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Abstract 

This document presents the detailed specification of the components that define the Cascadas 
supervision infrastructure. This document includes two appendixes: 

− Appendix 1: a proof-of-concept implementation of the supervision infrastructure, together with a 
short document that describes how the proof of concept works. 

− Appendix 2: a detailed component specification of the DriftAnalyser, as well as a proof of 
concept implementation thereof. 

The purpose of the document is (a) to prepare the upcoming integration of the concepts developed 
so far in WP2 into the ACE infrastructure prototype delivered by WP1, (b) to identify open issues 
and to provide an implementation roadmap, and (c) to describe initial experiments and proof-of-
concept implementations that will be re-used for the development of an ACE based version of the 
supervision system.  

As the ACE infrastructure will only be available from the beginning of month 18 of the project (and 
thus essential aspects like the interaction of the supervision system with the system under 
supervision, i.e. monitoring and actuation, were not definable yet), we are not delivering a complete 
prototype, but concentrate on specification work and proof-of-concept implementations of single 
components. 
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1 Introduction 

1.1 Purpose and Scope 
This document presents the detailed specification of the components that define the Cascadas 
supervision infrastructure. This document includes two appendixes: 

− Appendix 1, a proof-of-concept implementation of the supervision infrastructure, together with a 
short document that describes how the proof of concept works. 

− Appendix 2: a detailed component specification of the DriftAnalyser, as well as a proof of 
concept implementation thereof. 

The purpose of the document is (a) to prepare the upcoming integration of the concepts developed 
so far in WP2 into the ACE infrastructure prototype delivered by WP1, (b) to identify open issues 
and to provide an implementation roadmap, and (c) to describe initial experiments and proof-of-
concept implementations that will be re-used for the development of an ACE based version of the 
supervision system.  

As the ACE infrastructure will only be available from the beginning of month 18 of the project (and 
thus essential aspects like the interaction of the supervision system with the system under 
supervision, i.e. monitoring and actuation, were not definable yet), we are not delivering a complete 
prototype, but concentrate on specification work and proof-of-concept implementations of single 
components. 

1.2 Reference Material 

1.2.1 Reference Documents 

[1] IBM, “Policy Management for Autonomic Computing – Autonomic Computing Expression 
Language”, http://www.alphaworks.ibm.com/tech/pmac 

[2] D. C. Luckham. Programming with Specifications: An Introduction to Anna, A Language 
for Specifying Ada Programs. Texts and Monographs in Computer Science, Oct 1990. 

[3] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral 
Interface Specification Language for Java. Department of Computer Science, Iowa State 
University, TR 98-06-rev27, April, 2005. 

[4] OMG, “Object Constraint Language”, www.omg.org/docs/ptc/03-10-14.pdf 

[5] L. Baresi and S. Guinea. Dynamo and Self-Healing BPEL Compositions. In 29th 
International Conference on Software Engineering (ICSE’07 Companion), pages 69–70. 
IEEE Computer Society, 2007. 

[6] P. H. Deussen, “Towards a Mathematical Framework for Pervasive Supervision”, 
CASCADAS Milestone Deliverable D2.1, accompanied document. 

[7] P. H. Deussen, M. Baumgarten, R. Alfano, L. Baresi, M. Plebani, “Report on Pervasive 
Supervision - State of the Art, Basic Algorithms and Approaches, and Basic Supervision 
Architecture”, CASCADAS Milestone Deliverable D2.1.   
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1.2.2 Acronyms 
ACE Autonomic Communication Element 

DA DriftAnalyzer 

GN/GA Goal Need/Goal Achievable Protocol 

MAPE Monitor—Analyze—Plan—Execute 

MBS Model Based Supervision 

OCL Object Constraint Language 

SUS System Under Supervision 

SVS Supervision System 

 

1.3 Document History 
Version Date Authors Comment 

--- 2007/04/20 L. Baresi, R. Alfano, M. 
Baumgarten, P. H. 
Deussen, A. Mannalla 

Initial Inputs 

0.1 2007/06/20 L. Baresi, R. Alfano, M. 
Baumgarten, P. H. Deussen 

1st consolidated version 

0.2 2007/06/25 L. Baresi Harmonisation of Inputs 

1.0 2007/07/05 L. Baresi, P.H. Deussen Final version based on 
comments by M. 
Baumgarten, P.H. Deussen, 
A. Manzalini 

Final 2008/04/30 C. Moiso Implementation of 
comments included in 
second ESR 
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1.4 Document Overview 
This document comprises a specification of components of a basic supervision system. It provides a 
first set-up of a supervision architecture for self-management of ACE based service configuration, 
and it is based on ACEs by itself. We aim on an architecture that: 

1. Integrates seamlessly in the architecture provided by WP1, utilizing common functions of ACEs 
for its particular purposes; 

2. Is flexible enough to instantiate and to use only those functions which are really needed to serve 
a particular supervision task, thus supporting light-weight configurations as well complex 
analyses and control. 

3. Is generic in the sense that supervision tasks are derived automatically – to a certain extend – 
by utilizing ACE self-models as functional specifications as well as service specific goals. 

Let us discuss these objectives in more detail. To define the integration of a supervision architecture 
into an ACE based service configuration we have to answer two basic questions: 

1. How to exploit ACE mechanisms (protocols, interfaces) to (a) define the possible interactions 
between the configuration under supervision, and the supervision system, i.e. what the supervi-
sion system is allowed to monitor, and which actions it is permitted to perform if corrective 
measures become necessary; (b) obtain run-time information (monitoring); and (c) interact if the 
interference of supervision functions becomes necessary (i.e. the configuration under supervi-
sion is in a (or approaches a) non-desirable state. 

2. How to define the supervision system itself (a) either as an integrated part of the ACE architec-
ture, or (b) as a component or configuration of components that is architecturally separated from 
the ACE configuration under supervision. 

Interaction with supervised ACEs. To provide a certain service, an ACE basically executes a 
workflow generated from its self-model. This workflow is called a plan.  It comprises of states and 
transitions leading from one state to another. A transition is performed by calling a specific function 
from the function repository of the ACE (which is assumed to be stateless), or by sending/receiving 
external messages.  Additionally, a session object is maintained that stores data necessary for the 
service computation.  This session object may be modified by specific functions. 

The self-model thus defines what is supposed to be the correct or intended function of an ACE. It 
explains the structure of states, and which actions are available to change from one state into 
another and how to update state information, Furthermore, a special attribute is has been introduced 
that is used to assess the desirability of a certain state, e.g. whether it is an initial, intermediate, or 
end state, an error state, etc. Thus the self-model can be understood not only as a functional 
specification of ACEs, but also as an expression of computation goals and purposes. Supervision 
can now be described as the task to make sure that those goals/purposes are fulfilled, by means of 
the functions that are made available by an ACE.  

To answer question 1(a), we envision using the GA/GN protocol developed in WP1 to commit a 
contract between the ACEs to be supervised and the supervision system. The contract comprises 
the self-models of these ACEs, together with monitoring and control permissions for actions. 

To answer questions 1(b) and 1(c), let us now have a closer look into the architecture of a 
supervision system: Figure 1 provides a summary of the elements of the supervision system 
(orange) and their relationship to the constituents of an ACE under supervision (gray).  
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Figure 1. Architecture overview (singular ACE) 

 

Figure 1 shows only one ACE under supervision, but it is possible to put several ACEs under the 
control of a single supervisor. For monitoring, ACEs provide interfaces (a) to access state and 
session object, (b) to subscribe on information on specific function invocation or incoming/outgoing 
messages. Technically, this is solved by hooking up on the ACE internal publish/subscribe 
communication infrastructure.  

We are now going to elaborate briefly on set of components that is available to build supervision 
systems for ACEs or ACE configurations. All these components will be implemented as ACEs. 

− Monitor components links the supervision system with the ACE under supervision by utilizing 
the access mechanisms described above. 

− Correlators are responsible to aggregate monitored data from distributed sources and to 
correlate them, in order to extract meaningful indicators of the current health condition of the 
system under supervision 

− DriftAnalysers try to anticipate future problem situations in the system under supervision. 
Additionally, information from the environment may be used to supplement the analytical 
process. 

Thus if Correlators are concerned with the current state of the system, DriftAnalysers are concerned 
with the possible evolution of the system. Finally, 

− Assessors make assumptions on the current (or future) system health on the basis of raw data 
or the output of Correlators and DriftAnalysers, and invoke a Planner if necessary. 

Monitors, Correlators, DriftAnalysers, and Assessor thus form an analysis system. The reactive part 
is provided by the following components: 

− On the basis of the assessments generated by the Assessor, the Planner tries to compute a 
course of actions that is intended to resolve the detected problem. Planning is based on the 
actions described in the self-model of the ACE (or ACEs) under supervision. 
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− Effectors are responsible to execute plans. This is again done by intercepting internal events of 
the ACE under supervision. Events can be deleted, modified, or inserted. 

Integration of Supervision Functions. Let us now answer question 2. We use alternative 2.b for 
the following reasons.  

− Separation of concerns. Integration of supervision functions into the ACE architecture itself 
would blow up the ACEs unnecessarily. In some cases, supervision functions may not be 
desired, possible, or necessary. 

− Widening of scope. Some supervision functions require the coordinated interaction with a 
number of ACEs, which would be difficult to realize in the intrinsic scenario. 

− Flexibility. In a number of cases, the described analysis/reaction cycle is obviously 
unnecessarily heavy-weighted. The external approach allows us to formulate the software 
architecture in a way that it is possible to flexibly use only the components that are needed, 
while others are not instantiated at all. 

Thus we implement each of the components described in the previous paragraphs as a specialized 
ACE that runs asynchronously to the other components. This allows the flexible definition and setup 
of arbitrary complex control cycles comprising for instance chains of Correlators and DriftAnalysers, 
hierarchical Planners, and coordinated Effectors.  

Now since these components are ACEs by itself, the GA/GN protocol can be used to discover 
available supervision components and the contracting mechanism developed in WP1 is available for 
the set-up of the configuration of the supervision system and the parameterization of its components 
(e.g. by rules, models, etc.). Therefore, supervision systems become an integral and pervasive part 
of service configurations, utilizing functions of the underlying platform for discovery and 
orchestration. 

This document is organized as follows: Section 2 describes the high-level architecture and the 
principle interactions between its components in more detail, providing a global picture that is 
refined in the following Sections 3.1 - 3.6 in detail for each component. Section 4 exemplifies the 
architecture by means of a simple case study, illustrating the interaction pattern between the 
components of the supervision system. The final Section 5 concludes the document by addressing a 
number of open issues. It contains also a roadmap for the implementation work of WP2 towards 
self-organized, dynamic supervision pervasions. 

2 High-level Architecture 
Figure 2 presents the components (ACEs) that define a supervision system. In this case, and for the 
sake of simplicity, we assume a single instance of each type of components, but real systems might 
comprise different cooperating instances. 

The meaning and the interfaces of each component are explained in detail in the next sections. 
Here, we only want to describe the high-level interactions among the different elements. These 
components are a refinement of those already presented in [7]. 
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Figure 2. Components of the supervision system. 

The supervision process starts with a Sensor that collects some data from the field. This information 
is passed - either synchronously or asynchronously - to the Correlator, which is in charge of 
analyzing, filtering, and correlating received data. After this step, the Correlator notifies both the 
Assessor and the Drift Analyzer. The former is in charge of detecting any possible anomaly as soon 
as it arises, while the latter adopts a wider spectrum and considers the drifts in the behaviour of the 
supervised system. The latter informs the former if there is a problem.  

In case of an anomaly, the Assessor is in charge of contacting a Planner to ask for a new plan, that 
is, a recovery action to try to keep the system on track. The Planner produces it and asks the 
Effectors to execute it, that is, to “modify” the behaviour of supervised elements. 

After presenting the main elements, we need to clearly state that: 

− All the different components will be implemented as ACEs. They might be independent 
ACEs, part of the system just for the supervision, or they might be part of application ACEs, 
and supplement them with supervision features. 

− The component interaction mechanisms supports both push and pull approaches. The 
interfaces presented in Figure 2 allow us to both query the elements to retrieve significant 
data, and let them notify the others as soon as they have significant data (based on a 
publish and subscribe approach). 

− Besides the interfaces shown in Figure 2, all these components will exploit the GN/GA 
functionality to discover the other elements they have to interact with. More specifically: 

- A component can send a GA (in broadcast) containing the goal it is able to achieve. 

- A component can send a GN (in broadcast) containing the goal it needs to complete 
its task. 

- When a component receives a GA, it can decide to accept it or not. In case it 
accepts it, the component establishes a new contract with the component that sent 
the GA and it invokes the service described in the GA. 

- When a component receives a GN, it can decide to provide its capability or not. In 
case it provides it, it sends the GA to the requestor node. 



 

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” 

D2.2 – Pervasive 
Supervision Component Set

Bringing Autonomic Services to Live 

 

Page 9 of 45 

− A component can send a GA (in broadcast) containing the goal it is able to achieve and a 
GN (in broadcast) containing the goal it needs to complete its task.  

− This means that Figure 2 actually presents a snapshot of an already created supervision 
subsystem, but before this, we need a suitable discovery phase to properly identify who 
interacts with whom.   

− For future development of the interaction mechanism, it might be not expected that all the 
components will share the same domain-specific knowledge, and thus that will be able to 
decode any message that will be sent to them. It might be useful overcoming this situation 
by constraining the components interaction to a limited number of conversation types, each 
conversation being highly structured and associated with the appropriate constraints on 
message content.  

3 Components 
Interfaces are described as sets of “methods” or “procedure calls”; we however do not impose any 
synchronous communication mechanisms. Instead, we assume that all functions of the components 
described below are implemented by some asynchronous message exchanges (e.g. by some re-
quest / replay scheme).  We use a “free” formalism that resembles an object oriented class descrip-
tion language. 

3.1 Sensor  
Needless to say, a Sensor is in charge of sensing data from the field, in this case from the different 
ACEs. Currently, we present Sensor as a separate component, but we are already envisioning it as 
a dedicated feature, which can be switched on/off, provided by the different application ACEs. 

We also envision two different kinds of Sensors: 

− Sensors are active if they can provide the other components relevant information on their own. 
They distribute their data as soon as they become available. Components can subscribe and 
then they are informed “immediately”. 

− Sensors are passive if they do not communicate spontaneously, but they need to be triggered 
(polled) to provide the information they have collected. This way, it is the component interested 
in get data from these sensors that must query them. 

Interfaces 
An active Sensor provides the following interface: 
bool subscribe(DataType) 

This operation is used to let the other components subscribe to the different types of data produced 
by the Sensor. 
bool unsubscribe(DataType) 

This operation is the dual of the previous one and is used to let a component unsubscribe for a 
given data type. If the component is not subscribed to that type, the operation has no effect. 

A passive Sensor provides the following interface: 
DataType query() 

This operation can be used by those components that want to interact with passive Sensors. 
Needless to say the returned value is the datum (set of data) acquired by the Sensor. 
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3.2 Correlator  
This component is in charge of correlating the events retrieved from the sensors. The Correlator 
must be able to interact with both passive and active Sensors, as described above). This means that 
a Correlator must be able to be notified when we data are retrieved from a Sensor, but it must also 
be able to poll the Sensor for new data.  

The behaviour of this component is defined by means of user-defined rules to specify how retrieved 
information has to be correlated. Correlation rules are defined on data types. The default is that if no 
rules exist for a given type, the information is forwarded unchanged. These rules use standard 
correlation operators (e.g. [1]) to correlate retrieved data. 

Interfaces 
The Correlator provides the following interface: 
bool setRule(CorrelationRule)  

This operation is used to add a new correlation rule to the component. The execution of each rule is 
triggered by the reception of a new datum of the type(s) to which the rule applies. 
bool unsetRule(RuleId) 

This operation is the dual of the previous one and is used to get rid of a previously added correlation 
rule. 
bool subscribe(DataType) 

This operation is used to let the Assessor(s) subscribe to the different types of data produced by the 
Correlator. 
bool unsubscribe(DataType) 

This operation is the dual of the previous one and is used to let a component unsubscribe for a 
given data type. If the component is not subscribed to that type, the operation has no effect. 
bool notify(Datum) 

This operation is used by the other components (the Sensor, in this case) to inform the component 
of the availability of new data, passed as parameter. Informally, the structure of the Datum 
comprises both the information itself and also the data class described above. 

3.3 Drift Analyzer 
This component is in charge of analyzing drift behaviour of a SUS. While its internal structure is 
presented in Appendix 2, this section concentrates on the external interfaces of the DA with respect 
to the overall supervision system. Simplified, this component has an external behaviour that is 
similar to that provided by the Correlator.  They both receive data from the Sensor(s) and can feed 
the Assessor with additional or more meaningful elaborations of the raw data retrieved from the 
SUS. The difference to the Correlator is that the DA is capable of storing and processing historical 
data thus being able to observe a system over time as well as providing trends and, ideally, 
information about the “direction” a SUS is drifting towards. 

Interfaces 
As seen from the overall architecture, the Drift Analyzer will be able to communicate with the 
Sensor, the Correlator and the Assessor, thus provides the following interfaces: 
bool notify(Datum) 

This operation may be used by other components (in this case, the Sensor, the Correlator  and the 
DA itself) to inform the registered component of the availability of new data, which is passed as 
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parameter. Informally, the structure of the Datum comprises both the information itself and also the 
data class described above. 
bool subscribe(Problem) 

This operation is used to let the Drift Analyzer know who wants to be notified when a problem or any 
other interesting phenomenon is detected. We assume that notifications are governed by problem 
types. Possible components to be notified include the Correlator, Assessor and the DA itself. 
bool unsubscribe(Problem) 

This operation is the dual of the previous one and is used to let a component unsubscribe for a 
given problem. If the component is not subscribed to that problem, the operation has no effect. 

3.4 Assessor 
The Assessor is used to understand if and how retrieved data are consistent with respect to the 
hypotheses set by the application. This component only works newly retrieved data to understand 
whether they meet supervision constraints. If a problem is detected, the Assessor triggers the 
Planner, which is required to provide a new plan to keep the system on track. 

Supervision properties work on classes of sensed data, which might be specific of the different 
Sensor types, or might be produced by the Correlator. These properties will be specified using a 
language that resembles conventional assertion languages (like Anna [2], JML [3], OCL [4], or 
WSCoL [5]), along with meta data to define the importance of the check, its validity, and additional 
constraints on the classes of data on which they must be applied.  

The Assessor can work in two different ways: synchronously and asynchronously. In the first case, 
the Correlator or the Drift Analyzer may ask the Assessor to check a particular property on a given 
datum, while in the second case, the Correlator and Drift Analyzer only inform the Assessor about 
the availability of new data, which triggers the evaluation of set supervision properties (given their 
class). 

Interfaces 
As for the synchronous behaviour, the Assessor provides the following interface: 
bool check Property(Datum, Property) 

This operation is called to check a particular property on a specific datum. Both the property and 
datum are passed as parameters. The returned bool(ean) value communicates the result of the 
evaluation.  

 

As for the asynchronous behaviour, the Assessor provides the following interface: 
bool notify(Datum) 

This operation is used by the other components (the Correlator, in this case) to inform the 
component of the availability of new data, passed as parameter. Informally, the structure of the 
Datum comprises both the information itself and also the data class described above. 
bool setProperty(Property) 

This operation is used to add (set) a new supervision Property to the Assessor, which starts 
evaluating it as soon as the setup is complete. The returned bool(ean) value is used to check the 
actual completion of the operation. The evaluation of a property may result in calling the Planner for 
a new plan. 
bool unsetProperty(Property) 
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This operation is used to delete (unset) an existing supervision Property identified by means of its id. 
When a property is deleted, the Assessor stops evaluating it. The returned bool(ean) value is used 
to check the actual completion of the operation. 
bool notifyProblem(Problem) 

 This operation is used by the Drift Analyzer to communicate a possible problem and thus trigger the 
reaction flow, thus is to ask the Assessor to provide a new plan and then ask the Effector to execute 
it. 

3.5 Planner  
The purpose of the Planner is to compute potential executions (plans) that are supposed to lead the 
system under supervision (SUS) out of a problem situation into a more desirable system state. We 
assume the following: 

Planning bases on the notion of a supervision model. Models comprise a set of states S and a set of 
transitions that lead from one state into another one. Transitions are labelled by actions from an 
action alphabet A. Intuitively, actions are the functions that the SUS provides, i.e. that can be called 
or invoked, but also the observable effects of the execution of those functions that can be observed. 
In the ACE based set-up that is currently developed by WP1, states and actions are given by the 
self-model of an ACE. In this document, we model actions and their (expected) effects by a partial 
mapping δ: S × A → S, i.e. for some state s ∈ S and some action a ∈ A, δ(s, a) denotes the state 
that is reached after the execution of a at the state s. If δ(s, a) is undefined, than the action a cannot 
be executed at the state s. We further denote by  

enabled(s) = { a ∈ A | δ(s, a) is defined }  

the set of actions that can be executed at a state s ∈ S.  

Some actions can be controlled by the SVN, some cannot (for instance because there are controlled 
by the environment of the SUS, the SVN has no permission to access the implementing functions, 
etc.). Furthermore, the execution of some actions can be observed, while other actions are executed 
in a “hidden” way, and can monitored only indirectly by observing their effects (state changes).  
Thus for each action a ∈ A we assume two attributes a.cnt and a.obs of type Boolean indicating 
whether the action is controllable and observable, respectively. We further need a notion of 
“desirability” of system states. This is done by a predicate acceptable(s) that assigns a Boolean 
value to each system model state. This model is actually a simplified form of the notion that we gave 
in the document [6] that does not incorporate aspects concerning hierarchical supervision.   

A plan is now essentially a sub-model of the underlying supervision model, where a model M1 is a 
sub-model of a model M2 if 

1. the state set of M1 is a subset of the state set of M2; 

2. the action set of M1 is a subset of the actions set of M2; 

3. an action of M1 is enabled at some state s of M1 if  it is enabled at s in M2. 

We say that a sub-model M1 of a model M2 is a plan the following properties do hold: 

1. if it is deterministic on controllable actions, i.e. whenever s is a state of M1, and a1, a2 are 
actions of M1 such that a1, a2  ∈ enabled(s), then a1.cnt and a2.cnt implies a1 = a2.    

2. It is acyclic (this property seems to be too strong, but for the moment we can live with it), 
and has a defined start state start(M1), and furthermore a set of end states end((M1) – with 
the usual definitions of these terms  

3. We have ¬acceptable(start(M1)) and acceptable(s) for all s ∈ end(M1). 

To turn this abstract notion into a computation object, we furthermore have to face the following 
problem: If an observable action is expected to be observed, how long do we wait until we conclude 
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that this observation will never take place? When do we conclude that the SUS (or its environment) 
does not behave as expected? The usual solution for this concrete manifestation of the “halting 
problem” is of course to define timeouts. Thus we extend the notion of an action – for those which 
are used in plans as observable actions – by an expiration time. Considered plans, actions are thus 
equipped with an attribute a.expirationTime; 

Remark: The notion of a plan give above differs from the notions presented in [6]. The difference is 
however motivated by one of the remarks made at the end of that document. In [6] we considered 
“unconditional” plans in the sense that they assumes a predefined unique reaction on the SUS to 
their execution, which is – considering the fact that the SUS may behave non-deterministically – a 
pretty strong restriction. We therefore planned as future work the definition of “conditional plans” 
which are supposed to be able to react more flexible on different reactions of the SUS. The 
automata model presented above is our solution to this problem. Details on the construction and 
interpretation of those conditional plans will be given in a later deliverable. 

Interfaces 
The Planner provides the following interface: 
bool init(Model) 

This operation initializes the Planner with the Model for which we want to create a plan. The 
returned bool(ean) value is used to check the actual completion of the operation. Informally, a Model 
is finite state machine, which mimics the evolution of the supervision system. 
Plan createPlan(State)  

This operation tries to create a plan given the initial state of the model we are interested it. If the 
operation takes too long or it does not terminate at all, we think of raising an exception to stop the 
planning activity.  

Informally, a State is a state of the finite state machine behind the model. A Plan is another 
automaton whose states identify the actions needed to move the system under supervision in a 
consistent state. 
bool stop();  

This operation can be used to stop the Planner. The returned bool(ean) value is used to check the 
actual completion of the operation. 

Planning Algorithm 
This section details a first planning algorithm based on the refinement of the concepts introduced 
above. 
Class Model { 

 Class State  { } // states are not specified 

 Class Action { 

  Attribute cnt, obs: Boolean; 

 } 

 Attribute StateSet: Set of State; 

Attribute ActionSet: Set of Action; 

 Attribute delta(State, Action): State 

Attribute enabled(State): Set of Action; 

Attribute acceptable(State): Boolean; 
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// A generic definition of the project operation depends of course not on a particular 
// component but on its type. Thus we assume that there is an object  
// ComponentType associated with each component – this might be already the  
// self-model of the component 
Attribute start(): State 

Attribute end(): Set of State: 

} 

 

Class Plan extends Model { 

 Class TimedAction extends Action {  

  // meaningful only if obs = true; 

  Attribute expirationTime; 

} 

} 

 

A first elementary planning algorithm is described below. It makes use of a number of variables and 
constrants: 

− P is the plan to be constructed; a local procedure plan() is responsible for that. 

− max_depth is a constant that defined the maximum recursion depth of the planning algorithm. 

− default_time is the default expiration time form actions – in a later version of this algorithm we 
might go to make this a tunable parameter.   

Algorithm createPlan(State s): Plan raises NoSuccessException { 

 Procedure plan(State s, Plan P, depth d): Plan  

raises NoSuccessException { 

  if acceptable(s) then return P; 

  if d > max_depth then raise NoSuccessException; 

select a ∈ SupervisionModel.enabled(s)  

such that a.cnt; 

a.expirationTime = 0; 

s’ = copy(SupervisionModel.delta(s, a)); // define a new state 

P.states + s’; P.actions += a; P.delta(s, a) = s’; 

  plan(delta(s, a), P, d + 1); 

  forall s  ∈ SupervisionModel.enabled(s)  

such that a.obs { 

a.expirationTime = default_time; 

// define a new state 



 

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” 

D2.2 – Pervasive 
Supervision Component Set

Bringing Autonomic Services to Live 

 

Page 15 of 45 

s’ = copy(SupervisionModel.delta(s, a));  
 
P.states + s’; P.actions += a; P.delta(s, a) = s’; 

   plan(delta(s, a), P, d + 1); 

} 

} 

Plan P = new Plan(); P.States = { s }; P.Actions = { }; 

 return plan(s, P, default_depth) 

}  

 

The algorithm makes furthermore use of a function select() that heuristically selects a controllable 
action to be executed at a given state. This basically is the place where the planning intelligence is 
implemented. In a more advanced version of this algorithms, select() might use adjustable transition 
weights that indicate success rates and costs for particular state/action pairs. 

The algorithm presented above defines a deterministic plan: The supervision system does never 
have a choice what to do next. Non-determinism is only external, as the SUS or its environment may 
generate events (observable actions) at random. As described above, projection of a plan to the set 
of local components that is under the responsibility of a local SVS yields plans for these 
components. Note that projection might change the status of actions from observable and 
controllable to un-observable and non-controllable. 

In a more advanced version of this algorithm we will take the fact into account that actions might be 
executed concurrently. Plans will then be “interpretations of distributed alphabets” as described in 
D2.1 – Mathematical Framework.  

3.6 Effector  
The Effector is responsible for executing these plans (recovery actions). An Effector executes a 
plan. Effectors are assumed to act from within the SUS, as part of internal control structures - in 
CASCADAS terms, as aggregated functions. Discussions within WP1 indicate that a control 
structure that acts on the internal message bus of an ACE is an appropriate implementation of an 
Effector. Since all internal control messages of an ACE (all actions) are distributed over this bus, the 
Effector can easily control the invocation of specific functions, and monitor internal and external 
events (observable actions in the terminology introduced above). This however requires a more 
detailed description of the ACE-internal communication, which is not available at the time we are 
writing this document. 

Interfaces 
The Effector provides the following interface: 
 bool run(Plan) 

This operation is called to ask the Effort to execute the newly produced plan. The returned bool(ean) 
value is used to check the actual completion of the operation. 
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4 Case Study 
In this section we are going to illustrate the interaction between the components of the supervision 
system by means of a simple case study. We start with a brief explanation of the system under 
supervision, which is a rather simplified version of the Behavioural Pervasive Advertisement 
scenario.  

Consider a set of display screens located in some larger room or area (a shopping mall, a bazaar, 
etc.). Each screen receives user profiles from the mobiles of people in its proximity, and displays 
contents that meet the majority of the received profiles.  

Customer Screen A Screen B

enters
range A

profile

updatemoves to 
range B

notify

update

profile

updateleaves 
range B

notify

update

 
Figure 3. Basic Interaction 

 

Figure 3 illustrates the interactions performed between customer mobile and screens in two 
neighboured screens A and B. The message exchange starts when the customer enters the range 
of screen A and sends its profile to screen A. Screen A then updates its contents according to the 
new profile distribution. When the customer moves out of the range of screen A into that one of 
screen B, it sends a notification to screen A, and its profile to screen B, causing updates of the 
contents of both screens. Finally, if the customer leaves the area, she notifies screen B which 
updates its display again. 

Let us now have a look on supervision aspects. Clearly, the example is extremely simplified, thus it 
is not a surprise that our supervision task is simply to ensure the “business logic” of the screens. Let 
us concentrate on a particular failure, namely a failed update of one of the screens. Detection of this 
failure is – in our simplified example – done by simply by comparing the actually displayed contents 
with the expected ones. 

What are possible the possible causes of this failure? 

1. A profile message or a notification has not been processed correctly, was dropped, etc. (we 
leave open the question how the supervision system can be more knowledgeable about the 
current distribution of profiles than the screen itself). 

2. The screen is not function correctly 
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In the first case, overwriting the currently display majority profile by the correct one is a valid 
countermeasure. In the second case, a reset of the screen might help. If this fails also, performing a 
shutdown of the screen might be our last option.  

Customer
1

enters

Customer
K

enters

. . . Screen Correlator

profile

profile

act. contents

Assessor

exp. contents

Planner

diagnosis 

Effector

plan (1)
overwrite

assessment: repeat problem detection phase
stop if problem is resolved, otherwise continue

plan (2)
reset

assessment: repeat problem detection phase
stop if problem is resolved, otherwise continue

plan (3)
shutdown

 
Figure 4. Supervision procedure 

 

Figure 4 illustrates the interaction of the supervision system with the customer mobiles and the 
screen.  The Correlator collects the user profiles of all mobiles in range and correlates the expected 
contents to be displayed. The Assessor compares these data with the actually displayed profile and 
invokes the planner with corresponding diagnostics if the expected and the observed profile do not 
match. The planner then develops a contingency plan that comprises the three actions discussed 
above.  When an action is performed, it is validated by another monitoring/correlation/assessment 
phase. This in particular implies that the current state of the supervision procedure is have to be 
stored in the planner, which has to decide which of the action has to be issued next.  

Maintaining state information is known to increase the complexity of a system. Figure 5 shows an 
alternative supervision procedure that utilizes a message that is sent by the screen after a reset 
command to notify the supervision system about the success or failure of the reset action.  
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stop if problem is resolved, otherwise continue

plan (2)
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notify(failure)
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Figure 5. Supervision procedure (reduced state) 

 

This example illustrates that supervision procedures can be simplified if state information is stored 
directly (and reliable) in the system under supervision. Since ACE based systems maintain a plan 
that controls the execution of the provided services, and hence is able to provide state information 
on request, reduction of the state information to be stored in the Planner is an attractive opportunity. 

Let us look now into a second failure which illustrates a reduced set-up of the supervision system 
that does not depend on complex correlation and planning algorithms. Consider two neighboured 
screens with areas that do overlap. If a mobile located in the overlapping area sends its profile it is 
received by both screens. According to the business policy however each profile should be 
considered by at most one screen.  

Customer Screen BScreen A Correlator Assessor Effector

profile

profile
profile, timeA

profile, timeB

profile, | timeA – timeB |
profile

remove(profile)

 
Figure 6. Overlapping ranges 
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Figure 6 illustrates a supervision procedure to alleviate this problem. Assume that there is a time 
synchronization mechanism available (such as NTP) that synchronizes the local clock of the screen. 
Thus update messages can be imagined sent by the screens to the Correlator about receiving a 
new profile information from a customer’s that are equipped with a timing information. The 
Correlator then computes the absolute value of the difference between the point in time a profile is 
received by screen A and the point in time at which the same profile is received at screen B. If the 
time difference is sufficiently small (range of milliseconds), then the Assessor concludes that the 
same profile is received twice because the mobile is in the overlapping area and triggers an effector 
to send a request to remove one of the profiles to one of the screens (B in our example). 

This example shows how interactions in a reduced supervision system architecture works that is 
concerned with supervision task that do not require complex planning or analysis activities, 
maintenance of states, etc. Those supervision tasks are supposed to be accomplishable by a 
(probably fine grained and cascaded) set of simple local reaction rules (like the illustrated one). 

5 Outlook  
Workpackage 2 currently investigates two basic types of supervision approaches, which can be 
referred to as model based supervision (MBS) and decentralized intrinsic supervision (DIS). MBS 
based on the idea to have use a distributed set of model objects that define, on a given level of 
abstraction, supervision objectives as well as supervision procedures. This is done in terms of a so-
called supervision model. In the milestone deliverable D2.1 [7] and the accompanied document [6] a 
generic notion of supervision models have been introduced as (not necessarily finite) state-transition 
systems together with a value structure. Values are associated with system states. A state with a 
value that is below a certain threshold is considered as a “bad” or “unwanted” system state that 
requires some corrective measure by the supervision system. Once a bad state have been 
considered, the supervision system constructs a plan that is intended to lead the system to a “good” 
state, and executes this plan. Planning is done on the basis of the supervision model that defines 
the functions available for management and control purposes of the system under supervision 
(SUS). After the execution of the plan, it is validated whether the system state reached is really in 
the set of desired ones (i.e. has a value that is above the given threshold). 

It has been noted that the procedure (comprising the steps: Monitor  Analyse  Plan  Execute 
 Validate) is somewhat heavy-weighted. In many cases, a simplified procedure that bases on local 

“involuntary” rules is more preferable. This approach bases on the continuous monitoring of the SUS 
and the immediate execution of some action (or set/sequence of actions) if a certain condition is 
met. The set of information items that is considered to trigger the execution of those rules is local in 
the sense that only a limited number of distributed components is queried (usually the 
neighbourhood of the component that performs the execution of the rule). Triggers might be trivial. 
In the easiest case, the supervision rule is executed repeatedly with a certain frequency. The 
intended behaviour of the system (the non-reachability of undesired system states) is then 
supposed to “emerge” from the execution of these local rules. 

Note that as already outlined in Section 1.4, from the architectural point of view there is no 
difference between the MBS and DIS approach – the supervision system for the DIS approach 
assumes a simplified architecture comprising only Monitors, Correlators, Assessors, and Effectors 
(the contingency plan that is generated by the Planner in the MBS approach is now either “hard-
coded” or statically configured in the Effector). 

Let us discuss both approaches on the example of the simplified pervasive behavioural 
advertisement example (compare Section 4).  Recall that each screen located in a certain area is 
supposed to display contents that matches a value computed by some functions f() with takes as 
input the user profiles of all mobiles currently located in that area. Thus if profiles as well as contents 
are modelled by colours, f() returns the colour that matches the majority of profiles.  

Hence, a set of distributed supervision rule can be given as follows: 
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1. If C ≠ f(P) then C ← f(P), where P is the current distribution of profiles 

2. if C ≠ f(P) then reset() 

3. if C ≠ f(P) then shutdown() 

What is not described here is a control mechanism to guide the execution order of these rules (rule 
(3) is to be executed only if rules (1) and (2) have failed to resolve the problem, rule (2) is to be 
executed only if rule (1) has failed). There are a number of ways to establish such a control 
mechanism (maintaining internal states, using priorities, etc.), the details are not important here. 

But of course it is possible to translate each set of rules of the above form into a state-transition 
system (with transitions triggered by input events). To see this, let us fix some syntax for rules: 

<event>: if <cond> then <action> 

Here, a <event> denotes a specification of events that triggers the execution of the rule, <cond> is a 
predicate that defines additional conditions, and <action> is an action to be performed if the rule is 
executed. Then the transition associated with a rule  

E: if c then a 

is enabled at all system states s that satisfy the predicate c, and accepts input symbols from the set 
{x: E(x)}. Its effect of the state at which the transition is applied to is described by the action a. 
Details of the construction are again not of importance here. On the other hand, if we consider a 
“plan” generated by the MBS approach as action part of a rule, and add the event/condition that lead 
to the generation of the plan as a trigger, than each generated plan can be used as a rule. Of 
course, nothing is said about the suitability of this generated rule sets. Hence, we state as a 
conjecture:  

MBS and DIS are equivalent in the sense that (ignoring performance considerations) 
the interaction of supervision systems following these approaches with the SUS cannot 
be distinguished. 

Provided the conjecture turns out to be true, we therefore can imagine a procedure that evaluates 
and assesses the suitability of a generated plan for a given situation or class of situations utilizing 
the validation step of the MBS approach. A plan that have been proven to improve the reliability of 
the SUS in a sufficient number of problem situations will then turned into a rule, and executed in an 
“involuntary” way without performing complex analysis, planning, and validation activities. The 
detailed elaboration of this procedure will be a major research topic for Workpackage 2. 

5.1 Towards ACE based supervision pervasions 
This Section describes elements of an approach to integrate the software architecture (and its 
refinements) into the ACE framework that is developed in WP1. We start with a brief summary of 
features related to supervision that are supported by the current implementation of the framework.  
We then provide some details of utilizing the GA/GN mechanisms to this purpose. We continue with 
an elaboration on the envisioned procedure for supervision of aggregated ACEs. The Section is 
concluded with a tentative roadmap defining an order of implementation of the discussed features. 

 

ACE Supervision Support 
The ACE framework prototype that is delivered as a part of the WP1 milestone for month 18 
provides a number of mechanisms to support supervision of ACE based systems: 

1. Access to the self-model of an ACE, and to its currently executed plan.  

2. Access to the actual state of the plan the ACE assumes, including the session object  that is 
used to store information necessary for the currently executed computation  
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3. Access to all messages that are internally exchanges, including send and receive events 
that corresponds to outgoing and incoming messages, as well as invocations of specific 
functions. This feature is implemented by means of a subscribe mechanisms that hooks up 
to the message bus which is used for all ACE internal communications. 

4. Moreover, a “controlled mode” is supported. In this mode, a subscribed message is 
intercepted by the supervision system and not delivered until the supervision system permits 
its. The supervision system is able to delete a message from the bus, to insert a new one, 
and to modify an intercepted message. Therefore, this feature allows comprehensive 
supervision of an ACE at all levels (including common functions like the GA/GN protocol). 

By means of these features, the supervision system is able to be aware and to control all aspects of 
the current execution of an ACE, on the level of the self-model of an ACE. The supervision system 
is by default not able to access and modify data related to internal processes in specific functions 
that are invoked from the plan execution engine. 

 
Initialization of supervision 
The current set-up of the supervision system architecture assumes that the system under 
supervision is a single ACE of a configuration of interacting ACEs, but does not take into account 
the structure of such a configuration defined by the “contracts” between its elements, such as the 
super/sub-service relations, processing chains, control structures, etc. We nevertheless use this 
section to describe initial ideas on how to achieve supervision for aggregated ACEs. The envisioned 
binding mechanism to couple an (singular or aggregated) ACE with a supervision system bases on 
the understanding of supervision as a service, thus a contract has to be committed between the 
ACE under supervision and the supervision system. This assumes that there is an actual entity on 
both sides that is able to perform the activities necessary to establish contract and binding. Whether 
this is – on the side of the supervision system – done by a dedicated component or by any of the 
components described in this document is not decided yet1. By assuming that supervision is 
basically a service that can be employed by other ACEs, we utilize the GA/GN protocol to couple a 
supervision system and an ACE (or ACE aggregate) to be supervised. The supervision system 
advertises (GA) a generic supervision service. Once a client for this service is identified (GN), a 
contract is committed these peers that includes the delivery of the self-model and current plan to the 
supervision system, and the subscription of observable and controllable messages as described 
above. If the ACE to be supervised an aggregated one (i.e. the access point of a composite 
service), the supervision system commits also contracts with the elements of the aggregate and 
configures itself according to the structure of the aggregate. 

  
Hierarchical Supervision 
Here, we assume a hierarchical structure of the aggregate in the sense that elements that dominate 
a set of other ACEs do not necessarily control each aspect of their interworking, but are at least 
aware of the service that is commonly provided by these ACEs, and provide service access points. 
Figure 7 illustrates this basic assumption. The ACE Asap provides access to the service provided by 
the ACEs A1 to A4 (forming a sort of processing chain). A2 is furthermore access point for a 
subservice provided by B1 and B2 (which are invoked in parallel). 

                                                      
1 In principle, any of these components can be equipped with means to set-up initial contracts and to bootstrap the complete 
supervision system configuration. 
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Figure 7 - Aggregated ACEs 

 

The envisioned procedure works as follows: Assume that all the ACEs shown in the example have 
an associated supervisor. Assume there is a problem state detected at A3. Then in a first step the 
supervisor SV(A3) of A3 tries to solve the problem locally, i.e. by only interacting with A3. This of 
course can fail for various reasons: 

1. There is no local solution at all. For instance imagine A3 to be crashed, and a re-start might 
not possible. Then there might be an alternative sequence of actions that provides a similar 
(e.g. degraded) service but does not involve actions of A3. 

2. There is a local solution, but it requires that A2 and A4 perform certain actions in a specific 
order. 

In either case, a solution of the problem (if it exists) involves certain actions to be performed by the 
other ACEs in the configuration. The problem is reported up one level, i.e. to the supervisor SV(Asap) 
of the ACE Asap. SV(Asap) then constructs a global plan that involves actions of the ACEs A1 to A4, 
and sends the parts of the plan relevant to Ai to the supervisor SV(Ai) of that ACE. The hierarchical 
planning algorithm that we will employ bases on the use of model trees and the associated notion of 
“zooms”, i.e. local refinement of models according to the reverse application of an abstraction map 
of a component (a local ACE self-model, in this case) that is embedded in the model we which zoom 
into (see [6] for details). In case of A2 (which is also an aggregated ACE), SV(A2) might refine this 
the local plan further to involve SV(B1) and SV(B2) in the supervised execution. Thus to perform 
planning for hierarchical system it is not necessary to even construct a global system model if no 
problem is detected or a problem can be solved locally – hierarchical supervision can be 
characterized as an “on-demand” approach.  

Note that it is necessary in some cases to set up further means to coordinate the distributed 
execution of the global plan, e.g. by means of the exchange of synchronization messages between 
the local supervisors. An alternative approach that avoids synchronization problems is the 
centralized execution of the global plan by SV(Asap). It will be part of the further work of WP2 to 
evaluate both approaches. 

5.2 Implementation Roadmap 
We conclude this outlook on further work by elaborating on a road map to implement the described 
concepts. This road map, leading from of monolithic supervision systems associated with each ACE 
to a pervasion of interacting supervisors is divided in the following phases (Figure 8): 
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Figure 8 - WP2 Roadmap 

 

− Phase 1 – “Basic supervision”: This includes the implementation of the components described in 
this document, under the assumption that the system under supervision is a singular ACE or an 
unstructured set of ACEs. It comprises the basis monitoring and effection mechanisms 
explained above. Self-models of ACEs will be employed as supervision models for planning, i.e. 
we consider also the establishment of contracts between supervision system and system under 
supervision.  

− Phase 2 – “Hierarchies”: In this phase, hierarchical supervision is considered. In this phase we 
will stipulate the assumption that service hierarchies are a-priory given, and do not change 
during service execution. This simplification will allow concentrating of hierarchical planning and 
distributed execution of hierarchical plans. 

− Phase 3 – “Self-configuration”: The assumption that hierarchies are fixed will be dropped in this 
phase. We now consider ACE configuration with dynamically adapt their structure, and what this 
dynamism implies to the structure and function of the associated supervision pervasion. 

− Phase 4 – “Self-supervision”: A final phase concludes addresses the question how a supervision 
pervasion itself can be made robust against problems. 
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Appendix 1: 
Supervision System Prototype Description 
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A1.1 Introduction 
This appendix describes the WP2 proof of concept prototypes developed as part of 
deliverable M18. The main goal is to demonstrate the architecture of the pervasive 
supervision system under development by WP2, and to assess its feasibility on top of 
DIET.  

To demonstrate how the supervision system works, we developed a simple distributed 
application (on top of DIET), described in Section 2. This also allowed us to provide the 
context for the supervision infrastructure. Section 3 briefly the architecture of the 
supervision system and Section 4 explains how the architecture is currently implemented in 
this first prototype. 

A1.2 Smart advertisements 
In this appendix, we assume the supervised application is placed in a big shopping mall. 
Customers are identified by means of their mobile devices, while the mall provides “smart” 
advertisement panels to help customers understand what they need. Customers move 
throughout different areas, which are equipped with different panels, and their portable 
electronic devices (e.g. their Bluetooth enabled mobile phones) contain ad-hoc software 
agents that communicate customer preferences to the smart advertisement system. The 
different panels can then display different commercials according to the preferences of the 
customers that are in proximity of the different displays. Everything is implemented on top 
of the DIET agent platform1: each customer is an agent, as well as each display, and both 
the advertisement system and the supervision infrastructure are a set of cooperating 
agents. 

The advertisement system comprises different rooms, each containing three advertisement 
screens. The panels “sense” the presence of nearby customers (through the power of their 
mobile device’s signal) and change their commercial advertisements to fit user 
preferences. To simplify the problem, user preferences are rendered through colours. 
Rooms host DIET agents that detect users and their preferences and display 
advertisements (colours) on the screens following a particular policy (Figure 1): the first 
screen displays the colour required by the majority of the clients in the room, the second 
displays the second colour in the list, while the third display renders the third colour.  

                                                 
1 http://diet-agents.sourceforge.net/ 
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Figure 1: A simplified scenario of the system for smart advertisements. 

 
The supervised application comprises collaborating agents that implement some basic 
features (user detection, preference ranking, etc.). The following agents are defined for 
each room (DIET agents are called ACEs to pave the ground to the upcoming ACE-based 
implementation): 

• The UserACE agent is the component installed in the user devices. 

• The UserManagerACE agent manages the users that are detected in a particular 
room. 

• The PolicyManagerACE agent provides the policy used to select the contents to be 
displayed. 

• The ScreenManagerACE agent manages the screens available in a particular 
room. 

• The SystemManagerACE agent exploits the services offered by the others agents 
to decide the colour to be shown on the screens. 

 

Basically, when a user enters a room, and his device contains the right software, agent 
UserACE sends a message to the UserManagerACE, which is in charge of maintaining an 
up to date list of the users currently in the room. The message contains the user’s identity 
and his/her preferences (i.e. a colour). At fixed intervals, the UserManagerACE forwards 
the complete lists of users to the SystemManagerACE, in charge of deciding the colours 
that must be shown on the advertisement panels. In order to decide correctly, the 
SystemManagerACE retrieves the appropriate policy from the PolicyManagerACE. 

As soon as the SystemManagerACE receives the information needed to decide the colours 
to be shown, it sends a ranked lists of colours to the ScreenManagerACE which updates 
the screens available in that room accordingly. Figure 2 illustrates the main components. 
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Figure 2: Main agents of the supervised application. 

A1.3 Supervision system 
The supervision system is composed of different agents. Their cooperation permits both 
fault detection and system management. The supervision system is composed of the 
following agents, which mimic the components already identified in [7]. 

• UserSensorACE, PolicySensorACE, ScreenSensorACE 

• CorrelatorACE 

• AssessorACE 

• PlannerACE 

• EffectorACE 

Figure 3(a) sketches the simplified supervision process: Sensors are distributed in the 
room and they are in charge of detecting all the events and messages useful for 
supervision purposes. 
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(a) High-level process (b) Main components 

 
Figure 3: Simplified supervision process. 

This information is then forwarded to the correlator which groups the information received 
from the different sensors: both the client devices and the displays must send their data. 
The accessor understands if there is a problem and generates the faulty event for the 
planner, which creates a new plan to recover from the problem (i.e., it resets the displays), 
and informs the effectors to execute it. 

Figure 3(b) presents the main components: a CorrelatorACE groups the data received from 
the different sensors (UserSensorACE and ScreenSensorACE) and sends aggregated 
data to the AssessorACE. This last agent detects possible faulty conditions and informs the 
PlannerACE, by means of a particular message. It elaborates a plan and uses the 
EffectorACEs to apply it.  

A1.4 Our prototype 
When started, the prototype generates three rooms (environments according to the DIET 
jargon). Each environment contains an advertisement sub-system composed of the agents 
described above. Each room contains three screens.  

Figure 4 shows a room that detects two users, the small rectangles, one with a yellow 
preference and the another one with a blue preference. It is important to notice how the 
advertisement system updates the two screens to satisfy the preferences of the two users. 
The third screen remains unused since there are only two users. 
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Figure 4: A room with two customers and three screens. 

 
The users can enter and leave the system and they can also move around and migrate 
autonomously from one room to another. The effect, in terms of the supervised system, is 
that the displays update their colours, that is their advertisements. 

To demonstrate how the supervision works, the prototype has a failure generator capable 
of injecting faulty behaviours into the systems (this means that the screens display the 
wrong colours). Figure 5 shows the GUI we use to expose the SystemManagerACE of a 
particular room to a faulty behaviour. The failure is caused by a BadGuy agent that sends a 
CORRUPTED message to the SystemManagerACE. 

 

 
Figure 5: Failure generator. 

 
A faulty SystemManagerACE communicates erroneous data to the ScreenManagerACE 
that consequently displays colours that do not correspond to the user preferences as 
shown in Figure 6. 
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Figure 6: A faulty behaviour. 

After a few seconds, the minimum amount necessary to obtain a consolidated set of data, 
the supervision system produces a new plan, that is, it decides to re-set the displays, and 
re-start the screens by applying the explained algorithm. Figure 7 shows the transition. 

 

                      
Figure 7: Reaction to a faulty condition. 

 

 

 

A1.5 How to run it 
The prototype is a plug & play Eclipse project. To run this application, create a new project 
and include the lib folder to the build path. The main class is AdvApp.java 
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Appendix 2: 
Concept Drift for Pervasive Supervision 
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A2.1  Introduction 

There is strong motivation for new perspectives on generic supervision methodologies in 
order to provide more resilience in the face of ever more complex systems. In particular, 
future autonomic systems that ideally operate with no or only a limited user input require 
such advanced supervision to control and adapt different variables of existing systems but 
more importantly to supervise the dynamic aggregation of individual autonomous working 
components as found in e.g. upcoming service oriented architectures or SOA. This 
research seeks to explore the requirements for a supervision mechanism that is capable of 
observing and analysing complex and dynamically constructed models that reflect a real 
world service or computational system. Furthermore, the method proposed will be able to 
operate at different levels of granularity with respect to the system supervised and as such 
supports the methodological framework for pervasive supervision. Subsequent sections 
explore the requirements for different observation methodologies for distributed and 
network like knowledge structures, in particular exploring how such knowledge can be 
gathered, represented and what type of mechanism can be used to detect so called drift 
behaviour within the observed data. A secondary objective is formed by the problem of how 
such drift behaviour can be used to (a) adapt individual components of a supervised 
system and (b) achieve a stable state of more global oriented systems, which could then 
freely evolve within pre-defined boundaries that describe the functional correctness of the 
system under supervision. In particular, the use of a lower and upper bound as well as the 
so called ideal state of individual variables will be explored.  

A2.2 Generic Architecture 
In general, state of the art supervision methodologies and systems mainly implement a 
closed control loop approach which implements the following three concepts. 

• Monitoring: Gathering of information from the system that is under supervision. 
Additional tasks may include correlation and translation activities in order to pre-
process incoming information to improve the quality of the monitored data and to 
reduce information overhead. 

• Analytics: Dedicated methods testing for certain conditions, violations etc. that are 
of interest to the supervision process. Current analytical methods often implement a 
static rule- or policy-based methodology where individual rules or policies are “hard 
coded” for each system and as such are not dynamic and often difficult to adapt to 
changing conditions. While such methods are sufficient for traditional applications 
working in non-distributed environments, future autonomic systems will require more 
dynamic, highly intelligent and fully automated services that are able to operate in 
distributed context aware environments and as such are able to not only adapt the 
system but, more importantly, the supervising system itself 

• Reaction: the reactive part of a supervision system closes the loop to actually 
achieve supervision. That is guiding a system within the boundaries it is allowed to 
operate in. The challenge for this part is not to realise and control the so called 
actuators which realise individual corrective measures on a supervised system. On 
the contrary the correlation of a given problem, that has been detected, with the 
correct countermeasures at different levels of granularity can be seen as the biggest 
challenge for the reactive part of a pervasive supervision framework. 
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The same three concepts are also relevant for a more long-term oriented and evolutionary-
based supervision principle as envisioned here. That is with one important extension. In 
order to allow a system to evolve over time but at the same time assure the correctness of 
the underlying logic, advanced forecasting and prediction methods are required which 
allow the system to: 

• forecast the “direction” of a supervised system; 

• predict individual attributes based on past behaviour or on other attributes; 

• and finally, detect critical states before they actually occur. 

For that to be realised, it is necessary to build up a history of all monitored attributes of the 
system that is under supervision. Dedicated forecasting and prediction methods could then 
be used to predict future states and events based on the past behaviour of the model that 
is under supervision. Specific reaction mechanism may then be linked to the monitored 
model in order to register dedicated corrective measures to specific parts of the system 
under supervision. Figure 1 depicts schematically the general supervision architecture and 
highlights individual aspects for each part which will be discussed throughout this section. 
For convenience, individual monitor or actuator units as relevant for a complete supervision 
system are not shown in Figure 1. 

 
Figure 1: Schematic Supervision Architecture, Concept Drift 

A2.2.1 Monitoring 
Independent of the technique used to monitor an individual source, the goal can be 
summarised as to collect (a) a tuple ω = (α, t), where α is the observed value and t a 
timestamp referring to the time the value / event has been observed. A dedicated history 
service could then used to build up a context history of the observed source such as θ = 
ω1, ω2, ω3, … . With respect to an overall monitoring mechanism three distinct monitoring 
mechanisms have been identified to be relevant. These are: 
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• Event Based Monitoring: The observed source posts relevant information at pre-
defined intervals or at certain events (e.g. the value of the observed attribute has 
changed) to a centralised monitoring unit. 

• Request Based Monitoring: A centralised monitoring unit requests at pre-defined 
intervals or at certain events (e.g. an outside alert) requests relevant values from 
observed sources. 

• Embedded Monitoring: Individual components provide the functionality to monitor 
themselves. That is a specialised component is linked to the component under 
supervision which facilitates relevant monitoring tasks. 

 
 Event Based Request Based Embedded 

Decentralised Monitoring no no yes 

Lightweight Components yes yes no 
Controllability & 
Configurability medium good difficult 

Time to Answer slow slow fast 

Monitor Delay medium high none 

Complexity medium medium high 

Attribute Correlation possible difficult  
Cascade able no no Build-in 

Overall  ++ + +++ 

Table 1: Monitoring Techniques 
As shown in the table above, embedded monitoring mechanisms are best suited due to a 
fast response time and the possibility of supporting an underlying cascadeable framework.  

A2.2.2 Analytics – Concept Drift 
As mentioned earlier, a concept of interest is a phenomenon that describes a real world 
model and is defined by underlying contextual information or raw data. By nature, it is likely 
to change over time which is referred to as concept drift. Drift may occur in the underlying 
concept of interest if it: 

• is not static e.g. dynamic models 

• can not be described in its entirety e.g. incomplete models 

• if its values are subject to change in any way e.g. changing context 

Three distinct analytical methods have been identified for detecting drift. These are: 

• Current State (Sudden drift behaviour): Analysing the current state of α with respect 
to its own value / state and / or with respect to pre-defined boundaries as specified 
by (β-, β=, β+)1. 

                                                 
1 See Section 3.3 
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•  Forecasting (Visible, continues drift behaviour): Analysing if and at what time t α 
reaches e.g. a critical state as specified by pre-defined boundaries. 

•  Prediction (hidden, continues drift behaviour): Predicting α for time tt+n based on: θ 
or more interestingly based on other variables that are correlated to a given α. At 
this stage it is important to stress that prediction and forecasting are seen as two 
different concepts of detecting drift behaviour. While the former relates to 
standardised statistical functions that e.g. establish trends based on the history of 
the system under supervision, predictive mechanisms may utilise dedicated AI 
mechanism that include other related or unrelated aspects. 

A2.2.3 Reaction 
Based on the closed loop approach, the reaction part of a supervision process is 
concerned with the identification, configuration and execution of relevant measures to 
counteract incorrect behaviour or to invoke a specific recovery mechanism. With respect to 
the discussed monitoring and analytical mechanisms identified so far, two possible reaction 
mechanisms are deemed relevant.  

• Direct Reaction: Corrective measures are invoked whenever an illegal state or 
violation is detected. This mechanism is particularly relevant for autonomous micro-
supervision systems that are fully aware of what to supervise, how to supervise it 
and finally how to react if something goes wrong. 

• Descriptive Reporting: If a system is not able to react on an illegal state or violation 
or if a system is forced to invoke countermeasures on a more global aspect of a 
system, then individual components may choose to report their current ‘health’ to 
conceptually higher oriented supervision components. Obviously, such a reporting 
mechanism should be as complete as possible containing information about the 
sender, the fault, possible reasons (if the fault already has been analysed locally) 
and if known, relevant corrective measures.  

Both mechanisms may be realised in a centralised way where possible corrective 
measures are identified and executed via a centralised system or, alternatively, in a 
decentralised system that is embedded, where individual components have full control in 
executing corrective measures. The latter obviously requires that each component is aware 
of the reactive measures it can invoke. Furthermore, a dedicated component may be 
implemented that assesses individual reactive measures on a higher level of granularity. 

A2.3 Drift Analyser – DA 

The following sections describe in more detail the technical specifications for implementing 
(a) the overall component that will handle the problem of drift behaviour and (b) individual 
components thereof envisioned to facilitate dedicated tasks. It is envisioned that the DA as 
well as its sub components are realised as independent services to allow for maximum 
flexibility with respect to the dynamic orchestration of specific supervision mechanisms.  

A2.3.1 Technical Architecture 
The main DA service will allow for the orchestration of sub-services related to the general 
analytics of concept drift. Depending on specific bootstrap or runtime configurations 
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individual services may be loaded in order to perform individual supervision tasks. 
However, if no service is loaded then its functionality may be ignored. For example, if there 
is no forecasting service, then forecasting will not be performed even if an actuator 
registers for it. 

The high level architecture of the DA as depicted in Figure 2 is based on the closed control 
loop and as such the DA will connect to a monitoring mechanism (the Sensor Interface) as 
well as a reaction mechanism shown (the Assessor Interface). Both of these interfaces 
reflect the standardised interfaces and form the basic I/O mechanism of the DA with 
respect to the overall supervision architecture as outlined earlier. The DA architecture itself 
comprises the following three concepts: 

• A generic service based architecture where individual modules can dynamically be 
(un-)loaded. Already identified services include a dedicated forecasting mechanism, 
a mechanism to detect boundary violations as well as the monitoring of the ideal 
“state” of the system under supervision. 

• A communication bus enabling event based communication among individual 
services 

• An actuator registry where applications, services (such as the Assessor) and other 
DA’s may register themselves to be notified by selected services of the DA there 
are register with. 
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Figure 2: DA – Architecture 

The proposed architecture supports both the general ACE concept as well as the DIET 
methodology to an extent that both are to be orchestrated via sub-components (here 
services) which are capable of communicating among each other and with the outside 
world via a dedicated communication mechanism. Nevertheless, specific design 
adaptations may be necessary once a final framework of ACE’s is submitted. 
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Figure 3: Hierarchical DA Organisation 
So far, the outlined architecture provides only limited supervision functionality in a sense 
that each DA is only capable of supervising a single concept of interest. Although it is 
envisioned, that individual concept of interests are not limited to just primitive types, but 
instead could also reflect a more complex model or structure, the supervision within a 
single hierarchical level will, in most cases, not be sufficient. To achieve a more powerful 
and eventually fully pervasive supervision potential, relevant mechanisms need to be 
available at different levels of granularity on (a) the system under supervision and (b) the 
supervising system (independent if this system is localized distributed). In order to provide 
for the hierarchical, or in fact network, like orchestration of DA’s the selected notification 
mechanism, currently the actuator interface, will also serve as a potential input source for 
the monitoring unit.  

As depicted in Figure 3 individual DA’s may register with lower or even higher oriented 
DA’s to be notified of certain events. If connected to dedicated reasoning mechanisms, 
incoming messages stemming from other DA’s or from other monitored concepts may be 
properly correlated and analysed. While this not only provides the modelling of more 
meaningful concepts of interests it also allows for supervision at different levels of 
granularity yet maintaining the self-similarity of individual supervision components that is 
required to serve the underlying ACE model as it may provide the structure of the system 
to be supervised. 

A2.3.2 Numeric vs. Symbolic Monitoring 
The sources may provide information that is either numerical or symbolic in nature. 
Numerical information can be evaluated with statistical processes that are similar to time 
series evaluation. It may not be as simple to detect drift in symbolic values. One possibility 
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would be to build up a statistical record of the symbols recently used and then detect when 
different sets of symbols are being returned. For example, one could split up the history 
buffer of symbolic values into two parts and compare the values in the second part with the 
values in the first part. If they are different then maybe drift has occurred. In general, 
symbolic values can be processed when at least one of the following conditions is provided 
for. 

• The set of symbolic values is finite and known beforehand. 

• A sort of ordering can be induced over the symbolic values to be monitored. 

• A dedicated logic may be used to evaluate the incoming stream of symbolic values. 

A2.3.3 Boundaries 
Identifying the general ‘path’ of a system and as such drift behaviour is a powerful method 
to identify if a system suddenly or slowly (but continually) moves into a specific direction or 
towards an unwanted state. Normally, for a system it is indifferent to whether such a state 
represents only an annoyance or a more seriously maybe critical situation of the system 
under supervision. Thus boundaries may be utilised to (a) identify if a system is in an illegal 
state; (b) predict the time it takes to reach an illegal state; or (c) to self–organise it around 
an ideal state, which is either pre-defined or the mean of its boundaries. Therefore, the 
boundaries of a given concept of interest can be utilised to specify the states a system can 
evolve in without violating its general purpose and as such are key to the overall analytical 
process.  

A2.3.3.1 Lower and Upper Bound 
As depicted in Figure 4, the lower and upper bound (β-, β+) define the borders a system 
can evolve (operate) in. Overlaid trends would then allow predicting long term directions so 
that out of bound violations could be identified at an early state. If a system violates the 
boundaries a possible alarm or other action may be triggered or corrective measures may 
be induced. Note that individual lower and upper bounds do not need to be static. 
Depending on a changing context individual boundaries may change as well. However, 
dynamically adjusting or even identifying initial boundaries is error prone as falsified values 
may be interpreted as new bounds. 

ß-

ß+

ß-

ß+

Concept of Interest  

Figure 4: Boundaries for Concept Drift 

A2.3.3.2 Ideal State Situation 
More interesting in the context of autonomic computing is the organisation of a system 
around a so called ideal state, β=, which is the situation a system should attempt to 
achieve. For instance, an autonomic system regulating the temperature of a building has to 
react to a multitude of factors, e.g. outside temperature, number of people in the building, 
open windows, etc. Nevertheless, based on its configuration its ultimate goal could be as 
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simple as “keeping the temperature at 27 degree Celsius”. In this case the ideal state of is 
reflected directly by its goal. Never mind the fact that, in this case, it would be pretty hot in 
that building. 

?ß?ß

 

Figure 5: Ideal State 
This concept is visualized in Figure 5 where the difference between the actual state and 
the ideal state is constantly monitored. 

A2.4 Functional Specifications – Plug-Ins 

Plug-ins actually do provide the functionality of the DA in a sense that specific supervision 
tasks are supplied via individual modules and then orchestrated within the DA which acts 
as a container component. Plug-ins may come in the form of services that implement the 
required functionality to monitor the concept drift or aspects that are deemed relevant for 
supervision purposes. The general idea is that a specific DA instance can be configured by 
dynamically loading dedicated plug-ins in order to perform specialised supervision rather 
than generic observation. The components described in the sequel represent concepts that 
have been identified as highly relevant for the problem of analysing aspects related to drift 
behaviour but the list of components discussed here is by no means complete and may be 
extended as required.  

A2.4.1.1 Peak Buffer 
As visualised in Figure 6, this service aims to de-sensitise the system under supervision by 
averaging the stream of input values. For instance, it could read a series of values over a 
specified time interval calculates the average and then sends this value to the rest of the 
system as the actual value. Note that in this case there is an issue with out of bound 
oscillations, where values can oscillate from too high to too low but still produce an 
acceptable average. This however is a minor issue which can be accommodated for in 
different ways. The peak buffer is envisioned to be a standard service which is always 
loaded into the system but may be bypassed if desired. The rationale for this is that it also 
functions as a safety mechanism for incoming false values or exceptions. Finally, the 
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method employed to de-sensitise the input stream may also be loaded dynamically to allow 
for different types of stream manipulations as well as the handling of symbolic values. 

Figure 6: Peak Buffer  
Figure 7: Class Description of the 

Peak Buffer Service 

A2.4.1.2 History Buffer 
As the name suggests a history buffer will store a sequence of events (values) over a 
specified time period to be used e.g. to perform calculations such as trend analysis. The 
buffer stores the values along with a timestamp of when the value was read (see Figure 8).  

 

+Output() : Event History
«signal»+Monitor Interface()

-Buffer Size : long
-Polling Interval : long

History Buffer

 
Figure 8: Class Description of the History Buffer Service 

A2.4.1.3 Property Management 
The rational of this component is to constantly observe the underlying system in order to 
identify possible boundaries based on the systems history. Ideally this component will 
serve as an input to other components such as current state or ideal state, providing a 
more dynamic boundary mechanism that can operate without the need of pre-setting the 
boundaries in which a system can operate in or around, in the case of an ideal state 
monitoring (See Figure 9). 

 

+Output1() : Suggested Ideal Value
+Output2() : Suggested Bounds
«signal»+Monitor Interface()

Property Management

 
Figure 9: Class Description of the Property Management Service 

A2.4.1.4 Current State 
As visualised in Figure 10, the current state is constantly read and validated against the 
boundaries. If outside of the boundaries a dedicated notification message is sent to the 
actuator registry. A class description of the current State Service is illustrated in Figure 11. 
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Figure 10: Current State 

 
 

Figure 11: Class Description of the 
Current State Service 

A2.4.1.5 Ideal State 
The ideal state of a system is seen as its optimum health. As such a supervision 
mechanism should attempt to organise a system as close to this state as possible. As 
depicted in Figure 5, this service detects the difference between the current state and the 
desired state and notifies interested parties of the difference so that distinct 
countermeasures may be executed. The ideal state should be the first concept that is 
evaluated. The supervision class needs to be able to load in any evaluation class, so it 
could be based on the generic component that can load in services. The supervision class 
is then also a service that can be loaded into the basic autonomic component of the 
network (See Figure 12).  

 

+Output() : Ideal - Current
«signal»+Monitor Interface()

-Ideal Value
Ideal State

 

Figure 12: Class Description of the Ideal State Service 

A2.4.1.6 Forecasting 
Forecasting is used to measure the trend in the current data. It can be used to predict 
when a system may enter a critical sate or vice versa which state a system might have in 
the future.  Figure 13 visualises the forecasting service as the trend line based on the 
values retrieved from the history buffer. Figure 14 shows the class description for the 
forecasting service. 
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Figure 13: Forecasting 

+Output() : bool

-History Buffer : History Buffer
-Bounds : Bounds

Forecasting

 

Figure 14: Class Description of 
the Forecasting Service 

A2.4.1.7 Prediction 
This module provides a predictive component which is capable of analysing other related 
attributes or concepts of interests in order to predict a future condition of the concept of 
interest that is under supervision. However, predictive features are not envisioned within 
the first release of the DA. The main reason for this is the current lack of specificity with 
respect to generic supervision tasks. While it is theoretical possible to implement predictive 
features in a generic fashion, In reality this often leads to assumptions that are only of 
statistical value which in turn are not very useful because of (a) the relevance or accuracy 
is not good enough or (b) the result space is to large to be successfully used. A secondary 
incentive is the requirement to link related supervision components together to successfully 
reason over multiple concepts of interests. How and to what extend this will be possible is 
not yet clear yet and will mainly depend on the overall framework. 

A2.5 Prototype 

Although not fully integrated into the overall supervision framework the functionality of the 
DA may be evaluated utilising the test form shown below. Currently, the ideal state service, 
the current value service & the forecasting service have been realised and can be (de-
)activated by (un-)checking the relevant check boxes. Relevant configuration parameters 
can be set or loaded from file and can be summarised as: 

• Upper / Lower Bound: Boundaries that the system under supervision should remain 
within. 

• Allowed Deviation: Maximum allowed amount of deviation from the ideal value 
before the deviation is considered a violation. 

• History size: The maximum history buffer size. 

• Peak size: the maximum peak buffer size. 

• Monitor interval: The interval between checking concepts for concept drift. 

• Forecast interval: The forecasting window in which the system tests for violations. 

• Buffer interval: the maximum time interval for storing related concepts. 
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Just for generating test values, but not actually as part of the DA component, there are 
three values that define the random source values that can be generated. There are: 

• Maximum value and minimum value: These values specify the bounds that a 
random value should be generated in. 

• Sensitivity: This indicates by how much the initial maximum and minimum values 
can be changed, by using the slide bars, so that the trend of the current values can be 
altered. This is not to be confused with the volatility of the system but only reflects 
the minimum and maximum boundaries a value is generated in. 

 
Figure 15: DriftAnalyser – Test Form 

As well as these, three other parameters can be configured to integrate the component into 
the overall framework as well as for security purposes. There are: 

• Password: A password to access the service to be supervised. 

• Service key: A unique key for loading/removal of sub-components. 
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• Parent: The parent component to which the supervision component is added to. 

The parameters of the randomly generated monitored values can be adjusted using the 
two slide bars whereas the current minima and maxima are constantly shown to the right of 
the slide bars as illustrated in Figure 15. Below this is an output indicating the monitored 
states of the system. These are shown as follows: 

• The monitored value shows the supervised concept (after the peak buffer). A count 
of the number of times that the current value falls outside of the allowed upper and 
lower bounds is indicated to the right of the text box. 

• The deviation from the ideal state is the deviation of the current source value from 
the last ideal value returned from the history buffer. A value is output only if the 
deviation is greater than the allowed deviation. A count of the number of times that 
the allowed state is violated is indicated to the right of the text box. 

• The time to the upper bound is the amount of time that would be required, as 
indicated by the current trend, for the ideal value to move outside of the upper 
bound. A value is output only if the time is inside of the forecast window time. A 
count of the number of times that the allowed state is violated is indicated to the right 
of the text box. 

• The time to the lower bound is the amount of time that would be required, as 
indicated by the current trend, for the ideal value to move outside of the lower 
bound. A value is output only if the time is inside of the forecast window time. A 
count of the number of times that the allowed state is violated is indicated to the right 
of the text box. 

• The total amount of time that the test has been running for is indicated in the Test 
Time box. 

• There are buttons that can be used to start or stop the test. If you stop the test the 
values will be reset before it is started again. 

• Finally, a text box is used to visualise messages stemming from individual services. 
Each service will output a message indicating the result of its last evaluation. 

The test form is available as an executable jar file and a test configuration file is provided 
within the same package.  

A2.6 Overall Research Directions 

Future research directions come from a multitude of different areas and include individual 
supervision components as well as the overall architectural framework. For instance, what 
are the technological pre-requisites to build, configure and to interact with supervision 
pervasions, i.e. which detailed capabilities are required from components and component 
orchestrations to support (a) monitoring and interaction, but also (b) to model and to 
implement a supervision instance in an autonomic fashion?  

Self-organization is seen as one of the key properties of autonomic systems. Within the 
context of supervision this translates into the dynamic configurations and maintenance of 
supervision configurations and, following the pervasive supervision paradigm, supervision 
subsystems are thus (a pervading) part of such configurations. Thus they have to follow 
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basically the same organizational rules as the supervised sub-systems. On the other hand, 
interaction and modification of service configurations by exploiting self-organization rules 
may be used as a mean to interact with those configurations. 

From the perspective of security, supervision is of course very critical. Thus dedicated 
mechanisms need to be realized to perform supervision tasks in the presence of security 
demands. Moreover, security modules and components are also error prone and as such 
might be non-functional; add unacceptable performance bottlenecks, etc. Thus security is 
by itself an application area for supervision techniques. Resolving this mutual relationship 
is another foreseen research direction.  

Finally, situation-awareness is not yet properly reflected within current supervision 
approaches. Connecting the overall supervision architecture to relevant contextual sources 
could provide a new generation of supervision pervasiveness that is not yet possible. For 
instance, for a supervision component to monitor the temperature of a room it needs to be 
connected to a temperature sensor. However in order to supervise it, it also needs to be 
connected to an actuator unit that allows changing the room temperature in some way or 
the other. Now, for a system to know that e.g. the window has been opened in order to 
freshen up the air allows additional reasoning about if, how, when and what 
countermeasures should be employed. How such situation-awareness can be achieved 
and how it can be successfully exploited for supervision is yet another open issue to be 
investigated in more detail. 

A2.7 Conclusions 
This work deals with various approaches and results related to pervasive supervision and 
provides the foundation for a supervision mechanism that is based on drift behavior. In the 
first part, the closed control loop architectural has been discussed, which is the basic 
architectural paradigm employed by all supervision systems. While the analyses of concept 
drift is only one possible mechanism to allow for long term supervision, the concept of 
interest and the real world problem they reflect are seen as key principles to enable 
autonomic services to self-evolve in context aware environments.  

One of the main problems in this area is that a system under supervision can, at different 
levels of granularity, contain any type of information. It is therefore not possible to create a 
generic evaluation function that is capable of evaluating any type of information or concept 
of interest respectively. This is based on the fact that an evaluation value is likely to be 
meaningless if it is derived in a generic fashion rather than based on the specific context of 
the system under supervision. Thus, it may be better to allow a system to try and self 
organize itself in a way that micro versions of the whole supervision system exist at 
different levels. If such micro supervision systems maintain a stable state, the overall 
system should be stable too. On the other hand, if this state changes in any way, a system 
may recognize this as odd behaviour and may react on this. The main advantage of this 
approach is that, individual concepts of interests are, on a micro level, more likely to be of 
primitive types rather than complex structures. If this is the case standardized evaluation 
criteria’s may be employed to (a) assess them and (b) to configure the supervision system. 
Realizing a current state analysis combined with more advanced forecasting and prediction 
mechanisms will allow the detection of sudden as well as gradual drift behavior. If 
embedded in a virtual realization of a system under supervision, such drift behavior could 
be detected at early stages and effective countermeasures or a fail back mechanism could 
be invoked on specific components of a system rather than safeguarding the overall 
system.  




