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1 Introduction 

Orchestrating the deployment and maintenance of a complex distributed application 
requiring frequent interactions between its many constituents is a well-identified but difficult 
and as yet unsolved problem in highly dynamic environments. New components may 
appear and old ones become obsolete while new usage patterns develop and the demand 
for individual or aggregated services fluctuates over time, making the whole system partly 
unpredictable and calling for high levels of adaptability. 

This is in contrast with traditional and proprietary “top-down” applications, which are 
amenable to a “stop and restart” approach to reorganisation, patching and/or upgrade. 
Indeed, with the current trend towards largely open service platforms, involving multiple 
providers, software developers and hardware manufacturers, this management strategy 
has already started to crumble. 

In recent work, we have shown that decentralised mechanisms could enable the 
emergence of efficient collaborative overlays through self-organised aggregation (Saffre et 
al., in press) and facilitate division of labour in a fixed-topology network through co-
ordinated individual specialisation (Saffre et al., 2006). In this paper, we seek to combine 
both approaches to create a highly plastic distributed application, able to spontaneously 
react to various local or global changes affecting its fully distributed execution environment. 

2 Load-balancing and biologically-inspired differentiation 

2.1 The limits of load-balancing through overlay 
management 

In the previous deliverable, D3.1, we have successfully demonstrated that a pre-existing 
heterogeneous workload could be efficiently processed by a community of pre-specialised 
peers provided that they were able to reorganise their relationships (i.e. the structure of the 
overlay) so as to create the right conditions for co-operation. Although these results could 
in principle be generalised to a continuous inflow of new service requests (as opposed to a 
large but fixed initial workload to be processed), the rewiring algorithms involved would not 
be able to correct a hypothetical imbalance between offer and demand in the system as a 
whole. Our solution was effectively designed to solve the problem of localised imbalance, 
by allowing components faced with an inadequate workload, either qualitatively (i.e. “wrong 
service type”) or quantitatively (i.e. “overload”), to identify and establish one or more 
partnerships with (an) adequate “subcontractor(s)”. 

In the case of a global mismatch between the offer and demand for one particular service 
however, rewiring of the overlay is useless. For instance, if fewer resources than necessary 
are allocated system-wide, requests will accumulate indefinitely and average queuing time 
will keep increasing. In the opposite situation (over-provisioning), underutilised resources 
will be frequently idling. In neither case is the reorganisation of co-operative relationships 
between components of any help. 
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This is illustrated by the example shown in figure 1, where demand for the 4 represented 
services is different but the resources are equally distributed (similar numbers of each 
component have been deployed). 
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Fig. 1: Effect of resource “misallocation” on overall processing capability (job absorption 
rate). One hundred independent realisations, 1024 nodes, random graph topology (average 
node degree of 4). In the heterogeneous case, workload for job type 1 is (statistically) twice 
that for job type 2, which is twice that for job type 3 etc. Total workload (overall demand, 
summed over all types) is identical for both numerical experiments. 

 

In order for the system to be able to adapt to a change in the overall demand (assuming 
that the total processing capability is sufficient), it is necessary that resources can be 
repurposed. This problem is similar to that of transferring servers between hosted 
applications in a data centre in response to fluctuations in the relative workload, with the 
key difference that it has to be achieved without centralised scheduling or global 
information on the existing balance between offer and demand (no centralised accounting 
of resources). 

We refer to this “self-(re)allocation” of individual resources based on locally available 
information and local interactions as “differentiation”, because it shares many 
characteristics with differentiation in biological morphogenesis. 

2.2 Fundamental dynamics of differentiation 

2.2.1 Concepts and methodology 
The question of differentiation at all levels from cells to organisms, social systems or 
ecosystems, is ubiquitous in biology. This vast issue can be subdivided according to the 
context of differentiation. Here we focus on systems where identical (or nearly identical) 
individuals differentiate through interactions among themselves and/or with their 
environment, a problem that has been addressed many times in theoretical biology. One 
current vision of such differentiation phenomena is that the system (or the individuals) can 
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exist in multiple states between which individuals (or the whole system) can switch. A key 
discussion in biology revolves around the problem of identifying the necessary conditions 
to obtain dynamical and emergent differentiation properties. 

Biological complex systems can often be described as an interaction graph defined as a 
finite oriented graph including signs for every edge. The vertices correspond to individual 
components of the system (genes, cells, individuals, species…) and the edge between A 
and B is positively (or negatively) labeled when A activates (or represses) the activity of B. 
However, edges can also be positive or negative depending on some properties of the 
vertices and depending on the context. A conjecture formulated by R. Thomas (Thomas, 
1981) states that a necessary condition for multistability is that the graph (G) has a circuit 
(C) which is positive. C is positive when the product of the signs of the edges of C is 
positive, at least in one area of the phase space of the corresponding dynamical system. 
This conjecture has been proven mathematically in several special cases and in the 
general case (Soulé, 2003, Cinquin & Demongeot, 2002; Gouzé 1998; Plathe, Mestl & 
Omholt, 1995; Snoussi, 1998). Besides these structural considerations on the nature of 
interaction graphs, the general framework used both quantitatively and qualitatively is 
dynamical system theory.  

 
Fig. 2: Example of a small interaction graph between agents (nodes A-D). The oriented edges 
correspond to the nature of their interactions i.e. positive (activation) or negative (inhibition). 

 

A brief outline the mathematical framework used in the present work (i.e. dynamical system 
theory and its corresponding terminology) is provided below. Given a positive integer m, we 
define a differentiable map F: Rm-> Rm and the corresponding dynamical system: 

)(xF
dt
dx

=  

Where x=(x1(t), …xm(t)) is a trajectory in the m-dimensional Euclidian space. The 
interaction graph G(x) of F at point x is the oriented graph with {1,…,m} as vertices and 
such that there is a positive (or negative) arrow from j to i if and only if the partial derivative 
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is positive (or negative). Each edge in G(x) is thus oriented and endowed with a sign. The 
variable x is viewed as the phase space location of the graph G(x). A circuit in the graph 
G(x) is a sequence of distinct vertices i
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1, i2,…, ik such that there is an edge from iα to iα+1, 
with 1<=α<=k-1, and from ik to i. The sign of a circuit is the product of the signs of it edges. 
A circuit is thus determined by a set of non zero coefficients in the jacobian matrix 

⎟
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x
fxJ
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i  

the rows and columns of which are in cyclic permutation. Its sign is the sign of the product 
of these coefficients. Several circuits are defined as disjoint when they do not share any 
vertex. Following Thomas and Kaufman we present some definitions on which we can then 
state their conjectures for the necessary conditions to have multistability in the system. A 
nucleus is a union of one or more disjoint circuits which involve all the vertices of G(x) 
(also defined as “Hamiltonian hooping” in Soulé 2003). The sign of a nucleus is (-1)p+1 with 
p being the number of positive circuits in the nucleus (Eisenfeld, De Lisi, 1985). 

Based on the analysis of this type of small graphs a number of conjectures have been 
formulated to predict the existence of multistationarity, and hence the possibility for the 
system to present interesting properties such as memory effects or differentiation. 

Conjecture 1 (formulated by Thomas in genetics, proved mathematically by Soulé, 2003): 
The presence of a positive circuit in a region of the phase space is a necessary condition 
for multistationarity. 

This type of results can be taken as design principles for self-organized properties in 
artificial systems (even in artificial biological systems). The design of dynamical, emergent 
differentiation in a population of initially identical (or almost identical) individuals requires 
building at least one positive circuit in the interaction graph between individuals and their 
environment. It is these principles that guided us qualitatively or quantitatively when 
designing the algorithms for self-organised differentiation developed in WP3. 

In this framework, without even writing the equation, one can start to ponder the type of 
behaviour that will emerge in the systems solely by considering the interaction graph. 
Although in general, models based on differential equations rapidly become intractable for 
realistic complex systems, this framework is a good starting point for engineering emergent 
properties in artificial systems. The design process can fruitfully be guided by toy models or 
a simplified description of the system (Saffre and Inglesby, 2007). 

However, today, there is no systematic procedure or methodology to effectively design an 
artificial system from model to implementation. This is partly due to the nature of complex 
systems, which implies a multi-level and multi-framework description. The main difficulty is 
often to cast the problem in terms of attractors of a dynamical system. Attractors 
correspond to stable states that will be reached after a transient time, whatever the initial 
conditions. Attractors are steady states (with various dynamical properties like hysteretic 
bistability or excitability), limit cycles (encompassing a wide variety of nonlinear oscillations 
ranging from simple to complex) or strange attractors (deterministic chaos). 
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As these attractors represent the predictable outcome of system dynamics, the associated 
interaction graph must be designed in such a way that they correspond to the desired 
features of the engineered system. The ideal design methodology is therefore to describe 
the target system state(s) as a type of attractor, design suitable interaction graphs to 
produce such attractors, write the corresponding mathematical model taking into account 
realistic constraints and, finally, make the transition from modeling to implementation.  

2.2.2 Basic differentiation model 

2.2.2.1 Analytical model version I 
We formulate a basic model for differentiation, featuring  a set of processing units (agents 
or ACEs) and a set of tasks to be performed (jobs or requests). The dynamics of such a 
system can be described using a simple set of differential equations: 
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is the number of agents performing task i and xwhere Xi i is the number of task i (or job) to 
be performed. N is the total number of the different tasks and S the total number of agents. 

The rate of task performing per agent is: 
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such thatβ is the maximum achievable processing rate per agent. 

The probability for an agent to adopt state i is given by: 
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This model exhibits only one stationary state (dxi

dt
= 0, dXi

dt
= 0) , corresponding to: 
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Which, in the case where all jobs arrive at the same rate (α is identical for all tasks) 
translates into: 
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Note that this stationary state only exists if: βS −αN > 0 , which simply means that, if the 
rate of arrival of new tasks (α) is greater than the total processing capability (individual rate 
of execution multiplied by the number of agents), jobs keep accumulating in the system.  

Stability analysis of the stationary state: 
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In case of two tasks (N=2) 
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The stationary state is always stable. It may exhibit oscillations that are always stable if 

B2 + γ 2 − 2Bγ − 4AC < 0. When oscillations are not observed, the stationary state is a 
stable node. 
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Fig. 3. Parameter space showing the zone with damped oscillations and without oscillations 
for  γ and n. α = 1, β= 0.25, S=10, ε=1. 

 

2.2.2.2 Analytical model version II 
An alternative version featuring similar properties is: 
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The difference with model I being that the probability for an agent of type i to leave its 
current state is now:  
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The rate at which agents “electing” to change type adopt any of the other (N-1) available 
states is still given by the same expression as in model I. Model II also exhibits only one 

stationary state (dxi

dt
= 0, dXi

dt
= 0)  and is basically undistinguishable from Model I in terms 

of its properties (stable states and trajectories). 
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2.2.3 Numerical results for the mean-field model: 
In order to confirm, visualise and expand the analytical results presented in the previous 
section, we developed a numerical equivalent (discrete time-step deterministic simulation) 
of the differential equation-based model. We confirmed the presence of dampened 
oscillations when the system starts far from equilibrium (i.e. mismatch between the 
frequency of different job types and of the corresponding specialised agents), Figure 4 
shows an example of such behaviour, for the case in which there are three job types, all 
equally represented. 
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Figure 4. The frequency of jobs (upper panel) and agents (lower panel) over time, when the 
three job types arrive at equal rates but the initial frequencies of agents are far from equal 
(see frequencies at time 0 in lower panel). 

We also used the deterministic simulation engine to conduct a preliminary study of the 
system’s behaviour when job frequency (i.e. the structure of the demand) varies over time. 
The results confirmed the analytical prediction that after a while (and possibly further 
oscillations), the system would re-stabilise at the new optimal solution (i.e. the distribution 
of specialist agents exactly reflecting the frequency of the corresponding jobs). Figure 5 
shows the early stages of the transition between two equilibrium states, after, at time t = 

Page  11 of 34 



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D3.2

Bringing Autonomic Services to Life 

 

 

rd500, job type 1 and 3 switch from representing 1/3  of the demand each to representing 1 
half and 1/6th respectively. 
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Figure 5. The frequency of jobs (upper panel) and agents (lower panel) over time, when the 
three job types arrive in the ratio 2:2:2 from time 0 to 499 but then abruptly change to a ratio 
of 3:2:1 at time 500. 
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2.3 Individual node capabilities 
In order to be able to usefully repurpose themselves, resources have to make informed 
decisions, based on their knowledge of the local demand. We hypothesised that nodes 
would keep a record of the type of requests reaching them over a sliding window. This 
would allow them to estimate the relative frequency of different request types, which would 
approximate the model described in section 2.2.2 in which the system-wide distribution of 
jobs (x) is an explicit variable. Individual resources can then use this information to decide 
which type of job to specialise into (presumably, this means loading the corresponding 
software components). 

At present, nodes compute the probability of “choosing” a given type using the perceived 
distribution of the demand, using equation: 
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Where xi is the number of encounters with job type i over the sliding window, N is the 
diversity (number of job types actually encountered), γ is a non-specific differentiation rate 
and n is a nonlinearity parameter. The width of the sliding window (memory) is an implicit 
parameter. The wider it is, the more precise and accurate the estimate of the relative 
frequency of the different job types will be (assuming that the demand doesn’t fluctuate 
over a similar time-scale). 

Cooperation is supported by a similar “subcontracting” process to the one described in 
deliverable D3.1. On every time step, every node is allowed to send one job request to 
each of its first neighbours in the overlay, where it will have a chance of being processed 
(assuming the types match) on the following time-step. There are currently two versions of 
this delegation process: 

• Random diffusion: a randomly selected job is sent to every neighbour. This 
“unrealistic” version was used for benchmarking and for comparison with the 
“mean-field” analytical results. 

• Targeted diffusion:  if possible (i.e. if the corresponding local queue is not empty), 
one job of the correct type is sent to every neighbour. However, if no jobs of the 
correct type are available, a randomly selected request is sent instead. This is 
designed to allow jobs for which the right type of neighbour is unavailable to 
eventually “percolate” through successive redirections. 

As in deliverable D3.1, nodes are also allowed to rewire their connections, using the “on-
demand” algorithm with specific neighbour type request. In this case, the probability of 
requesting a given type of neighbour is a linear function of the relative length of the 
corresponding local queue. It should be noted that, although the two variables are not 
independent, the relative length of a given local queue is not identical to the frequency of 
the corresponding job type in the sliding window. 
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2.4 Results 

2.4.1 Homogeneous Load, Random Diffusion 
The first batch of results uses a constant (per node, per time step) addition to the job load. 
Each node gets 4 new jobs in each timestep. This load is split equally among a number of 
types (which varies in the range [2,4,8,16] in different experimental runs). We call this 
‘homogeneous load’. 

Two initial topologies are used for different runs: random graph and regular torus. In all 
runs there are initially 1024 nodes and 2048 links. In the random graph each link is initially 
assigned to two nodes chosen drawn at random, without replacement, from the set of all 
nodes. When all links are assigned, any nodes without any links are deleted. In the regular 
torus every node has exactly 4 links, 1 to each of its four ‘neighbours’ in the lattice. 

In all runs there are initially equal numbers of nodes of all types (reminder: by definition, a 
node of type X will only directly process jobs of type X). 

In the torus topology the types are assigned in a regular fashion, so if a node is of type 0, 
its neighbour to the right will be of type 1, and that node’s neighbour to the right will be of 
type 2 and so on. 

First we examine the ‘null’ situation where the nodes are allowed to neither change their 
type (it is this change of type which we refer to as ‘differentiation’) nor change their links 
(‘rewiring’). 

Figure 6 shows how excess jobs accumulate in the system. 
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Fig 6 The number of jobs of a single type queuing in the entire network. Curves are shown 
for both topologies tested, and for 2, 4, 8 and 16 different job types. 
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The results are somewhat hard to interpret from these curves, since they relate to a single 
job type and absolute numbers of those jobs. Focusing on a single job type makes 
interpretation harder because as the number of different types increases the absolute 
number of each of those types of jobs goes down (since the total number of all types of 
jobs added to each node in each timestep is always 4, so in a run with two types of job a 
node expects to get an average of two type 0 and two type 1 jobs each timestep. In a run 
with 4 types of job a node expects one of each type on average.) Figure 7 shows the rate 
of accumulation of all jobs once the network has reached steady state. Note that the 
maximum rate at which jobs could accumulate is 4096. This would be the case if no jobs 
are processed at all in the maximum network size of 1024 nodes (each receiving 4 jobs per 
timestep). Clearly the minimum steady accumulation rate is zero, where as many jobs are 
processed as are arriving. 
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Fig 7 When the system has reached steady state (the gradient of the curve in Fig 6 is no 
longer changing) how many more jobs are added in every timestep than are processed? 

 

From the figure we see that as the number of types rises the ability of the system to cope 
with the imposed load degrades significantly. Recall that there is plenty of capacity in the 
system – each node can process up to 8 jobs of its own type in each timestep. So the 
failure to process the load is due to the time jobs linger in the system without encountering 
a node of the correct type. 

Only the torus with 2 job types is able to come close to coping with the demand. Even here 
we must refer back to figure 6 and note that steady state (as depicted in figure 7) is only 
achieved after a considerable build-up of jobs in the system.  

For the rest of this section we shall depict results from the various simulated networks in 
terms of the total, normalised rate of job processing occurring in each timestep. That is to 
say, what fraction of the number of jobs (of all types) arriving in a timestep are ‘absorbed’ in 
that timestep. A network of 1024 nodes receives 4096 new jobs every timestep and so 
would have a job absorption rate of 0.5 in a given timestep if 2048 jobs were processed in 
that timestep. Note that the job absorption rate tells us nothing about the total number of 
jobs queuing in the system. An absorption rate of 1 tells us only that jobs are being 
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processed as fast as they are arriving – it does not tell us that all new jobs are processed 
immediately. The minimum absorption rate possible is zero – where no jobs are processed. 
The maximum sustainable absorption rate is 1 – where the rate of processing matches the 
rate of arrival. It is of course possible to have an absorption rate greater than 1 while 
working through a backlog of queued jobs but once the backlog is cleared jobs can only be 
processed as fast as they arrive. 

No rewiring, no differentiation, torus, equal resources
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Fig 8. With no rewiring and no differentiation occurring in these simulations the only change 
over time is the increasing backlog of jobs. As time goes on each node has a queue of zero 
for jobs of its own type and increasing queues for all other job types. The increasing backlog 
increases the absorption rate because it increases the rate at which jobs diffuse on to nodes 
of the corresponding type. In the case of only 2 types of job it is possible for the network to 
reach an absorption rate of 1, once backlogs are really large. In these circumstances in each 
timestep every node receives, on average, 2 new jobs of its own type (which it processes 
instantly) and 2 other jobs of its own type diffusing from its two different-type neighbours. 
The node also processes these two diffusing jobs and is hence processing a total of 4 jobs in 
each timestep leading to an absorption rate of 1 across the network. 
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Torus, 2 types, equal resources, random diffusion
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Fig 9 As noted above the torus is able to reach an absorption rate of 1 without any rewiring 
or differentiation. Rewiring does allow that rate to be achieved more quickly however. 

Torus, 4 types, equal resources, random diffusion
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Fig 10 Rewiring alone allows some improvement to the ability of the network to absorb new 
jobs (compare with fig 8). Differentiation (with or without rewiring) results in a much greater 
improvement eventually reaching an absorption rate of 1. Note that the x axis has been 
extended to 1000 timesteps to show steady state. 

 

 

Page  17 of 34 



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D3.2

Bringing Autonomic Services to Life 

 

 

No rewiring, no differentiation, Random Topology, equal 
resources, random diffusion
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Fig 11 Identical to the situation depicted in Fig 8 except that the topology here is a random 
graph rather than a regular, toroidal lattice. Even when there are only two types of job (and 
two corresponding types of node) in the system, the random graph topology cannot achieve 
an absorption rate of 1 in the absence of rewiring or differentiation. 

Random topology, 2 types, equal resources, random 
diffusion
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Fig 12 Rewiring and/or differentiation do allow the system to reach a point where job 
processing rate matches job arrival rate 
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Random topology, 4 types, equal resources, random 
diffusion
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Fig 13 Note that this plot runs on to timestep 1000 to allow a steady state to be shown. 
Differentiation (with or without rewiring) allows the system to meet demand, eventually. 
Rewiring alone does not 

In summary our simplest set of simulations, in which the load was statistically 
homogeneous and ‘diffusion’ of queuing jobs away from nodes was random, shows: 

• Certain scenarios can allow the load to be processed (the torus deals with two job 
types even when no ‘rewiring’ or ‘differentiation’ is used to alter the initial network) but 
in most cases tested the initial network is not able to process the load 

• Differentiation allows networks to alter such that they are able to process the load 
impinging on them 

2.4.2 Homogeneous Load, Targeted Diffusion 
In this set of simulations the load placed on the system is the same as in the preceding 
simulations (uniform across the different job types) and the initial network set-up is the 
same (either a toroidal lattice or random graph topology with equal numbers of nodes 
specialising in each job type). 

However, the ‘diffusion’ by which queuing jobs are handed on to network neighbours has 
changed to the ‘directed diffusion’ described above, allowing nodes to selectively send the 
right job to the right neighbour if such an option exists. 
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Torus, no rewiring, no differentiation, 2 types, equal 
resources
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Fig 14 Comparison of the performance of the unchanging network in processing the load 
with random diffusion and directed diffusion 

We expected that the introduction of directed diffusion would improve the ability of all 
networks to cope with demand, since it should allow nodes to exploit opportunities to pass 
a job directly to a node which can process that job, rather than relying on lucky encounters. 
Figures 14 and 15 bear this out, over rather different timescales.  

Torus, 4 types, equal resources, directed diffusion
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Fig 15 The absorption rate for the toroidal lattice topology with four equally prevalent job 
types and directed diffusion. 

Page  20 of 34 



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D3.2

Bringing Autonomic Services to Life 

 

 

In Fig 14 we see that the directed diffusion allows system performance to rise much more 
rapidly, in other words the system is less congested with jobs when it approaches the 
optimal steady state absorption rate. 

In Fig 15 it can be seen (compare with Fig 10) that the rewiring alone, although it is still 
much less effective than differentiation, rises to a much higher absorption rate than is the 
case for random diffusion. 

In summary directed diffusion does improve baseline performance but, as with random 
diffusion, differentiation is more effective than rewiring in allowing the system to resculpt 
itself to improve on that baseline. 

2.4.3 Heterogeneous Load, Random Diffusion 
 

In this set of simulations we move away from homogeneous load and return to the random 
diffusion rule. Everything else remains the same as section 2.4.2 

Torus, 4 types, heterogeneous load, random diffusion
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Fig 16 Absorption rates reached over the course of simulation runs in the face of 
heterogeneous load. 

 

The load is now created as follows: in every timestep each node receives 4 jobs (this is the 
same as before). However, the probabilities of receiving jobs of different types are no 
longer the same. Type 0 jobs are twice as likely as type 1 jobs, which are twice as likely as 
type 2 jobs etc. 

This means that, for the first time, the ratio of node specialisms in the initial network does 
not match the ratio of jobs arriving in the network. There are still equal numbers of all types 
of node, but not equal probabilities of the different job types. Because rewiring does not 
alter the ratio of node specialisms, we anticipated that this would be a difficult test case for 
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rewiring alone. Differentiation does alter the type of the node and hence can affect the ratio 
of node types in the system as a whole. So we expected that the advantages of 
differentiation already suggested in the homogeneous load simulations would be more 
marked. In fact, comparing Fig 16 with Fig 10 shows little change in the gap between 
performance when differentiation is enabled and when rewiring is enabled. The gap was 
already wide and has not significantly widened. 

2.4.4 Heterogeneous Load, Targeted Diffusion 
 

Despite being very difficult to model and interpret, this case is also probably the most 
interesting as it involves presenting the most advanced processing units (i.e. capable of 
targeted subcontracting as well as, potentially, rewiring and differentiation) with the most 
difficult problem to solve (i.e. heterogeneous workload, implying an initial mismatch 
between offer and demand). 
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Fig. 17: Performance comparison between the 3 different forms of adaptive behaviour in the 
(initial) torus topology, n = 8 
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Fig. 18: Performance comparison between the 3 different forms of adaptive behaviour in the 
(initial) random graph topology, n = 8 

As illustrated by figures 17 and 18, the introduction of differentiation results in a 
considerable improvement of the efficiency of the system as a whole (in terms of its global 
processing capability after self-organisation), compared to the “rewiring only” strategy. This 
is an intuitive result since only differentiation can lead to the adjustment of the offer to the 
demand. However, it should be noted that the system being over-provisioned by a factor 2 
(4 job arrivals per node per time unit, with a nominal processing capability of 8 jobs per 
node per time unit), rewiring can, to a limited extent, contribute to the increase in the 
absorption rate (by increasing the degree, and therefore the incoming flow, for nodes 
belonging to the type that is most in demand), which is why the curve goes up over time. 

2.4.5 Underlying Dynamics 
It is essential to understand the dynamics underlying the increase and stabilization of the 
absorption rate. These can partly be inferred from Fig. 19 which shows the distribution of 
the agent population and of the various job types in the most complicated scenario (16 job 
types), after 2048 time-steps (i.e. approaching steady state). Basically, the nonlinearity in 
the decision function (n) causes the population to “overshoot” the ideal resource allocation 
for the most frequent type of job, at the expense of the other types. This causes job types 
of intermediate frequency to accumulate in the system (very rare job types are rightly 
ignored, and very common ones are adequately or over-provisioned), resulting in the 
emergence of a maximum.  

Heterogeneous workload, 16 types, directed diffusion, 
differentiation (n=8) + rewiring
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Fig. 19: Frequency distribution of jobs and agents as a function of type (n = 8) 

 

Reducing the value of the nonlinearity parameter n can alleviate this effect, as shown by 
the better match between job arrival frequency and population distribution in figure 20  
This even impacts on the actual absorption rate, which comes very close to one (fig. 21a) 
for a comparatively low accumulated workload (fig. 21b).  
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Heterogeneous workload, 16 types, directed diffusion, 
differentiation (n=2) + rewiring
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Fig. 20: Frequency distribution of jobs and agents as a function of type (n = 2) 
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Fig. 21: Evolution of job absorption rate (a, left) and total accumulated workload (b, right) 
over simulation time
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However, this comes at the price of greatly increased “residual activity” (in terms of rewiring 
and differentiation) even when nearing steady state (see fig 22). In the current simulation 
framework, such activity has zero cost and changing type is instantaneous, but this is 
obviously a simplification. In reality, changing activity would at the very least incur some 
downtime, due to the need to load new software components, “scrub” memory etc. Such 
aspects of load-balancing are actually well know to be of critical importance for optimal 
resource allocation. 

Heterogeneous workload, targeted diffusion, random 
graph
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Fig. 22: Evolution of the residual activity (here, the number of type changes) over simulation 
time 

 

In short, if we want to be able to rely successfully on self-organisation for load-balancing 
and adaptation purposes in a real world implementation, we will need to find ways of 
keeping “self-interest” under control so as to avoid such pathological system behaviour. 
Indeed, the source of the long-term instability is that individual nodes keep re-differentiating 
into what they perceive as the commonest type, in order to maximize a local utility function. 
Discouraging this behaviour could likely be done explicitly, via inhibitory signalling. 
Alternatively, increasing the ratio between rewiring and differentiation rates could lead to 
the overlay reorganization process giving specialists of infrequent job types a chance to 
find a viable niche (i.e. to become subcontractor for enough other nodes to compensate for 
the overall rarity of their job type). 

 

2.5 Conclusion 
Our results demonstrate that, even though differentiation or rewiring alone can to some 
extent help maximise the throughput of a distributed and decentralised processing 
infrastructure, combining them makes the system more responsive to heterogeneities in 
the workload. However, they also emphasise that even the simplest identifiable set of rules 
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tends to combine a large enough number of parameters to make interpretation difficult, 
therefore making selection of appropriate values a non-trivial problem. Finally, they indicate 
the presence of a substantial residual activity (both in rewiring and in self-reallocation) at 
steady state, which would potentially be very detrimental to performance in a real 
implementation (overhead) and would therefore need to be brought under control. This can 
potentially be achieved simply by taking explicitly into account the cost of changing type or 
establishing a new collaboration.  

3 Minimising maintenance costs of networks where nodes 
can differentiate 

3.1 Introduction 
In addition to issues of load-balancing, minimizing the cost of maintaining links across a 
network is also a worthwhile aim for applications. Nodes of different types may place 
different demands upon the network. Ideally nodes of different types should be able to 
connect without imposing too great a cost. For simplicity we represent node type by colour.  

We are seeking to minimize the costs of maintaining a network of nodes, while maintaining 
connections between nodes of different colours. At the same time we are using the 
capability of nodes to change colour (differentiation) to impart adaptability to a network. 
However it is not clear whether differentiation will make it easier to obtain adaptability, or it 
will act as a disruptive influence, so part of the research is about exploring the influence of 
differentiation. 

Objectives: 

• Minimize cost of maintenance of a network of self-organising nodes. 

• Attain a stable equilibrium where each node is connected to one node of each other 
colour. 

Note that in the case of the second objective, having each node connected to only one 
node of each other colour is the ideal solution, because this means that the first objective 
will have been satisfied. The second objective is a sub-set of solutions to the graph 
colouring problem, to be discussed further later, except that solutions to that usually allow 
“one or more” adjacent nodes/vertices (term used in graph theory) of each other colour. 

Why are these objectives relevant? 

Because we are aiming for self-organisation algorithms using differentiation to be 
applicable in real-world applications, we must assume that there will be some costs 
associated with resource use at nodes and with information transmission between nodes. 
Hence it would seem to make sense to reduce the number of nodes and the number of 
links between nodes to the minimum required to satisfy the global objectives, in order to 
reduce these costs and maximize the benefits from the application. 

Because of the aim of applicability to real-world scenarios we must assume that nodes of 
different types will specialize in providing different services, as maintaining generality is 
likely to be costly and inefficient. Hence it will be beneficial if nodes of different types only 



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D3.2

Bringing Autonomic Services to Life 

 

 

Page  27 of 34 

have neighbours of other types, so that requests for services other than those that they 
specialize in can follow minimal paths before reaching an node that can act upon them. 

These global objectives are quite strict as a consideration of related work will show. 

3.2 Related Work 

3.2.1 Game theory 
Initial consideration suggested that a game theoretic analysis would be the best way to 
investigate solutions to both these objectives. Game theory has proved useful in providing 
explanations for how cooperation can arise in groups through iteration even when self-
interest might suggest otherwise (e.g. Axelrod & Hamilton 1981). 

We wish to consider a situation where the costs/benefits of interactions between nodes can 
be defined based on their actions, types/colours, and whether they are linked. And we wish 
to move from an initial state which is either randomized or at least about which we have 
limited knowledge to one in which we reach a stable equilibrium. 

Game theory provides a means of identifying equilibria in games between players, but it 
does depend upon being able to define the game in terms of a payoff matrix, where the 
benefits or costs to each player in terms of their actions can be defined, or in terms of the 
extensive form of the game, where the decision tree arising from all possible actions can 
evaluated.  

The problem with the global objectives given above is that there are several different types 
of actions and axes of cost/benefit that need to be considered simultaneously. Given a 
location in an arbitrary network, a node in a network construction game may build a link 
with another node, break a link, or maintain an existing link, depending on the benefits of 
being linked to that other node, and the costs of building/breaking and maintaining links. 
Defining the complete payoff matrix or decision tree that includes all these issues is 
difficult. 

3.2.2 Graph theory 
Graph theory studies mathematical graphs, mathematical structures used to model 
pairwise relations between objects from a certain collection. Since CASCADAS is 
concerned with the behaviour of collections of ACEs, and WP3 of CASCADAS is 
concerned with the interaction between self-organising ACEs, graph theory seems 
particularly appropriate to investigate networks of ACEs where the network/graph has 
already been defined, and where the types of ACEs are defined simply in terms of colour. 

Given the global objective above for minimizing costs in a network, we can, at least for 
relatively simple and finite graphs, identify graphs that will satisfy such objectives for a 
given set of vertices of different colours. This is the classic graph colouring problem, which 
has been the subject of much mathematical research. However, we may not be able to 
identify the route to which the optimal coloured graph is reached from an initial random 
state, which is why game theory was initially suggested as a means to finding this. We also 
cannot assume that all optimally coloured graphs are attainable.  
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The introduction of differentiation as described above makes this more complicated, 
because most solutions to graph colouring problems assume that vertices/nodes stay the 
same colour – but it is an aim of our research that they do not if it is not appropriate. 
Differentiation makes the problem dynamic: while there may be a lot to learn from the large 
body of work in graph theory, more applied work focusing on dynamic applications may 
also be relevant. 

3.3 Example Problem 
Analysis of the consequences of differentiation among ACEs or nodes has to start 
somewhere. Accordingly we define an example problem as follows: 

• A finite graph 

• Vertices of different types represented by different colours 

• Vertices linked by undirected non-coloured edges 

• Graph initially complete 

• Vertices initially assigned colours at random. 

 
Figure 23. An example initial graph 

 

The problem is how to proceed from this initial state to the global objectives given above. 

We assume that this takes place over a number of time-steps that may correspond to 
iterations of a simulation. Whether or not each time-step is identical in length may be 
defined by the model or simulation. During each time-step edges (links) can be broken or 
built, and vertices (nodes) can change colour. 
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3.4 Results 

3.4.1 Solutions for Networks of Limited Size 
Devising the payoff matrix for the iterated game between nodes proved difficult for the 
reasons given above, which is why we proceeded to assumptions about the outcome of the 
iterated game and then proceeded to the analysis of differentiation as a problem of graph 
theory. 

Assuming that payoffs relating to the maintenance of links (edges) lead to a network of 
minimal cost, that is to say minimal numbers of links, and that this network corresponds to 
an equilibrium in a game between nodes (vertices), then we are in a position to separate 
the iterated game between nodes about maintenance of the network from the actions of 
nodes in differentiating in a minimal network. Whether these are reasonable assumptions 
needs further exploration. 

Then it is possible to study the consequences of the potential for nodes (vertices) to 
differentiate, where differentiation implies: 

• Change of colour at random with respect to initial colour and with respect to the 
colours of vertices to which the vertex is currently connected. 

• Change of colour simultaneously and independently with respect to change of 
colour of other differentiating vertices. 

Then we can study the results of “brute force” exploration of the outcome of differentiation 
in some simple graphs of finite size. In each case the exploration was carried out by 
considering all possible initial states given the convergence of the graph to a minimal graph 
satisfying global objective 1 above, and then exploring all possible outcomes of 
differentiation, where differentiation implies the conditions given. 

In these results, n is number of vertices, m is number of colours, and l (ell) is number of 
edges (links), not to be confused with e – in contrast to some of the conventions in graph 
theory and other areas of mathematics. 

n = 1, m = 1 only possibility is l = 0 (empty graph). Minimal cost graph is only state 
possible, vertex not connected to any other vertex, so objectives cannot be achieved. 

n = 2, m = 1, l = 1 (bipartite graph). Minimal cost graph is only state possible, but with only 
one colour each vertex is not connected to a vertex of another colour, irrespective of 
whether differentiation can occur, so objectives cannot be achieved. 

n = 2, m = 2, l = 1 (bipartite graph). Minimal cost graph is only state possible. Stable 
equilibrium of each vertex connected to vertex of different colour only achieved if this is the 
initial state of the graph, in which case differentiation of the vertices does not occur, and 
the objectives are achieved.  

If the initial state has both vertices of the same colour, both will differentiate, but since they 
have only one other colour to choose, the vertices will proceed into an endless cycle of 
disruptive differentiation, and the objectives cannot be achieved. 

n = 2, m > 2 overcomes the problem of continuous disruptive differentiation, but the 
objectives cannot be achieved because one vertex of each colour cannot be included in the 
graph. 
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n = 3, m = 2, l = 3 (triangle graph). Decomposes to n = 2, m = 2, l = 1 with one isolated 
vertex. Ignoring this isolated vertex, the objectives can be achieved as in the situation with 
the bipartite graph above. 

If decomposition of the graph is not allowed, there are not initial states in which each vertex 
is connected to one other vertex of each different colour, and differentiation will occur 
continuously and disruptively, and the objectives cannot be achieved. 

n = 3, m = 3, l = 3. Minimal cost graph appears to be only state possible. Stable equilibrium 
of each vertex connected to one other vertex of each different colour appears to only occur 
if arises in initial state of graph, in which case differentiation does not occur, and objectives 
can be achieved. 

If the initial state of the graph has adjacent vertices of the same colour, they will both 
differentiate, and while this may not result in both of them differentiating again in the next 
iteration, because there are only three colours, at least one vertex will differentiate and the 
vertices will proceed into an endless cycle of disruptive differentiation, and the objectives 
cannot be achieved. 

n = 3, m > 3 has the same advantages and disadvantages as n = 2, m > 2 above. 

n = 4, m = 2, l = ? A fully connected graph will have l = 6. WeI hypothesize that it 
decomposes to two bipartite graphs, or possibly a bipartite graph and two isolated nodes, 
depending upon initial state. In either case the outcome depends on the initial states of the 
vertices and the objectives are achieved only if two vertices in the bipartite graph are 
initially in the state required by the objectives. 

If decomposition of the graph is not allowed we hypothesize an endless cycle of disruptive 
decomposition as above and the objectives cannot be achieved. 

n = 4, m = 3, l = ? We hypothesize that this will decompose to a triangle graph plus one 
isolated node, in which case the outcome will be as n = 3, m = 3, l = 3 above.  

If decomposition of the graph is not allowed we hypothesize an endless cycle of disruptive 
decomposition as above, and the objectives cannot be achieved. 

n = 4, m = 4, l = 6. No edges will be lost from the initial fully connected graph in order to 
satisfy the objective of each vertex being connected to one vertex of each other colour. 

However differentiation may occur depending upon the initial state of the vertices with 
respect to colour. 

Clearly there is more to be done, but this becomes very laborious as the number of 
outcomes with or without differentiation increase exponentially, and there may already exist 
in the graph theory literature analyses of this type of problem. Alternatively the outcomes 
can be explored computationally, although only for finite networks. 

3.4.2 General Observations 
Principle of simultaneity: since vertices (nodes/ACEs) are assumed to be acting 
autonomously, it seems reasonable to consider differentiation within a network to be taking 
place simultaneously and independently with respect to other vertices in the same network. 
However this frequently seems to be disruptive because it causes vertices connected by an 
edge to differentiate simultaneously and this can lead into endless cycles of differentiation 
without attaining the objectives. 
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With respect to a simulation or a real-world application it is of course not appropriate to 
consider nodes/ACEs to be acting simultaneously, so when sequential differentiation is 
considered the disruptive effects identified above may not occur. 

Principle of randomness: because the rule-sets/algorithms being studied here are intended 
to be as general as possible, each colour is equivalent, meaning that differentiation occurs 
at random to a different colour other than the one which the vertex is already. In a real-
world application scenario, or a biological differentiation context, different types are not 
likely to be equivalent, and that will affect the outcomes making the differentiation occur in 
a non-random fashion, and making it less likely to be continuously disruptive as above. 

3.5 Cost minimization in networks with differentiating nodes: 
discussion and on-going work 

We have learned several things about how to understand the consequences of 
differentiation among self-organising nodes through considering different techniques that 
can be applied to it.  
The first is that initial assumptions about the use of game theory to describe a problem that 
involves both the optimization of a network configuration (or mathematical graph) and the 
optimization of the colors of nodes in a network relative to other nodes (or vertices in a 
graph relative to other vertices) are quite ambitious, but not impossible, since we are 
dealing with two different optimization problems that may require different notions of utility. 

The second is that the splitting of the problem into two sorts of optimization problems 
suggests that we may be able to deal with them separately.  

If we assume that the problem of satisfying the first constraint of a graph of minimal cost 
has to be satisfied before nodes can achieve the capability of differentiation, then we can 
study this using an optimization heuristic that ignores node type or color. Which is most 
appropriate needs further exploration. 

What we do have to draw upon is a large body of work about the conclusions to network 
optimization problems which can tell us about minimal configurations that are likely to arise 
from the application of some optimization heuristic to the initial network configuration. But 
we do not have the means to ensure that all minimal configurations will be attainable. For 
some small networks these issues can be explored directly (see above). But this is not 
preferable as a general solution. For that we may have to proceed to simulation or other 
aspects of graph theory. 

If we can attain graphs that satisfy the first objective of minimal cost without having to 
consider the effects of differentiation, then we have gained a third insight. The 
representation of types of nodes in networks by colours is akin to colored vertices in graphs 
in the graph coloring problem, where there is a substantial body of achievement. 

However, there is one significant difference. Vertices are usually assumed to stay the same 
color. By introducing differentiation we are making the problem more dynamic, and 
complicated. Further exploration of graph theoretic results, or use of simulation, is needed 
in order to explore the outcomes fully. 
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3.5.1 Applying Evolutionary Game Theory to Differentiation 
Can we use evolutionary game theory to explore the evolution of the cost function for 
interaction between nodes where differentiation affects the cost function, and where the 
development of the minimal network between nodes is (at least initially) ignored?  

We believe the answer is ‘yes’ and we address the problem in our current work. 
Evolutionary game theory can be used to study the fitness of populations of entities (we will 
refer to nodes taking part in an overlay network in the following) that may decide to adopt 
strategies that would increase their utility.  

The relation to the differentiation problem is clear here: strategies represent again colours 
that characterize nodes adopting them, while a utility function defines the rules of the game 
in which participants are taking part. Leveraging the concepts of evolutionary game theory 
inspired by biological studies we are currently defining the arena in which our differentiation 
evolutionary game will take place. We are also currently studying the impact on the overall 
system of spontaneous mutations in the strategies adopted by a node, of strategic 
deviations from the original strategy assigned to each peer and the coexistence of 
aggressive versus gentle strategies. 

To substantiate our work, we will focus again on a particular application that is well suited 
for the CASCADAS project: autonomic content distribution schemes. Related to what has 
been done in the first year of the project (clustering) and on its natural extension 
(differentiation as described in the preceding sections) we are studying the implications of 
differentiation in the arena of P2P content distribution wherein peers have to decide which 
kind of service policy to adopt. Based on a prominent example that exist today of a 
generous strategy (the one that is currently implemented, for example, in the BitTorrent 
protocol) we will analyze through modeling and simulations (if possible we will also 
determine the feasibility of coming up with a working prototype) the impact on application-
level performance, as well as on the structural topology that defines the interactions that 
can take place among peers, of the adoption of a more aggressive strategy that would 
make use of the knowledge of other entities of the overlay being highly cooperative. 

Several open questions will be addressed, for example related to what kind of 
countermeasure it is possible to design (and this work will be done in tight cooperation with 
WP4 of the project) to defend against such misbehavior. 

4 Conclusion 

The problem of scheduling the execution of diverse jobs across a distributed processing 
infrastructure is in itself a difficult problem, as evidenced by the huge body of work dealing 
with optimal resource allocation in computational grids or even individual data centres. 

In this deliverable we have described several different ways to examine the consequences 
of network dynamics where nodes can change type in a manner inspired by biological 
differentiation. Analytical models and simulation give indications its role in load-balancing. 
We also report on on-going work on the minimization of the cost function in networks under 
interaction constraints, where both graph theoretic and game theoretic approaches can be 
useful. 
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In the present work, not only are we trying to find ways of dealing with a heterogeneous 
workload and maximise utilisation of available resources, we are also deliberately avoiding 
any solution that would require centralised accounting of these resources and/or 
hierarchical relationships whereby some elements would have authority to assign roles to 
others (like a data centre manager allocating servers to specific applications). This fully 
decentralised approach to scheduling is made necessary by the pledge to be able to 
operate in an open environment with a high churn rate, in which owners of useable 
resources are contributing them to the collaborative framework on a voluntary basis and 
only as long as they perceive their participation to be in their own best interest (“give and 
take”). 

Combining locally mediated rewiring of the collaborative overlay with self-induced 
differentiation of individual units (i.e. their ability to change their own purpose so as to 
maximise their local utility function) was the chosen approach because it intuitively seemed 
the best and perhaps only way to achieve load-balancing and adaptation to an 
unpredictable and fluctuating demand in the absence of central control and/or macroscopic 
information. However, past that point, a huge variety of decision-making algorithms and 
interaction mechanisms could have been considered. We aimed to select the simplest 
possible set of rules capable of promoting the desired behaviour at system level, yet we 
are fully aware that other models exist and are likely to outperform our basic framework. 
For instance, we didn’t use any explicit excitatory or inhibitory signalling between units, 
which is known to play a key stabilising role in most biological systems (e.g. in 
development). 
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