulmessages : 0.02628960026538398

*** CONVERGENCE REACHED! ***

*** End of Statistics ***

5.3.4 Interpretation of Results
The report that the algorithm prints after each execution step is a collection of the input and
output parameters of the simulation. These parameters can be customized by using the -
results command line option. In Table 5 we can see all the results supported by the
simulation framework including simulation parameters and performance indexes.

Result name Input/output Meaning

nodesnumber input Total number of nodes

linksnumber input Total number of links

typesnumber input Total number of types

topology input Name of the topology algorithm

topologyparams input Parameters for the topology algorithm

IST IP CASCADAS “Component-ware
for Autonomic, Situation-aware

Communications, And Dynamically
Adaptable Services” "

Deliverable3.3

Bringing Autonomic Services to Life

Page 28 of 28

seed input Seed used by random number generator

algorithm input Name of the self-organization algorithm

algparams input Parameters for the self-organization algorithm

time output Elapsed time

homogeneity output Homogeneity performance index

linksvariance output Variance of the number of neighbor among all nodes

domainsnumber output Number of domains

domainsaveragesize output Average size among all domains

domainssizevariance output Variance of the size among all domains

singletonsnumber output Number of singletons

optimality output Optimality performance index

roptimality output Reverse Optimality performance index

topologymap output Current Topology Map with nodes, types and links

iterations output Total iterations executed

failediterations output Total number of failed iterations

usefuliterations output Percentage of useful iterations

messages output Total number of send messages

failuremessages output Total number of messages involved in failed iterations

usefulmessages output Percentage of useful messages

Table 5: Possible simulation results

6 Bibliography

[1] Barabasi Albert-Laszlo and Albert Reka Emergence of Scaling in Random Networks
[Rivista]. - [s.l.] : Science, 1999. - 509-512 : Vol. 286.

[2] Dubois Daniele Joseph Design, Development, and Simulation of Self-Organization
Algorithms for Autonomic Systems [Online]. - Politecnico di Milano, Master Thesis, 20 April
2007. - http://www.elet.polimi.it/upload/dinitto/papers/dubois.pdf.

[3] Saffre Fabrice [et al.] Aggregation Algorithms, Overlay Dynamics and Implications for Self-
Organised Distributed Systems. - [s.l.] : CASCADAS Project, 2006. - Vol. D3.1.

	1 Introduction
	2 Self-Aggregation as an ACE Functionality
	3 Clustering Algorithms
	3.1 Original Clustering Algorithm
	Passive Clustering
	Active Clustering

	3.2 Fast Clustering
	3.3 Accurate Clustering
	3.4 Adaptive Clustering
	4 Simulation Framework
	4.1 Architecture
	ace
	acetype
	id
	group/list of neighbors
	clustering algorithm

	4.2 Implementation
	
	AceCoreInterface
	AceNode
	AceType
	AceCommunicator Interface
	AceMessage Class
	AceRepliableObject Class

	4.3 Distributing Issues
	4.4 Manager Node
	4.4.1 Clustering Manager Overview
	Manager Class

	4.4.2 Topologies
	Random Topology
	Torus Topology
	Spiral Topology
	Scale-free Topology

	4.4.3 Analyzers
	Topology Analyzer
	Results Analyzer

	5 Simulations
	5.1 Input Parameters
	5.2 Performance Indexes
	Homogeneity
	Optimality
	Total Messages
	Useful Messages
	Time of Convergence
	Useful Iterations
	Links-variance
	Domains number
	Average/variance of domains size

	5.3 Execution
	5.3.1 Simulator Frontend Usage
	5.3.2 Single Broker Execution Example
	5.3.3 Multiple Brokers Execution Example
	5.3.4 Interpretation of Results

	6 Bibliography

