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1 Introduction 

The purpose of this document is to give a formalization of a standard self-aggregation 
algorithm interface. This interface has been used in a distributed framework that is able to 
simulate these algorithms in a distributed setting. To accomplish this goal we have used a 
simplified ACE Model, however a new more general purpose interface is under 
development to be integrated more easily in WP1 toolkit. The final aim of the simulation 
framework is not only to provide an environment to develop and test new algorithms, but 
also to build a knowledge base that can be used by ACEs in choosing the best clustering 
strategy for their particular situation. 

2 Self-Aggregation as an ACE Functionality 

In the context of the WP1 Toolkit the aim of this work is to provide self-aggregation 
algorithms as functionalities that can be used by ACEs in order to create cluster of nodes 
of compatible types. The notion of compatibility is defined as equality in the case of normal 
clustering and inequality in the case of reverse-clustering. The type is application specific 
and can be defined as a common goal, a common functionality or any other characteristic 
of an ACE. 

ACE-to-Algorithm communication is achieved by initializing the algorithm with a reference 
to the local ACE, so the algorithm can access basic ACE methods, like methods to send 
messages to other ACEs, to send replies to received message, and to retrieve replies to 
their own messages. 

Algorithms running on different ACEs can communicate by using a message event protocol 
in which each event message contains the source ACE, the destination ACE, the 
command name and its parameters. Each algorithm is registered on the ACE as a listener 
for event messages, therefore as soon as a message is received from another ACE an 
event is fired on the algorithm. 

Figure 1 shows how the communication works among algorithms of different nodes: the 
algorithm asks its ACE to send a message using the communicator object that is part of the 
ACE, then the receiving ACE will fire the message event of its own algorithm. A message 
can also be replied to provide a synchronous communication mechanism, in this case the 
reply can be retrieved directly from the ACE after the message has been sent. 
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Figure 1: Communication schema for Algorithm-to-Algorithm communication 

 

In  Table 1 it is possible to see the methods of the ClusteringAlgorithm interface with a brief 
explanation. The protocol used for exchanging messages among them is left to the 
implementation. 

initializeAlgorithm( 
 instanceId : String,  
 aceInterface : AceCoreInterface 
) 

Initializes the algorithm.  
“instanceId” is an identification for the algorithm 
instance inside the node. 
“aceInterface” is used to communicate with the ACE.

finalizeAlgorithm() Terminates the algorithm. 

messageEvent(message : 
                      AceMessage)

Notifies the algorithm that a new event message has 
been received. 

isCompleted() : Boolean Checks if the algorithm is completed and can be 
safely removed from the ACE. 

setOption(name : String, 
          value : Object) 

Sets an implementation dependent algorithm 
options. 

getOption(name : String) : Object Gets implementation dependent algorithm options. 

setNeighbors(neighbors : AceList) Sets the list of neighbor nodes. 

getNeighbors() : AceList Gets the list of neighbor nodes. 

getInstanceId() : String Get the instance identification: it is used to 
distinguish different instances of the same algorithm 
inside the node. 

Table 1: ClusteringAlgorithm interface1

                                                 
1 For information regarding other classes and interfaces please refer to the JavaDOC documentation 
that comes with this document. 
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The life cycle of the algorithm that implements the ClusteringAlgorithm interface should 
respect this schema: 

Initialization Step 
The algorithm is instantiated and it receives 
information about the local node, an ID that 
identifies the current instance of the algorithm 
(to solve ambiguity when there are parallel 
executions of the same algorithm in the same 
ACE) and an interface used to communicate 
with its local ACE. 

Tuning Step 
In this step some algorithm proprieties can be 
optionally set by who is loading the algorithm. 

Results Step 
Optional step. The algorithm report its results to 
the local node or on a remote node (useful to 
perform algorithm analysis). 

Self-Organizing Step 
The algorithm participates to the self-
organization of the system by sending and 
receiving event messages.  

Finalizing Step 
In this step the algorithm terminates cleanly its 
execution, stops its threads and marks itself as 
completed. Only a completed algorithm can be 
safely unloaded.  

3 Clustering Algorithms 

This section presents several clustering algorithms. The first of them is the original  (Saffre, 
et al., 2006) algorithm that has already been presented in the D3.1 deliverable, while the 
others are variants of it that in certain situations can behave better than the original 
version. Details on those variants can be found in  (Dubois, 2007). 

3.1 Original Clustering Algorithm 
The purpose of this algorithm is to cluster a network of ACE nodes according to a particular 
criteria. In our simulator we have nodes characterized by an ID and a Type, therefore the 
clustering algorithm will add links between nodes with the same type and removes links 
between nodes with different types. This algorithm has two different implementations: 
Passive and Active (known also as On Demand). The first uses a protocol with less 
messages, but needs an upper bound on the number of maximum neighbors to avoid 
reaching scale-free topologies, the seconds exchanges more messages, but, for the 
reasons explained in D3.1 WP3 deliverable, does not need an upper bound. 
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Passive Clustering 
1. a random node elects itself as the matchmaker node;  

2. the matchmaker node chooses two neighbors that have the same type;  

3. the matchmaker makes the two chosen neighbors establish a new link;  

4. the matchmaker removes a link between itself and one of the chosen neighbors.  

Active Clustering 
1. a random node elects itself as the initiator node;  

2. the initiator node elects a matchmaker node among its neighbors;  

3. the matchmaker node chooses one neighbor that shares the same type with the 
initiator node;  

4. the matchmaker makes the initiator and the chosen neighbor establish a new link;  

5. the matchmaker removes a link between itself and the chosen neighbor.  

 

 

Passive Original Algorithm: 
matchmaker = LOCALNODE 

for i=1 to NUM_ITERATIONS 

do 

  if (matchmaker has two neighbors n1 and n2 such that n1.type == n2.type) then 

    add link between n1 and n2 

    remove link between matchmaker and n1 

  fi 

od  

Active Original Algorithm: 
initiator = LOCALNODE 

for i=1 to NUM_ITERATIONS 

do 

  if (initiator has a neighbor n1) then 

    matchmaker = n1 

    if ((matchmaker has a neighbor n2 such that n2.type == initiator.type) AND 

        (n2 != initiator)) then 

      add a link between initiator and n2 

      remove a link between matchmaker and n2 

    fi 

  fi 

od 

 

3.2 Fast Clustering 
This algorithm is similar to original Clustering, but enforces the following additional 
constraint: the matchmaker cannot choose neighbors that share the same type of it. This 
additional constraint makes impossible to remove links between nodes of the same type. 
The advantage of this algorithm is that it improves the overall clustering of the network in 
the fastest way, the disadvantage is that it can get stuck in local clustering maximums 
because it is too constrained. 
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Passive Fast Algorithm: 
matchmaker = LOCALNODE 

for i=1 to NUM_ITERATIONS 

do 

  if ((matchmaker has two neighbors n1 and n2 such that n1.type == n2.type) AND 

      (matchmaker.type != n1.type)) then 

    add link between n1 and n2 

    remove link between matchmaker and n1 

  fi 

od  

Active Fast Algorithm: 
initiator = LOCALNODE 

for i=1 to NUM_ITERATIONS 

do 

  if (initiator has a neighbor n1) then 

    matchmaker = n1 

    if ((matchmaker has a neighbor n2 such that n2.type == initiator.type) AND 

        (n2 != initiator) AND matchmaker.type != n2.type) then 

      add a link between initiator and n2 

      remove a link between matchmaker and n2 

    fi 

  fi 

od 

 

 

3.3 Accurate Clustering 
This algorithm is based on the original Clustering, but relaxes some of its constraints: the 
matchmaker is now able to create links between neighbors of different type unless it does 
not have to disconnect a node with the same type. This additional constraint adds “noisy” 
links to the network, but does not increase the number of links between nodes of different 
type. The advantage of this algorithm is that it does not get stuck in local clustering 
maximums, however the additional noise slows it down, therefore it requires more 
messages to converge. 
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Passive Accurate Algorithm: 
matchmaker = LOCALNODE 

for i=1 to NUM_ITERATIONS 

do 

  if ((matchmaker has two neighbors n1 and n2) AND (matchmaker.type != n1.type)) then 

    add link between n1 and n2 

    remove link between matchmaker and n1 

  fi 

od  

Active Fast Algorithm: 
initiator = LOCALNODE 

for i=1 to NUM_ITERATIONS 

do 

  if (initiator has a neighbor n1) then 

    matchmaker = n1 

    if ((matchmaker has a neighbor n2 such that n2.type != matchmaker.type) AND 

        (n2 != initiator)) then 

      add a link between initiator and n2 

      remove a link between matchmaker and n2 

    fi 

  fi 

od

3.4 Adaptive Clustering 
This algorithm is modelled as a FSM in which the node starts behaving as the most 
constrained algorithm (Fast Clustering) until that algorithm becomes stuck. In such event 
the algorithm switches to a medium constrained algorithm (Original Clustering) and, as 
soon as it becomes stuck again, it switches to the less constrained one (Accurate 
Clustering). If the node earns a new link then the algorithm is changed again to the most 
constrained. This FSM can be seen in Figure 2 and the meaning of the transitions is 
described below: 

• Failure: triggered when an algorithm is not able to iterate because its constraints 
does not make possible to choose valid neighbors; 

• Success: triggered when an algorithm is able to complete an iteration; 

• New Neighbors: triggered when a new neighbor has been added. 
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Figure 2: Adaptive Clustering FSM 

4 Simulation Framework 

The purpose of this framework is to simulate and run simplified ACEs in different nodes of 
an existing network with the purpose of running self-organizing clustering algorithms. The 
main requirements of this framework are: 

• transparency to the network and to the middleware used to run it;  

• unique standard interface for algorithms to provide generality and possibility of reuse;  

• autonomic clustering algorithms and performance indicators are fully modularized.  

4.1 Architecture 

 
Figure 3: Simulation Framework High-Level Conceptual Model 

In Figure 3 it is possible to see the main components of the simplified ACE conceptual 
model that we used. 

ACE 
This component represents the node of the system, identified by an ID and a type. It can 
be conceptually seen as an active component equipped with all the instruments to 
communicate with other nodes and to start/stop algorithms. In the real implementation (as 
shown in Figure 4) it is implemented by classes AceCore and AceNode. 
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ACETYPE 
This component simply represents the type of an ACE. Its implementation is strictly 
application dependent. 

ID 
This component identifies univocally the current ACE. 

GROUP/LIST OF NEIGHBORS 
This component specifies the belonging of the current ACE to one or more groups. This 
concept can be used to allow ACE-to-ACE cooperation in cooperative self-organization 
algorithms. 

CLUSTERING ALGORITHM  
This component is completely abstract and can represent any kind of self-organization 
algorithm of the simulated system. It is able to modify the state of the ACE and to 
communicate to other ACEs. 

4.2 Implementation 
After explaining the high-level model we propose a possible implementation of it. The 
implementation we are going to discuss has been developed using a software life-cycle 
based on prototyping and the JUnit Framework for testing and validation. 

The UML class diagram in Figure 4 introduces the architecture that will be explained in 
the following paragraphs. 

 
Figure 4: UML Class Diagram of Simulator Architecture 
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AceCoreInterface 
The purpose of this interface is to act as an aggregation point for the node itself, the 
algorithms, and the communicator. It does not implement any algorithm, but it simply 
creates the basement for them. The final aim is to easily replace this component with the 
WP1 ACE prototype. 

The most important functions provided by this component are: 

1. starts a connection to the middleware using the communicator specified in the 
constructor;  

2. instantiates a new AceNode using the AceType specified in the constructor;  

3. starts the first algorithm2  specified in the constructor;  

4. starts a thread pool in order to receive message events from the middleware without 
blocking;  

5. gently shuts down the node and disconnects the middleware when all algorithms are 
completed.  

AceNode 
This class is a simple immutable class representing an ACE. It is used in all aggregation 
lists, for example to provide the neighbor lists of a node and statistical information about 
the current state and every node transition. 

It does not contain any runnable code except redefined compareTo and equals 
methods. The final purpose is having a single object that can identify univocally an ACE. 

AceType 
This is a class that represents the type of an ACE. The type can be, for example, one of 
the following information: 

• capabilities of the ACE;  

• goals of the ACE;  

• any kind of structured information.  

For simplicity our prototype uses the AceType mainly to represent strings and numbers, but 
any type of information can be used. From a high-level point of view the AceType can be 
seen also as part of the Knowledge Base of the ACE that can be accessed by every 
algorithm. 

AceCommunicator Interface 
This interface provides all the high level communication methods needed by an ACE to 
allow ACE-to-ACE communication. Its purpose is to provide methods for the following 
communication-related actions: 

• connecting/disconnecting to/from the middleware;  

• sending a message to the middleware;  

• replying to a previously received message (synchronous messaging);  

 
2At least one algorithm must be specified in order to keep the AceCore running. In fact it 
terminates when all loaded algorithms are completed. 
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• retrieving new messages and replies.  

The ID information that appears in the interface represents the node identifier used inside 
the middleware, which can be, for example, the host-name of the local machine. 

AceMessage Class 
The AceMessage class is not middleware-dependent: the reason for this choice is that 
every middleware has already its internal message format and that the AceCommunicator 
implementing classes can act also as message translators.  

Messages contain the following information: 

• Source: the ID of the sending ACE (it is the ID used inside AceNode and not the ID 
used inside the middleware);  

• Destination: the ID of the destination ACE or the special ID of the broadcast address;  

• Command: an algorithm-dependent command;  

• Parameter: a command-dependent parameter: it can be any serializable object;  

• Flag: additional optional information.  

AceRepliableObject Class 
In the previous paragraph we have seen that a node is not only able to send messages, 
but it is also able to reply to existing ones. To enable this mechanism a new 
AceRepliableObject class has been introduced: it is a container for all middleware-
dependent data required to take advantage of the reply mechanism (if available). The task 
of creating instances of this class is delegated to the AceCommunicator middleware-
dependent implementing class. 

4.3 Distributing Issues 

The sequence diagrams in Figure 5 and Figure 6 show new protocol implementations of 
the clustering algorithms for the simulation framework, these new protocols have only four 
message exchanges for the passive version and five message exchanges for the active 
version. Nevertheless using the algorithms may not be as simple as it seems: an 
autonomic distributed environment introduces problems that have not been investigated 
yet. These problems are: 

• when to start an algorithm iteration;  

• what to do in the event of a failure;  

• how to prevent synchronization issues.  

Synchronization issues can be easily avoided by adding a lock flag to each node: when an 
initiator starts its iteration, it will lock itself and related nodes in order to protect from 
unwanted commands coming from other nodes. In fact, a locked node will refuse all 
commands issued by nodes that are not involved in the iteration. 
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Figure 5: Passive Clustering Sequence Diagram 

 
Figure 6: Active "On Demand" Clustering Sequence Diagram 

 

To handle problems like dying nodes, impossible iterations, and message losses, all 
critical messages exchanged by the nodes must be confirmed with a reply. In the 
eventuality of a timeout no changes are performed. 

Another problem that has been encountered was the temporizing problem: this problem 
consists in choosing the right amount of time to wait between starting a new iteration of the 
algorithm. To solve this problem we forced each node to stay idle for a random amount of 
time between an iteration and the subsequent one. 
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4.4 Manager Node 
Until now we have seen the architecture of the framework and examples of algorithms, but 
we did not mention anything about what components are dedicated to the management of 
the simulation and the gathering of the results. To fulfill the remaining requirements of the 
framework the concept of Manager should be introduced. 

4.4.1 Clustering Manager Overview 
The Manager is that piece of software that instructs all other nodes to start a particular 
algorithm, it also provides remote initialization functions to generate the initial status of the 
whole environment and finally it can analyze and store the data produced during the 
simulation. 

In Figure 7 we will provide an example of manager architecture that can be suitable for 
the clustering algorithms: the Clustering Manager. 

The architecture displayed in the class diagram of Figure 7 is divided into three main 
macro-components: 

• Manager;  

• Topologies;  

• Analyzers.  
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Figure 7: Clustering Manager class diagram 

 

Manager Class 

The Manager class implements the ClusteringAlgorithm interface and it is seen as a 
clustering algorithm. During the simulations it performs the following tasks: 

1. it sends to the broadcast address a discover request: all the nodes will reply with a 
serialized version of their AceNode class;  

2. it sends to all discovered nodes a message event that instructs them to load the 
specified algorithm (Clustering) in order to be ready for its execution;  

3. it loads a topology algorithm using the TopologyHelper class;  

4. it starts the topology algorithm in order to create an initial list of neighbors in every 
node;  

5. it starts at regular intervals all the required steps of the clustering algorithms until the 
value of homogeneity converges to a fixed value;  

6. it monitors the events that are being executed in remote nodes in order to keep track 
of changes in the network topology;  

7. it finally prints the results of the simulation.  
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Figure 8: Manager Sequence Diagram 

4.4.2 Topologies 

A topology algorithm is defined as a function that creates a list of links from a list of nodes. 
The Topology interface is used in the clustering manager to implement topology 
algorithms that will be used to initialize the network. As can be seen in the sequence 
diagram of Figure 8 the manager node will use the TopologyHelper class as a wrapper for 
loading and using the topologies. 

Random Topology 
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This is the simplest topology. This algorithm creates random links between the nodes 
making it possible to have various types of topologies like, for example, partitioned graphs 
and singletons. 

Torus Topology 

The torus topology algorithm will create links in order to form a main donut-like loop. If 
the number of links is greater or equal to the number of nodes, the additional links are 
created in such a way that the single loop becomes a chain-shaped loop. 

 
Figure 9: Torus Topology Example 

 

Spiral Topology 

The spiral topology algorithm is very similar to the torus one, but it forms a “broken” 
loop. All nodes can be seen as part of a spiral, that can become a chain-shaped spiral if 
the total number of links is greater than the number of nodes. 

 
Figure 10: Spiral Topology Example 

 

Scale-free Topology 
 

 The Scale-free topology  (Barabasi, et al., 1999) is a topology similar to real-world 
networks in which there are supernodes (or hubs) and normal nodes. This network 
topology is characterized by the following relation:  where P(k) is the probability γ-k~P(k)
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of a generic node to be linked to k neighbors and γ is a generic constant that is between 2 
and 3 for most real networks. 

 
Figure 11: Scale-Free Topology Example 

4.4.3 Analyzers 
The analyzers are the last components of the manager. Their purpose is to manage all the 
data that the manager receives from the other running algorithms. This data is pretty 
useless if it is not organized, structured and presented to the final user, since having “good” 
data is the primary aim of the entire simulation process. In the following paragraph we will 
point out the most important details about the clustering manager analyzers. 

Topology Analyzer 
This analyzer will use the updated network topology to calculate topology-related 
performance indexes like homogeneity and optimality. 

Results Analyzer 
This analyzer is used to select the performance indexes to show when the simulation is 
completed. The same information will be used to create a CSV file ready to be analyzed 
using the favorite spreadsheet or database application in order to perform some data 
mining and produce graphical results. 

5 Simulations 

5.1 Input Parameters 
In order to use a systematic approach we need to identify which input data we can use to 
start different simulations. To perform this work we have to think about the eventual 
characteristics and needs of possible real systems that will host the algorithms. According 
to the clustering example we can argue that: 

• initial network topologies are important;  

• the number of nodes in the network is important;  

• the number of types, and therefore the initial homogeneity of the system is important.  

All these important characteristics are parameterized in the simulation framework and can 
therefore be used as possible input data for observing the algorithms behaviors. Table 2 
shows possible values for the input parameters. 
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INPUT PARAMETERS EXAMPLE VALUES 

Time unit 5 seconds 

Maximum execution time 100 seconds 

Number of types 2, 4, 6, 8, 10, 12, 16 

Number of nodes 100 

Number of links 150, 200, 250 

Topology algorithm random, torus, spiral, scale-free 

Topology initialization random, deterministic seed 

Max number of neighbor 6, unlimited 

Number of tests 20 

Table 2: Input Parameters 

  

5.2 Performance Indexes 
Homogeneity 
This performance index represents the level of the network clustering related to nodes 
having neighbors of the same type  (Saffre, et al., 2006). This index is a number between 0 
and 1: lower values mean a reverse-clustered network, while higher values mean a 
clustered network. 

The formula that calculates this index is the following: 

 
N

nodev
h

N

i
i∑

== 1

)(
 

Where N is the total number of nodes, v(x) is the total number of nodes of the same 
type linked to x and L is the total number of links in the system. 

Optimality 
This index has the same purposes of the homogeneity index, it is algorithm-related and it is 
a number between 0 and 1. 0 means that the algorithm is far from its goal, 1 means that it 
has completely reached its goal  (Dubois, 2007). 

The formula that calculates this index for the clustering problem is the following: 

 
steringoptimalClu

Clustering h
hoptimality =  

Where h is homogeneity, while  is the homogeneity created by an optimal 
clustering algorithm to the same topology. 

steringoptimalCluh
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Unlike the homogeneity, this index can always reach its upper bound even if the 
homogeneity of the network cannot go beyond a particular value. An optimality of 100% 
means that the algorithm behaves like the optimal algorithm. 

 
eringverseClustoptimal

eringverseClust h
hoptimality

Re
Re 1

1
−

−
=  

Even for reverse clustering the optimality meaning remains the same: bounded between 
0 and 1 with 1 as its goal value. 

Total Messages 
This index simply measures the total number of messages that have been sent by all the 
nodes of the system. Sometimes an algorithm with a good optimality may use too many 
network resources: this can be quite bad in production environments based on wireless 
networks, where the data flow should be kept as low as possible. 

Useful Messages 
This index provides information about the network load. It is calculated in the following way: 

 
gestotalmessa

messagessuccessfulagesusefulmess =  

Where totalmessages is the performance index previously introduced, while 
successfulmessages is the total number of messages and replies that have been 
completed without errors. 

This index is bounded by 0 and 1 and it represents the quantity of useful information 
that is being transmitted by the network. Lower values mean that the algorithm is not 
behaving efficiently because a lot of junk-messages are flooding the underlying 
middleware. 

Time of Convergence 
Another important index is the time of convergence. It measures the elapsed time between 
the algorithm execution and its convergence. We assume that a clustering algorithm is 
convergent when the homogeneity of the network does not change over 3% for 30 
consecutive simulation seconds. 

Useful Iterations 
This indicator is similar to the useful messages one, with the difference that it counts 
iterations instead of messages. This index is very correlated to the messages one, 
however it has been useful during the optimization phase of the algorithms to decide the 
optimum number of iterations that provides a good compromise between speed and 
iteration failures. 

Links-variance 
This index gives information about how the node degree differs among the nodes. 
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Where N is the total number of nodes, L is the total number of links, and di is the 
number of neighbors of node i. A high value of this index means that there are many super 
nodes, a value of zero means that all the nodes have the same number of neighbors. 

Domains number 
This indicator gives the number of groups of interconnected nodes with the same type, 
where the group must have at least two nodes  (Saffre, et al., 2006). 

Average/variance of domains size 
These indicators give the mean and the variance for the size of all domains. 

5.3 Execution 
This section explains how to use the framework to start different types of simulations. 

The class used to start the simulator is the Main class found in the manager package. 
The typical operations of the class are the following: 

• starting one of more middleware brokers (REDS) and relative connections between 
them in order to constitute a homogeneous network of brokers;  

• instantiation of one or more AceCore classes representing the “active” nodes of the 
system;  

• for each node of the system a new AceCommunicator is created to connect the 
node to the respective broker;  

• another AceCore that runs the clustering manager algorithm is connected to the 
broker: it will start, manage and terminate the simulation process;  

• according to the events received from the manager all the nodes start executing the 
clustering algorithm until they receive a stop event command;  

• finally the manager prints the results and the application is terminated.  

The execution steps done by the main class are exemplified in the sequence diagram in 
Figure 12. 
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Figure 12: Startup Sequence Diagram 

5.3.1  Simulator Frontend Usage 
The command line frontend offers the possibility to configure the manager algorithm 
according to particular parameters. It allows to select which algorithm must be executed 
and which performance indexes should be generated. 

Looking at Table 3 it is possible to visualize a list of commands with relative 
descriptions. From the above commands it is evident that a simulation can be started using 
three different modes: 

1. using only a local broker, specifying only the local port where the new middleware 
instance will be started (using options -startreds true and -port);  

2. using only a remote broker, specifying the address and the port of the remote broker 
where all the local nodes will be connected to (using options -startreds false, -
address and -port);  

3. using both a local and a remote broker, specifying the local port for the new local 
middleware instance and the URL of the remote broker that is going to be connected 
to the local one (using options -startreds true, -port and -neighbor).  
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Option Description 

-address <...> set the address of the broker 

-algorithm <...> set the name of the algorithm to start (only Clustering available) 

-algparams <...> set the parameters for the algorithm 

See Table 4 for additional information about these parameters 

-debug <true/false> show debug messages 

-duration <number> set the duration for an algorithm step in ms 

-help print usage information 

-initialfile <....> write the initial topology to the specified file 

-linksnumber <number> set the number of links 

-neighbor <...> set the URL of a neighbor broker 

-nodesname <name> set the name prefix of the local nodes 

-port <number> set the port of the broker 

-results <...> select the output results for the algorithm 

-resultsfile <...> write the simulation results to a CSV file 

-seed <number> set the seed used by the random number generator 

-startmanager <true/false> enable or disable the manager algorithm 

-startreds <true/false> start a new REDS instance 

-steps <number> set the maximum number of algorithm steps 

-topology <...> set the initial topology (RandomTopology, TorusTopology, 
SpiralTopology, ScaleFreeTopology) 

-transitionsfile <...> write transitions to the specified file 

-typesnumber <number> set the number of different types 

-visual <true/false> display the algorithm in a GUI 

Table 3: Command-line Options 
Clustering 
Algorithm parameter 

Type of value Example of values 

active Boolean True: active mode 

False: passive mode 

reverse Boolean True: reverse clustering  

False: normal clustering 

optimization String “saffre”: Original  (Saffre, et al., 2006) algorithm 

“fast”: Fast algorithm 

“accurate”: Accurate algorithm 

“adaptive”: Adaptive algorithm 

maxneighbors Integer <=0: unlimited neighbors 

>0: limited neighbors 

Table 4: Clustering Algorithm Parameters 
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In all three situations only one simulator should enable the manager algorithm, with the 
additional requirements that it must be the last node to connect to the network (all the 
simulators except the one that runs the manager algorithm should be started using -
startmanager false option). In the eventuality that more than one simulator are 
connecting from the same machine, it is necessary to modify the name of the nodes using 
-nodesname option in order to prevent name collisions. 

5.3.2 Single Broker Execution Example 

 
Figure 13: Single Broker Scenario 

In this paragraph a single-broker simulation with the following characteristics will be 
presented: 

• 100 total nodes divided into 3 different types with 150 links and distributed using a 
random topology;  

• the selected algorithm is the adaptive active reverse clustering;  

• the simulation will keep running until homogeneity convergence is reached.  

The command that will run the described configuration is the following: 
   
 ./asf -nodesnumber 100 -linksnumber 150 -duration 10000 -typesnumber 3  

      -algorithm Clustering -algparams active=true,mode=accurate,reverse=true  
      -topology RandomTopology  
       -results homogeneity,roptimality,messages,usefulmessages 

 

After some time it is possible to read an output like the following one: 

 
 *** ACE SIMULATION FRAMEWORK CONFIGURATION *** 

    Start Local REDS: enabled 

        REDS Address: 127.0.0.1 

           REDS Port: 2000 

   Nodes Name Prefix: node 

     Number of nodes: 100 
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     Number of types: 3 

Debug Logging Status: disabled 

  Start Configurator: enabled 

     Number of links: 150 

       Topology Name: RandomTopology 

             Results: homogeneity,roptimality,messages,usefulmessages 

      Algorithm Name: Clustering 

Algorithm Parameters: active=true,mode=adaptive,reverse=true 

 Initialization seed: 1627062523 

       Step Duration: 10000 ms 

 Max Number of Steps: unlimited 

  Initial State File: initial.txt 

   Transitions File: transitions.txt 

    Results CSV File: results.csv 

[REDS] Broker started 

[MAIN] Loading 100 nodes 

[MANAGER] Loading Clustering class in all nodes. 

[MANAGER] Applying RandomTopology topology to 100 nodes. Max 150 links. 

[MANAGER] Starting Clustering algorithm (max unlimited steps of 10000 ms) 

*** ALGORITHM RESULTS *** 

   nodesnumber : 100 

   linksnumber : 150 

   typesnumber : 3 

      topology : RandomTopology 

          seed : 1627062523 

     algorithm : Clustering 

     algparams : active=true,mode=adaptive,reverse=true 

          time : 0 

   homogeneity : 0.32666666666666666 

   roptimality : 0.6733333333333333 

      messages : 0 

usefulmessages : 0 

... we skip some intermediate steps here ... 

*** ALGORITHM RESULTS *** 

   nodesnumber : 100 

   linksnumber : 150 

   typesnumber : 3 

      topology : RandomTopology 

          seed : 1627062523 

     algorithm : Clustering 

     algparams : active=true,mode=adaptive,reverse=true 

          time : 40000 

   homogeneity : 0.006622516556291391 

   roptimality : 0.9933774834437086 

      messages : 2182 

usefulmessages : 0.7089825847846013 

*** CONVERGENCE REACHED!  *** 

*** End of Statistics *** 
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5.3.3 Multiple Brokers Execution Example 

 
Figure 14: Multiple Brokers Scenario 

In this simulation example we will consider a network composed by three different 
brokers. Every broker will be started in a distinct simulator using a different machine, this 
way we will achieve the goal of having a more realistic situation for the simulations. 

The parameters of the following simulation are the following: 

• 150 total nodes (50 for each simulator/broker) divided into 2 types and 200 links 
distributed over a spiral topology;  

• the algorithm used is the fast passive clustering.  

This time we will start three instances of the simulator running the following 
commands on three different machines. 

 

 Machine 1 (10.69.0.72): 
 ./asf -nodesnumber 50 -typesnumber 2 -port 2000  

      -startreds true -startmanager false 

Machine 2 (10.69.0.73): 
 ./asf -nodesnumber 50 -typesnumber 2 -port 2000  

      -startreds true -startmanager false -neighbor reds-tcp:10.69.0.72:2000 

Machine 3 (10.69.0.74):   
 ./asf -nodesnumber 50 -linksnumber 200 -duration 10000 -typesnumber 2  

-algorithm Clustering -algparams active=false,mode=fast,reverse=false  

-topology SpiralTopology -results homogeneity,optimality,messages,usefulmessages 

-starred true -startmanager true -neighbor reds-tcp:10.69.0.73:2000 
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As we have seen, only Machine 3 is actually executing the manager algorithm and, after 
some time, it is the only machine to produce some output: 

 
 *** ALGORITHM RESULTS *** 

   nodesnumber : 150 
   linksnumber : 200 
   typesnumber : 2 
      topology : SpiralTopology 
          seed : 1627062523 
     algorithm : Clustering 
     algparams : active=false,mode=fast,reverse=false 
          time : 0 
   homogeneity : 0.28 
    optimality : 0.28140703517587945 
      messages : 0 
usefulmessages : 0 

... we skip some intermediate steps here ... 

*** ALGORITHM RESULTS *** 

   nodesnumber : 150 
   linksnumber : 200 
   typesnumber : 2 
      topology : SpiralTopology 
          seed : 1627062523 
     algorithm : Clustering 
     algparams : active=false,mode=fast,reverse=false 
          time : 30000 
   homogeneity : 0.5778894472361809 
    optimality : 0.586734693877551 
      messages : 12058 
usefulmessages : 0.02628960026538398 

*** CONVERGENCE REACHED!  *** 

*** End of Statistics *** 

5.3.4 Interpretation of Results 
The report that the algorithm prints after each execution step is a collection of the input and 
output parameters of the simulation. These parameters can be customized by using the -
results command line option. In Table 5 we can see all the results supported by the 
simulation framework including simulation parameters and performance indexes. 

 
Result name Input/output Meaning 

nodesnumber input Total number of nodes 

linksnumber input Total number of links 

typesnumber input Total number of types 

topology input Name of the topology algorithm 

topologyparams input Parameters for the topology algorithm 
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seed input Seed used by random number generator 

algorithm input Name of the self-organization algorithm 

algparams input Parameters for the self-organization algorithm 

time output Elapsed time 

homogeneity output Homogeneity performance index 

linksvariance output Variance of the number of neighbor among all nodes

domainsnumber output Number of domains 

domainsaveragesize output Average size among all domains 

domainssizevariance output Variance of the size among all domains 

singletonsnumber output Number of singletons 

optimality output Optimality performance index 

roptimality output Reverse Optimality performance index 

topologymap output Current Topology Map with nodes, types and links 

iterations output Total iterations executed 

failediterations output Total number of failed iterations 

usefuliterations output Percentage of useful iterations 

messages output Total number of send messages 

failuremessages output Total number of messages involved in failed iterations

usefulmessages output Percentage of useful messages 

Table 5: Possible simulation results 
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