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1 Introduction 

1.1 Purpose and Scope 

This document constitutes the deliverable 1.3 “First Prototype Integration (release 1)”. It 
describes the current ACE component model and new features that have been researched, 
developed, and implemented since the last deliverable D1.2 (cf. [D1.2]) as well as the 
integration work done between WP1 and the other WPs of the CASCADAS project. 
Additionally, a sample application is presented and a tutorial is given on how to program 
and execute ACEs.  

Concerning the content, some parts of this document are similar to deliverable D1.2. We 
reference the work which has already been done in deliverable D1.2 wherever possible. 
Nevertheless, due to intensive modifications we completely describe every component of 
the Toolkit in order to keep this document comprehensible and to present the Toolkit in a 
coherent manner.  

1.2 Reference Material 

1.2.1 Reference Documents 

 

[ACEL] ACELandic - A Scripting Language for Autonomic Communication Elements, available 
at: https://www2.mik.bme.hu/repositories/cascadas/trunk/wp1/dev/doc/ACELandic.doc. 

[Chsw] Chainsaw log viewer http://logging.apache.org/chainsaw/. 

[D1.2] Deliverable D1.2: Prototype implementation (release 1), July 2007. 

[D3.1] Deliverable D3.1: Aggregation Algorithms, Overlay Dynamics and Implications for Self-
Organised Distributed Systems, December 2006. 

[D3.3] Deliverable D3.3: Software Implementation of Modules for Adaptive Aggregation, June 
2007. 

[D5.3] Deliverable D5.3: The Open Toolkit for Knowledge Networks, January 2008. 

[DIET] DIET Agent Platform, available online: http://diet-agents.sourceforge.net. 

[Log4J] Log4J - http://logging.apache.org/log4j/. 

[OOJD] OOjDREW – Object Oriented Java Deductive Reasoning Engine for the Web, available 
online: www.jdrew.org/oojdrew/. 

[REDS] REDS – A Reconfigurable Dispatching System, available online: 
http://zeus.elet.polimi.it/reds. 

[RuleML] RuleML - Rule Markup Language. RuleML 0.88 stripped syntax is used available 
online: www.ruleml.org/0.88/. 

  



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D1.3

Appendix: Prototype 
Documentation and Tutorial

 

Editor: Sandra Haseloff 

Page 5 of 80 

1.2.2 Acronyms 

 

ACE Autonomic communication element 

DIET DIET Agent Platform (see [DIET]) 

FCE FunctionalityCallEvent 

GA Goal achievable 

GN Goal needed 

GUI Graphical user interface 

ID Identification 

No-arg Without arguments 

Log4J Logging framework (see [Log4J]) 

PEX PlanExecutor 

REDS Reconfigurable Dispatching System (see [REDS]) 

WP Work package 

XML Extensible Markup Language 

 

1.3 Document History 

 

Version Date Authors Comment 

0.1 27/09/2007 Sandra Haseloff Proposal of initial 
document structure 
and responsibilities 

0.2 09/10/2007 Sandra Haseloff Modifications in 
structure/responsibiliti
es after WP1 PhC 

0.9 14/12/2007 All Authors Contributions 

1.0 21/12/2007 Rico Kusber, Sandra 
Haseloff 

Pre-final editing 

1.1 14/01/2008 Sandra Haseloff, 
Nermin Brgulja, Rico 
Kusber 

Final editing after 
internal review 
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1.4 Document Overview 

In the first part of this document, acronyms, general definitions, and used references are 
clarified. Chapter two gives an overview of new ACE features which have been integrated 
during the last research period. Issues like an advanced logging mechanism and parallel 
Plan execution are explained here. Thereafter, in chapter three the current state of the 
ACE component model is presented with respect to what was already developed before 
and what are the changes that have been introduced. All ACE organs are depicted in detail 
in order to document their features, properties, and the way to use them. Chapter four then 
describes the integration work that has been and will be done between WP1 and the other 
WPs of the CASCDAS project. It is explained how the Toolkit can be utilised to implement 
for example Knowledge Network or Supervision features based on the ACE concept. In 
order to show the feasibility of the ACE concept the WP1 example application was 
extended and is described in chapter five. Chapter six then presents a tutorial which can be 
used to learn how to program and execute ACE based applications. Detailed instructions 
are provided on developing with the CASCADAS Toolkit. The last section of this document, 
chapter seven, summarises what is written before and concludes with an outlook on how 
the research and development of the CASCADAS Toolkit will continue. 

2 New ACE Features at a Glance 

ACEs have been designed with the goal to fulfil a set of dedicated demands. This includes, 
for example, exhibiting autonomic and situation-aware behaviour or providing services in a 
self-similar and extensible manner. How these demands have been addressed is described 
in section two of [D1.2]. Throughout the whole time the ACE concept has been researched, 
designed, and implemented, permanent adaptation and extension has taken place. This 
section shortly describes new features that were integrated into the Toolkit within the last 
research period. 

2.1 Advanced Logging 

In order to enable debugging and to keep applications comprehensible, a logging 
mechanism was introduced. It is useful not only to develop the Toolkit itself, but it can be 
utilised by ACE application developers as well. 

To enable the logger in an ACE based application, a set of configuration inputs has to be 
declared within the applications settings.properties file. By default, logging to port 
4000 on localhost is enabled and INFO is specified as log level. Changes can individually 
be made depending on the needs of the person who works with the log output. Beside port 
4000, a list of alternative outputs can be defined so that for example logging to the console 
or a file is possible as well. To display the log output in a well arranged manner, the 
Chainsaw logging tool can be used (cf. [Chsw]). Chainsaw is a GUI-based log viewer 
designed to view Log4J messages which, in case of the CASCADAS Toolkit, come from  

- the application environment in which ACEs are running, 
- all running ACEs and each organ of all ACEs, 
- and the specific functionalities of all running ACEs. 
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Differentiating between sources of log messages on such a fine-grained level as listed 
above enables the user respectively developer to investigate occurring problems dedicated 
to their assumed cause. If for example external events get lost for an unknown reason, it 
may be a good starting point to look at the log messages of the Gateway organ instead of 
reading all log messages of the affected ACE. Nonetheless, Chainsaw facilitates also to 
display all log entries of an ACE without separating between different organs. This may be 
useful in case of investigations where e.g. the log message order is important. Section 
6.1.1 describes how a developer can design specific functionalities in a way that they use 
the logger. So, logging is not limited to the self-similar parts of ACEs which are provided by 
the Toolkit but can be integrated in any application that is based on the ACE concept. 

2.2 Parallel Plans 

During the Toolkit development, it turned out to be necessary that ACEs must be able to 
perform multiple actions at the same time. Those actions could for example be: 

- waiting for a response to a service call, 
- while performing computationally intensive calculations, 
- and reacting to context changes, all at the same time. 

Though it is possible to declare these activities as a sequence, it is much more convenient 
and comprehensible to design a number of independent Plans executed in parallel. Section 
3.3.3 explains the usage of parallel Plans. 

2.3 Advanced Plan Creation and Modification Rules 

To exhibit an autonomic character, ACEs can change their behaviour according to context 
changes in their environment. Those behavioural changes can be achieved by modifying 
the Plan currently under execution. Until now, this modification was triggered by context 
changes only. In addition to that, the feature to be able to react to any event that may occur 
was introduced. This extends the range of causes an ACE can perceive in order to change 
its behaviour accordingly. Imagine the following scenario.  

An ACE performs its normal operation when suddenly one of its contracts breaks for an 
unforeseen reason. In that case, the ACE gets notified of that by receiving a 
CancelContractEvent. Utilising the new Plan modification feature, this event can be 
used to trigger a change in the Plan in a way that causes the affected ACE to re-
establish all its contracts.  

In section 3.4.2.2 the Plan creation and modification rules are presented in detail. 

2.4 Specific Functionality Thread Pool 

Each ACE is, besides utilising a set of common functionalities, able to include and access 
a repository of specific functionalities. The code stored in that repository enriches an ACE 
with individual services it can use and expose to the outside world. However, regarding the 
ACE’s life cycle management, individual code can cause serious problems as for instance 
to prevent an ACE from shutting down correctly if custom threads are not terminated 
properly. To avoid those effects, a thread pool was introduced. It provides specific 
functionalities with the possibility to start individual threads but, at the same time, ensures 
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that the ACE, respectively the Functionality Repository organ, keeps full control over all of 
them. Section 3.5.7.2 describes the thread pool. 

2.5 Support for Supervision 

The Toolkit offers support for Knowledge Networks, Aggregation, Security, as well as 
Supervision. The last one is pointed out in this section because its integration strongly 
affects the core of the ACE model. Integration of the other aspects is more encapsulated in 
functionality instead of architecture itself. 

The purpose of the Supervision System is to observe the behaviour of ACEs and to 
intervene in case any anomaly is detected. Support for supervision is realised by a 
dedicated organ which observes a set of points that are important for ACE internal 
behaviour as well as internal and external communication. Those points are for example 
the message queues of the Bus, i.e. Manager organ, and the Gateway. In addition to check 
points within the ACE, an external set of supervision ACEs is contracted which includes 
sensors and effectors. How Supervision works in detail is described in chapter 4.2. 

3 Updated ACE Component Model 

The ACE component model forms the basis of the CASCADAS Toolkit. By providing a core 
which is used to create each and every ACE, it enables designing applications in a self-
similar manner. During the CASCADAS project, the component model has evolved through 
different stages, always adapting to current research results and requirements. Originating 
from the idea to separate a common part, which is identical for each ACE, and a specific 
part which enables the usage of customised, individual functionality, an organ concept was 
introduced. We use the term organ in analogy to the biological model of the human 
organism. Assembling an ACE as a set of organs where each of them is dedicated to fulfil 
clearly defined tasks leads to a well structured and modularised component model (see 
Figure 1). In accordance with continuously obtained research results, this organ based 
component model is being adapted and improved. 

Compared to the ACE component model described in [D1.2], the main modifications are: 

- Bus and Lifecycle Manager were merged to the Manager organ. 

- A Supervision organ was introduced. 

- The Reasoner was replaced by the Executor.  

Currently, an ACE comprises six organs which are able to interact by exchanging events. 
The Gateway is responsible for external communication, i.e. exchanging events with other 
ACEs, whereas the Manager realises, first, internal communication between all organs 
(this part is called Bus), and second, the life cycle management of the ACE it belongs to. 
Interaction with the Supervision System takes place utilising the Supervision organ. The 
Facilitator uses a Self Model to create and schedule all Plans an ACE can fulfil. 
Afterwards, these Plans are executed by the Executor which may therefore utilise 
common or specific functionalities provided and organised by the Functionality 
Repository. Figure 1 illustrates the ACE component model and the relations between all 
organs. The following sections describe the purpose, design, and features of every organ 
in detail. 
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Figure 1: ACE component model showing ACE organs and their relations 

3.1 Gateway 

The Gateway is the ACE internal organ in charge of communicating with the external world. 
There are two basic communication mechanisms: anonymous REDS-based GN-GA 
transport, which is connection-less (cf. [REDS]); DIET-based connection-oriented transport 
that uses contracts to assure the communicating parties about properties of the underlying 
communication channel (cf. [DIET]). 

3.1.1 Event-based Communication 

The GN-GA protocol is supported by a publish-subscribe mechanism where some ACEs 
subscribe to events of interest and some other ACEs publish information. A suitable routing 
structure based on the REDS middleware takes care of delivering the events to the proper 
subscribers. Let us explain this communication more explicitly: 

 Messages to be sent to other ACEs via the Gateway are represented by an ACE 
Envelope object (cascadas.ace.event.Envelope). Specific messages (e.g., 
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cascadas.ace.event.GoalAchievableEvent) subclass from the Envelope class 
and add variables representing the message payload. The class Envelope contains 
a String variable reds_routing used to route the Envelope across the REDS 
network. 

 The default value of this variable is ‘ace-all’. This expresses that the messages 
should be broadcasted to all the ACEs in the network. ACEs, at start up, subscribe 
to all the messages having reds_routing = “ace-all” (this subscription is in the 
RedsClient constructor). REDS forwards the messages on the basis of a pattern 
matching schema. Current implementation (see subscribe method in RedsClient) 
supports String contains pattern matching, i.e. an Envelope matches a subscription 
if its reds_routing String is contained in the subscription String. 

GN-GA publish-subscribe operations are performed via common functionalities called from 
the Self Model.   
<action>gn_sender_service(goalName=dresscode,myAddress=?globalSession://ac
eAddress)</action> 

 

<action>gn_answer_service(goal=?inputMessage://goal,serviceName=hobby_prov
ider_service,myAddress=?globalSession://aceAddress)</action> 

The gn_sender_service and gn_answer_service are used to send a GN-GA message 
respectively. 
<trigger>cascadas.ace.event.GoalNeededEvent</trigger>           
<guard_condition>EQUALS(?inputMessage://goalName,hobby)</guard_condition> 
 

<trigger>cascadas.ace.event.GoalAchievableEvent</trigger>           
<guard_condition>EQUALS(?inputMessage://goalName,dress)</guard_condition> 

The above code waits until a suitable GN-GA message arrives to perform some operations.  

3.1.2 Contracted Connection Handling 

A contract is seen as an agreement between 2..n partner ACEs about certain constraints 
for a defined period of time, more precisely: from the establishment of a contract until 
cancellation of a contract. Currently these constraints are reduced to a set of mappings 
between a role name and an ACE address, but may include other requirements or 
conditions in the future (e.g. security constraints, lifelines, or billing information). 

3.1.2.1 Contract Establishment 
Technically a contract is established by sending an EstablishContractEvent through 
the Gateway of an ACE. The event needs to contain a Contract object specifying the 
role-address mapping, which is used by the Gateway to create connections to all of the 
partners defined within the contract. Connections are based on DIET mirror agents. For 
each connection between the initiating ACE and a given contractual partner a DIET mirror 
agent is created and migrated to the other ACE’s environment. The receiving ACE 
subsequently creates another mirror agent and sends it back to the initiating ACE, resulting 
in a bi-directional, dedicated connection. The EstablishContractEvent is then 
forwarded to the receiving ACE where it appears on the internal bus (i.e. the Manager 
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organ) and also triggers the exact same connecting behaviour. At the end a fully-connected 
mesh has developed where each partner can communicate with every other one using 
contract-specific connections. We refer to this mesh as the “contractual context”.  

For an example refer to Figure 2, where a contract between three partners has been 
created using the mapping triple {"user",Env2:Foo / "provider",Env3:Bar 
/"supervisor",Env1:Ding}, where each entry defines a role (e.g. “user”) and an 
address (e.g. Env2:Foo). 

 

 
Figure 2: A contract with 3 partners 

For the user of the ACE Toolkit contract establishment is trivial: the common functionality 
contract_n_establishment_service (see 3.5.4.1) takes care of sending a properly initialised 
event. The establishment service takes a mandatory parameter contractId, defining an id 
that references the contract in the execution session after it has been established. All 
remaining arguments are interpreted as {name,address} pairs. Every ACE is able to 
request the establishment of contracts, normally after receiving matching GA events, which 
contain the address of the goal-achieving ACE. 

3.1.2.2 Contract Usage 
Once a contract is in place, so-called contract events may be sent using contract roles as 
destinations. An event that is sent along a contractual connection needs to derive from 
cascadas.ace.gateway.ContractEvent, in most cases this will be through 
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cascadas.ace.event.ServiceUsageEvent. This makes sure that a contract and an 
optional target role can be associated with the event. 

Sending an event may be done using e.g. the send common functionality, which takes a 
Java class name for the event parameter, a contract for the contract parameter (for 
example from the current execution session), and an optional role parameter that is 
supposed to contain the role name of the ACE the event is sent to. It is not possible to 
send events to oneself.1 If the role is not specified, the event will be forwarded to all 
connections of the contract.  

3.1.2.3 Contract Cancellation 
Contracts may be cancelled any time and from any of the participating ACEs. After a 
contract has been cancelled, all mirror agents have been removed and no direct 
communication is possible anymore. 

There are two reasons a contract is cancelled: 

1) The DIET connection has broken down. DIET employs timeout mechanisms that 
check for lifelines of a connection, proper connection setup, and the like. It might 
happen that a connection is really broken (e.g. an unplugged cable), but it is also 
possible that a timeout value is too low for the situation, both lead to cancellation of 
the contract. Most timeout values can be configured in the DIET section of the 
global configuration file settings.properties. 

2) An ACE sends a CancelContractEvent, triggering the cancellation of the 
contract on purpose.  

When a contract is cancelled, a CancelContractEvent appears on the Bus of each of 
the participating ACEs and all attempts to subsequently use the contract will result in an 
error.  

The cancel_contract_service common functionality can be used to conveniently end a 
contract. It takes a single argument: the contract to cancel. 

3.2 Manager 

The Manager is a newly introduced ACE organ which results from merging the Bus and the 
Lifecycle Manager. Integrating these two organs became necessary as a consequence of 
further developments concerning the lifecycle and internal event handling of an ACE. The 
following section describes the tasks and features of the Manager, the protocol necessary 
to perform a lifecycle action2 and the way in which other ACE organs are affected by 
respectively involved into life cycle management. 

3.2.1 Event Processing 

The messaging functionality of the Bus was completely moved to the Manager so that no 
changes to the internal event processing mechanism were necessary. Organs are still 
handling events in the same way as documented in [D1.2].  

                                                 
1 Use the Manager organ for this! 
2 Lifecycle actions are clone, destroy, init, move, reset, start, and stop. 
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An AceJob deriving class implements methods with a signature of handle(event type), 
where event type is of the event class that the organ would like to handle. Organs are free 
in choosing the type of event that they would like to be notified of, the only constraint is that 
the event type needs to be derived from cascadas.ace.event.Event. Sending of 
events is accomplished by using the send method of any event type. 

Note: The standby() method of cascadas.ace.event.Event has been deprecated, 
along with all other methods that are used for synchronous sending of events. The usage 
of synchronous event sending turned out to be a source of problems between different 
threads, leading to (in the best case) complex architectural solutions and (in the worst 
case) to deadlocks. Please refrain from using these methods. 

Users of the Toolkit will deal with events in three possible ways 

1) As a specification to the trigger clause in a Plan transitions (see section 3.3.1.1) 

2) As a parameter to the generic send functionality (see section 3.5.4.1) used in action 
clauses of a Self Model transition 

3) Directly as a Java object for input or output events when writing a specific 
functionality (see section 3.5.2.4) 

All of the events that may be processed in one of the three ways given above will need to 
be derived from either cascadas.ace.event.AceLocalEvent or cascadas.ace 
.event.ServiceUsageEvent. AceLocalEvent is the basis for all local events 
transmitted via the Bus and accessible to a user. ServiceUsageEvent serves as the 
basis for all events to be transmitted to other ACEs via the Gateway and subsequently 
appear on the Bus of the receiving ACE. Both event classes add support for storing and 
accessing arbitrary parameters from the Self Model.  

ServiceUsageEvent is only usable in conjunction with a valid contract that needs to be 
set before sending it (e.g. using the common send functionality or by handing it back after 
finishing a specific functionality block). It then exposes contract, sourceRole and 
destinationRole parameters that might be queried or set. 

Users of the Toolkit are encouraged to write their own specific event classes. It is also 
possible and sensible to re-use existing events, where adequate (for example 
cascadas.ace.event.ServiceCallEvent). 

New to the event processing system is that the Manager takes care of filtering event 
classes according to the life cycle state an ACE currently is in. According to Figure 4 (see 
below), there are two states in which life cycle events have to be handled by each ACE 
organ, the inactive and the running state. While being in running state, event processing is 
not restricted. In inactive state only the processing of life cycle events of the type init, start 
or destroy is allowed. The Manager filters all events and dispatches only those, which are 
valid. For all other ACE organs this implies that they do not have to care about the life cycle 
state. They can handle life cycle events equally each time only distinguishing between the 
different types of life cycle actions. 

3.2.2 Life Cycle Management 

All states and possible actions concerning an ACE’s life cycle are summarised in this 
section. 

 



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D1.3

Appendix: Prototype 
Documentation and Tutorial

 

Editor: Sandra Haseloff 

Page 14 of 80 

 
Figure 3: State diagram of the Manager for life cycle action requests 

Figure 3 shows a state diagram that represents all possible situations of the Manager in 
terms of requests of life cycle actions. All other ACE organs must not care about this state 
diagram. Only the Manager needs to react to life cycle requests in the way the diagram 
shows. 

An ACE can be in four different life cycle states where different life cycle actions are 
possible. The Manager only reacts to those requests which fit to the state the ACE it 
belongs to is currently in. 

- Inactive is the initial state an ACE is in before it starts its operation. This state can 
also be reached from the Running state if the life cycle action stop is requested. In 
the inactive state the ACE organs, except the Manager, do not perform any actions. 
They are passive here and only wait for the life cycle actions init, start or destroy to 
occur. After the start-up of an ACE, the inactive state is reached automatically. 
Directly thereafter, the Manager triggers the other organs to initialise themselves by 
announcing the init action. Once this is done, starting the operation and reaching 
the running state will happen after the Manager sends a life cycle event of the type 
start. This event causes all other ACE organs to start and to perform their normal 
tasks. 

In order to reach the inactive state, the ACE organs have to stop all their additional 
threads. To notify cooperating ACEs of the stop of operation, existing contracts 
have to be cancelled. 

- Running is the state in which an ACE performs its normal operations. It is reached 
after the Manager sends a life cycle event of type start. Here, the ACE organs have 
to react to all life cycle events which may be sent by the Manager. These can at the 
moment be clone, destroy, move, and stop. Clone and move are currently not 
implemented but planned. Life cycle events of the type init and reset will not be sent 
by the Manager when being in running state because init is not necessary and reset 
is realised by sending a sequence of stop and start instead (cf. Figure 4). 

To reach the running state, all organs have to start themselves properly. This may 
include executing additional threads and leads to normal operation. 
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- Prepared to move is a final state an ACE reaches after a life cycle event of the 
type move is processed. Once this state has been reached, the ACE can never 
switch to another state. The movement, and therewith the destruction of the ACE 
instance will follow. The new, moved instance of the affected ACE starts its life 
cycle in the start state of the life cycle diagram, i.e. inactive. Because move is not 
implemented yet, the definition of this life cycle action may change according to 
emerging developments. 

When the movement of an ACE is announced, i.e. before the prepared to move 
state is reached, the organs need to stop all additional threads.  

- Destroyed is a final state an ACE reaches after a life cycle event of the type 
destroy is processed. The destroyed state represents the end of an ACE’s life 
cycle.  

Preparing to be destroyed includes that the organs stop all additional threads. All 
contracts should be cancelled and all operations should be stopped. 

 
Figure 4: State diagram of all ACE organs for life cycle actions 

Figure 4 shows a state diagram that represents all possible situations of all ACE organs in 
terms of life cycle actions. Organs must not care about requests for life cycle events but 
they must handle life cycle events, i.e. events of the type LifeCycleEvent, as such.  

3.2.3 The Life Cycle Protocol 

The term life cycle protocol describes what happens when a life cycle action is 
requested. In this section we specify what is necessary to cause a life cycle action, which 
events have to be sent, and how the ACE organs are involved into this process. 

In order to cause the ACE to perform a life cycle action, it is necessary to send an 
appropriate request which specifies the type of life cycle action that should be performed. 
Such a request can be triggered by an ACE internal organ, the common functionality 
request_life_cycle, or a specific functionality. The Manager organ will take this 
request, analyse it, and react according to the current life cycle state. If the state the ACE 
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is currently in forbids performing the requested life cycle action, the request will be ignored. 
Otherwise the Manager processes it by sending one or more3 life cycle events which then 
have to be handled and confirmed by all other ACE organs. Figure 5 shows the work flow 
when performing a life cycle action. 

 

Requester Manager Organs

ReqLifeCycleEvent(type, forced)

LifeCycleEvent(type)

LifeCycleEventResult(organ name, ready)

sd handling ReqLifeCycleEvent

LifeCycleEvent(type)

LifeCycleEventResult(organ name, ready)

opt

 
Figure 5: Work flow when performing life cycle actions 

3.3 Executor and Plan 

The Executor is the organ of the ACE aimed to the execution of Plans elaborated by the 
Facilitator.  

The main role of the Executor is to ensure that any reasoning and decision taken by the 
Facilitator is put in place in an effective and efficient way ensuring that conditions are 
verified, actions are executed and proper incoming messages are received. 

As far as the developer point of view is concerned the Executor is completely hidden in 
order to guarantee an efficient and secure execution of the Plan(s). This is achieved mainly 
by two design principles: 

 The encapsulation of any reasoning capability in the Facilitator, the true intelligent 
core of the ACE. 

 The encapsulation of any application logic in the Functionality Repository. The 
Executor isn’t aware of the action semantic. It only ensures that an action is 
properly executed. 

                                                 
3 A request for reset will cause the Manager to send a sequence of life cycle events of the type stop 

and start. 
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3.3.1 The Plan 
The Plan is an ACE internal description of the sequence of actions and states needed to 
reach a given goal. Each Plan is composed of states and the transitions among states. 

In order to run a Plan, the states connecting a starting state and a final state have to be 
reached and the transitions connecting such states have to be executed. 

3.3.1.1 Transitions 
Each transition is built by the following elements: 

 Source: the state the transition starts from; 

 Destination: the state the transition goes to; 

 Priority: order by which transitions should be evaluated and executed (1: highest 
priority, >1: lower priority); 

 Trigger: establishes the type of trigger that fires the transition. It can have one of the 
following values: 

o @auto: the transition runs automatically; 

o @wait  or <Event type>: an event has to be awaited in order to run the 
transition; 

 Guard Condition: a boolean condition that has to be true in order to run the 
transition. 

 Action: the Functionality Repository function to invoke in order to run the transition. 

By default, all transitions are executed in synchronous manner, so the PlanExecutor (cf. 
section 3.3.2) is blocked until the action is finished.4 

3.3.1.2 Plan executions 
Given the Plan described above the Executor runs it based on the following rules: 

As far as the triggering of a transition: 

 When the Executor enters a state, all automatic transitions departing from that state 
are triggered. (Automatic (@auto) transitions have priority over non-automatic 
ones.) 

 When an input message arrives, it triggers those transitions leaving from the actual 
state where the condition is either @wait or the condition is a message type which 
matches the type of the inputMessage. 

In order to select the transition for execution: 

 If a transition is triggered, its guarding condition is evaluated. When the evaluation 
is positive (guarding condition is true or there’s no guard condition at all), the 
transition is selected for execution. 

                                                 
4 This model is convenient and useful in most cases but causes limitations in others. 

In the new release (2007 December), we added the possibility to denote certain transitions as 
“asynchronous” ones. These transitions will be executed in a way that the assigned action is 
started but the PlanExecutor doesn’t wait for it to finish and enters the destination state 
immediately. 
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 If more than one transitions are triggered, the Executor iterates on them one by 
one, trying to find one that is selectable for execution (guarding condition is true). 
Whenever a transition is selected for execution the remaining triggered transitions 
get neglected (are not considered any more). If none of the triggered transitions is 
selected for execution the Executor remains in its original state. 

Finally to execute a transition: 

 When a transition is executed, its action is invoked and the Executor switches to the 
destination state of the transition. 

3.3.2 Executor Architecture 
The Executor consists of two packages: 

 cascadas.ace.executor: main logic classes 

 cascadas.ace.executor.util: utility classes (e.g. condition evaluator, action 
parser). 

Main logic classes: 

Class name Purpose 

ExecutorJob Accepts the events from the Bus.  

Creates a new PlanExecutor for each new Plan (and 
stops the old one if any). 

Forwards the input messages to the PlanExecutor. 

Reacts to LifeCycleEvents. 

PlanExecutor (PEX) Executes a Plan: maintains the active state, selects 
the transitions for execution, invokes the actions 
assigned to the transition. 

CustomComparator Parent interface for custom guard condition classes. 

Utility classes: 

Class name Purpose 

FunctionalityCallComposer Creates a FunctionalityCallEvent object based on the 
action, inputMessage, and sessions. 

GuardConditionChecker Evaluates the guard condition. 

ParameterValueResolver Resolves the symbolic parameter name into the actual 
value. 

InputEventWrapper Provides a uniform interface to the input events. (The 
uniform interface spares code in the 
ParameterValueResolver class.) 
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3.3.2.1 Impulse flow 
The Executor receives the impulse from the Manager: 

Event from the Bus Meaning Effect 
AnnouncePlanEvent 
RemovePlanEvent 
ReplacePlanEvent 

Add, remove or replace 
a Plan. 

A new PlanExecutor is created and 
started, or stopped, or stopped and 
replaced by a new PlanExecutor. 

GoalNeededEvent 
GoalAchievableEvent 
ServiceCallEvent 
ServiceUsageEvent 

Events that might trigger 
transitions. 

The event is forwarded to the actual 
PlanExecutor. 

LifeCycleEvent Life cycle events (stop, 
move, etc.). 

Life cycle related operations. 

 
As seen in the previous table, in the new release (2007 December) the possibility to 
execute parallel Plans has been added, so in the ExecutorJob it is possible to have several 
PlanExecutors (running parallel Plans). 

3.3.2.2 Implementation 
The ExecutorJob is in charge of  

• starting, stopping and replacing Plans/PEXs 

• forwarding the input messages to the PEXs. 

The input scheme of the PlanExecutor has been changed to a producer-consumer model.  

• Each PlanExecutor has an input queue (independent of the input queues of the 
other PEXs).  

• The PlanExecutor reads and processes the contents of its input queue. 

• When receiving an input message, the ExecutorJob appends it to the end of all 
PEX input queues.  

When starting a new PEX, its input queue is empty. 

When stopping a PlanExecutor, its input queue is lost. 

When replacing a Plan, the input queue of the old PEX is lost, and a new empty input 
queue is created for the new PEX. 

3.3.3 Parallel Plans 
This is a convenience feature to minimise the number of states per Plan. In case an ACE 
performs independent activities in parallel, such as gathering context information (plan1) 
and displaying the results (plan2), it can be described either with two independent parallel 
Plans or with a single Plan (plan1+2) which is a superset of the individual Plans. In other 
words, parallel Plans do not increase the descriptive power of the system but make it 
easier to understand, debug, extend, and analyse the behaviour. 

3.3.3.1 Semantics 
The semantics of the parallel Plans is the following. 
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• Each Plan is executed by a PlanExecutor (PEX). Plans and PlanExecutors have a 
one-to-one relationship. 

• PlanExecutors are running in parallel (virtual or real parallelism). 

• The incoming message is passed for processing to all PEXs. So, the same 
inputMessage may trigger state change in all Plans, or in some Plans or in no Plan. 

• PlanExecutors do not directly communicate with each other, but they may transfer 
data through the globalSession. 

• Plans can be started, stopped and replaced (when a new Plan is started, a new 
PlanExecutor is created for the Plan. When stopping a Plan, its PEX is stopped and 
removed. When replacing a Plan, the PEX of the old Plan is stopped and removed 
and a new PEX is started for the new Plan. The new Plan inherits the 
executionSession of the old PEX). 

3.3.3.2 Context gathering 
With the new Parallel Plan model, context gathering has been moved to the surface: it is a 
parallel Plan now, automatically generated by the Executor. 

The context gathering Plan doesn’t initiate context gathering; it only processes the 
gathered information. So, the acquisition process must be started manually (from another 
Plan), like in the previous releases. 

3.3.3.3 Advantages 
The new parallel model has got advantages both on the programming level and on the user 
level. 

Some user level advantages: 

• The user can extend the ACE with a new parallel functionality without the risk of a 
state explosion, and without (significantly) modifying the existing Plans. 

• Debugging has become easier: It’s easy to see which Plan causes unexpected 
behaviour. 

On the programming level, the producer-consumer pattern for the interaction between 
ExecutorJob and PlanExecutor makes it possible to execute Plans with different throughput 
in parallel. 

3.4 Facilitator and Self Model 

The Facilitator is the ACE organ which provides autonomous behaviour to the ACE. It 
reacts to the changes in the environment and modifies the ACE characteristics with respect 
to the rules which are specified in the Self Model.  

The ACE Self Model is a set of rules and predefined procedures which describes the 
behaviour or multiple behaviours of an ACE. The Self Model representation is a well 
formed XML structure that is provided by the ACE developer. Each ACE has its own Self 
Model which is loaded at the ACE initiation phase, and is continuously analysed and 
executed by the Facilitator during the ACE life time. 
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3.4.1 Facilitator  

The Facilitator is one of the key organs in the ACE model. It provides an ACE with the 
capability to autonomously adapt to changes in the context in which it executes. With 
respect to these changes, the Facilitator will modify the ACE behaviour while adjusting the 
existing or adding new ACE capabilities. 

The characteristics and behaviours of an ACE are specified by the developer within the 
Self Model. As presented in the figure below, the Facilitator loads the Self Model at the 
ACE initiation phase. It then continuously reasons upon changes in the environment and 
creates new or modifies the existing ACE Plans if required. An ACE Plan contains a set of 
actions which should be performed and is processed by the Executor (cf. Chapter 3.3). 

 

 
Figure 6: Facilitator general overview 

As presented in Figure 6, two types of information are important for the Facilitator: first, the 
“Context Data” which is any context information that can be gathered from other context 
provider ACEs and second, the “Events and Actions” which might appear during the ACE 
runtime. Both of them might cause the creation of a new or termination respectively 
modification of the existing ACE Plan, as specified in the Self Model. 

The Context Data is gathered by a common ACE functionality called 
Context_acquisition_service. In order to invoke this functionality a separate ACE Plan5 is 
required. In case the context has changed, the Context_acquisition_service will send a 
ContextChangedEvent that contains the new context data. The new context values will be 
extracted and potential modifications of the ACE behaviour (modification of the active 
Plans) will be performed. More details on this will be provided in the Self Model chapter. 
                                                 
5 Often called context gathering Plan 
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The Facilitator listens to the ACE operation and modifies its behaviour in case predefined 
events have been triggered. For example a CancelContractEvent which indicates the 
loss of the connection to another ACE might cause modification of an active ACE Plan that 
could result in re-establishing the contract to that ACE, or establishing the contract to 
another ACE which can provide the same goal. 

The Facilitator can be used in four different ways:  

• Create a new ACE Plan 

• Delete an existing ACE Plan 

• Modify the ACE Plan(s) 

• Request the ACE Self Model 

• Submit a new Self Model (replace the current ACE Self Model). 

Other ACE organs (e.g. the Executor) could request creation of the new ACE Plan. For this 
reason they have to create the CreatePlanRequestEvent with the ID of the Plan that 
should be created and send it to the Manager. The Facilitator will create a new ACE Plan 
for the requested Plan ID. There is a common functionality “start_plan_service” which 
allows ACE developers to send the CreatePlanRequestEvent from the Self Model. 

Beside the ACE Self Model, the Facilitator maintains all active Plans. Only the copies of the 
Plans are submitted to the Executor for processing. In order to stop the Plan execution and 
delete a Plan from the list of active Plans a RemovePlanEvent, containing the ID of the 
Plan that should be stopped and removed, has to be sent to the Manager. The common 
functionality “stop_plan_service” allows a developer to send a RemovePlanEvent directly 
from the Self Model. 

As already described above, the Plan modification can be triggered either by changes to 
context data (using ContextChangedEvent) or by predefined events and actions.  

The Facilitator can be requested to deliver the ACE Self Model. For this purpose, another 
ACE (e.g. Supervision System) has to send the request for the Self Model using 
ReqSelfModelEvent. After receiving this event, the Facilitator answers with a 
SelfModelEvent and will send the ACE Self Model to the requesting party. 

In the same way the Self Model can be replaced, after some modification for example. 
While receiving the AnnounceSelfModelEvent which contains the new Self Model, the 
Facilitator will replace the current Self Model with the new one. The currently used ACE 
Plan will be recreated according to the new ACE Self Model. 

3.4.2 Self Model 

The Self Model can be seen as “the brain” of the ACE. All possible ACE behaviours and 
capabilities as well as the actions to be performed when certain events arise, are specified 
here. The Self Model is defined in the form of an XML structure and has to be created by 
the ACE developer. A new approach for Self Model creation, the ACELandic scripting 
language, is currently under development (cf. [ACEL]). 
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The ACE Self Model structure is specified in the 
selfmodel.dtd file and comprises the following rules: 

• Every ACE has only one Self Model 

• An ACE Self Model contains at least one ACE 
Plan 

• Each ACE Plan performs certain actions and 
fulfils a certain task 

• The default ACE Plan must be specified 

• The ACE Plan definition contains  

o Full set of all possible states 

o Full set of all possible transitions 

o Rules for creating the ACE Plan 

o Rules for modifying the ACE Plan 

• All ACE Plans must be uniquely identifiable via 
Plan ID 

• All states and transitions that are used within a 
ACE Plan must be uniquely identifiable via IDs 

• Multiple ACE Plans can be started in parallel 

• Rules for creating and modifying ACE Plans use 
standard RuleML syntax 

Figure 7: ACE Self Model structure 
The Self Model is loaded by the Facilitator at the ACE initialisation phase. The default Plan 
is the starting point in the ACE execution process. It is created and submitted to the 
Executor on ACE start-up. Additional Plans can be started from here. 

The ACE Plan that is generated from the Self Model is a state machine. It consists of 
states and transitions which define under which circumstances an action 6  should be 
performed.  

3.4.2.1 States and transitions 
As presented in the figure above, a Self Model can contain multiple Plans which must be 
uniquely identifiable by Plan IDs. Each ACE Plan in the Self Model contains the full set of 
all possible states and transitions that might appear in the Plan and the rules for their 
creation and modification.  

Each State is defined by its friendly name, unique ID and the desirability level. The unique 
ID must be Plan wide unique. The state’s desirability level is an integer value in range 0 to 
10. It has to be defined by the developer and is used by the Supervision System. It 
indicates whether an ACE works confidently or not. If the ACE reaches a state with low 
desirability level that means it is not operating properly and it requires help from the 
Supervision System.  

                                                 
6 Action means invoking a service 
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<state id=”state1”> 
  <friendly_name>Initial State</friendly_name> 
  <desirability_level>10</desirability_level>  
</state> 

Each Transition is defined by its unique ID, source, destination, priority, trigger, 
guard_condition and action. Like for the state, the transition’s unique ID must be Plan wide 
unique. All states and transitions must be uniquely identifiable within the Plan. 

Source and destination contain the state IDs of the two states which will be connected by 
the transition if it gets created. The source state is the state from where the transition can 
be executed and the destination state is the state where the Executor will move to after 
performing the transition. 

Transitions can be prioritised by setting the <priority> parameter. In case a state 
contains multiple transitions that lead from it, the developer can specify the order in which 
they will be checked. This mechanism allows developers to execute the transition B rather 
than the transition A in case both of them satisfy the guard condition. The priority of a 
transition is defined as a positive integer value and is not mandatory. In case the priority 
flag has not been specified, it will be set to 0 by default.  

Transition prioritisation is specified as 

• n (lowest value greater than 0) highest priority transition 

• priority > n     lower priority transitions 

• empty     no priority specified (0 by default). 

Transitions will be sorted that way that the transition with “priority = n” (n is a positive 
integer number) will be examined first, the transitions with “priority > n” will be sequentially 
examined after the first one, and the transitions with non specified “empty priority” are 
examined at the very end.  

The Trigger parameter specifies which event has to occur before the related transition 
should be examined. A developer is allowed to specify the following trigger values: 

• <trigger>@auto</trigger> (Examine the transition immediately.) 

• <trigger>fully qualified event type</trigger> (Examine the 
transition only if particular event type arrives.) 

If the trigger contains @auto, the Executor will examine the guard_condition 
immediately. If the trigger contains “fully qualified event type”, then it will be 
executed only if such an event has arrived. For example a transition that contains 
<trigger>cascadas.ace.event.ServiceResponseEvent</trigger> will be 
examined only if a ServiceResponseEvent has arrived. 

Guard Condition <guard_condition> specifies the condition under which the transition 
should be executed. The Executor will run the transition only if the guard condition is 
satisfied. The developer can specify a guard condition using logical comparators and 
operators.  

The following comparators are supported: 

• LT(): less-than 
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• GT(): greater-than 

• EQUALS(): equality check 

• OWN_COMP(): own comparator class defined by the developer 

The following logical operators are supported: 

• AND: conjunction 

• OR: disjunction 

• NOT: negation 

The following data types can be used in the conditions: 

• Integer (primitive type) 

• Double (primitive type) 

• String 

• NULL / null (comparison against null object) 

Custom comparators (cf. OWN_COMP) must implement the ConditionChecker 
interface. For details please check the javadoc. Custom comparators must be available in 
the classpath, and must have a default (no-arg) constructor. 

The following grammar defines the guarding-condition-language “GCL”. 
CCL = {Expression} 
Expression = OPERATOR(Param) | OPERATOR(Param,Param) 
Param = Expression | Constant | Reference 
Constant = Integer | Double | String 
Reference = <reference to the inputMessage, contract & sessions, the same as in 
the action> 

The guard condition comparators are defined as follows: 

LT(p1, p2) 

• True if (p1 < p2) 

• False if (p1 >= p2) or if an error occurs during the comparison (e.g. p1 or p2 is not a 
number) 

• p1, p2: integer, double 

GT(p1, p2) 

• True if (p1 > p2) 

• False if (p1 <= p2) or if an error occurs during the comparison (e.g. p1 or p2 is not a 
number) 

• p1, p2: integer, double 

EQUALS(p1, p2) 

• True if (p1 == p2) 

• False if (p1 != p2) or if an error occurs during the comparison  

• p1, p2: integer, double, String, NULL 
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OWN_COMP(p1) 

• True if the custom comparator returns true 

• False if the custom comparator returns false or an error occurs during the 
comparison 

• p1:  class name (String) 

AND(p1, p2) 

• True if both p1 and p2 are true 

• False otherwise or if an error occurs  

• p1, p2: boolean 

OR(p1, p2) 

• True if p1 or p2 is true 

• False otherwise or if an error occurs  

• p1, p2: boolean 

NOT(p1) 

• True if p1 is false 

• False otherwise or if an error occurs during the comparison  

• p1: boolean 

Here are a few examples how to specify guard conditions. Please look at chapter 3.4.2.3 
for more details regarding the Self Model syntax. 
<guard_condition>LT(?inputMessage://age,45)</guard_condition> 

Runs the transition if the value in the “age” field of the inputMessage is less than 45. 
<guard_condition>AND( LT(?inputMessage://age,22), 
EQUALS(?globalSession://mode,mode17))</guard_condition> 

The condition is true if the value in the “age” field of the inputMessage is less than 22, and 
the “mode” variable of the globalSession is equal to “mode17”. 
<guard_condition>NOT(EQUALS(?inputMessage://dress_code,null))</guard_condition> 

The condition is true if the “dress_code” field of the inputMessage is not null. 

Action <action> specifies the functionality to be called when a transition is executed. The 
action contains the ID of the functionality to be called and the input parameters which have 
to be passed to it. This information must be in sync with functionality description files as 
described in chapter 3.5.2.  

Functionalities might be called with or without parameters. In case a functionality is called 
without parameters it is sufficient to specify only the functionality ID 
<action>functionality_id</action> whereas if the functionality has input 
parameters, all parameters with their values have to be listed additionally within the 
brackets: 
<action>functionality_id(param1=value1,param2=value2)</action>  
The input parameters are initialised with “=” and are comma separated. 
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Parameter values can be either constants or variables. Constants are set directly in the 
Self Model and by default are parsed like strings (see chapter 3.4.2.3) whereas variables 
are gathered from the input message or session objects. 
<action>wait_service(millis=2000)</action> 

The functionality with the ID “wait_service” will be called with the millis input parameter 
set to 2000 (a string corresponding to the “java.lang.String” parameter of the black box 
description of the common functionality). The parameter is initialised by a constant value 
which is set directly from the Self Model. 
<action>occassion_display_service(occassion=?inputMessage://dress_code)</action> 

The functionality occasion_display_service will be called with the parameter occasion set 
to the current value of the dress_code parameter from the input message. 
<action>show_sre_service(sre=?inputMessage)</action> 

The functionality show_sre_service will be called with the parameter sre set to the input 
message. For exact details on how to pass the entire input message to the functionality 
please look at chapter 3.4.2.4. 
<action>my_init_service</action> 

The functionality my_init_service will be called without passing any parameters to it. This 
must be in sync with the functionality description file. 
<action>generic_service_caller_service(contractId=?executionSession://c1,serviceNa
me=random_provider_service,targetRole=provider,r1=0,r2=10)</action> 

The common functionality generic_service_caller_service will be called with 5 parameters: 

- 1 referenced value: ?executionSession://c1, which is of type 
cascadas.ace.session.Contract; 

- 4 string constants: "random_provider_service", "provider", "0" and "10". 

In particular, the last two parameters are the input for the functionality that will implement 
the service named "random_provider_service". If the developer wishes to invoke a service 
passing constants that are of integer type, he shall write a custom service_caller_service. 

The following grammar defines the transition-action-language “TAL”. 
TAL = {Expression} 
Expression = FUNCTIONALITY_ID | FUNCTIONALITY_ID(Param1=Value1,Param2=Value2,...) 
Param = {input parameters as specified within the functionality description file} 
Value = constants | variables {primitive data types| any Java Object} 

While performing a transition, the Executor will move to the destination state only after the 
action is accomplished successfully. In some cases the action might require a quite long 
time for processing a task, but it would be advantageous to continue with the Plan 
execution even though the task has not been accomplished. In order to specify an 
asynchronous functionality call, developers have to add the asynchronous=”true” flag to the 
transition. 
<transition id=”tr1” asynchronous=”true”> 
  <source>state1</source> 
  <destination>state2</destination> 
  ... 
  <action>my_action</action> 
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</transition> 

In the example above my_action will be called, but the Plan execution will continue and 
the Executor will move to state2 even though the my_action has not been accomplished 
now. Asynchronous is an optional parameter and is set to false by default. 

3.4.2.2 Plan creation and modification rules 
Beside the full set of states and transitions, each Plan must specify the Plan creation and 
modification rules. They are two separate sets of predefined facts and rules written in 
RuleML language.  

RuleML “is a Rule Mark-up Language (RuleML), permitting both forward (bottom-up) and 
backward (top-down) rules in XML for deduction, rewriting, and further inferential-
transformational tasks.” (cf. [RuleML]). 

The basic implementation of the RuleML engine plugged into the Facilitator is the 
OOjDREW 9.2 engine. “OOjDREW is a deductive reasoning engine for the RuleML 
(including its OO extensions), written in the Java programming language.” (cf. [OOJD]). 

The Plan creation rules will be executed only at the ACE Plan creation phase. They define 
how an ACE Plan should be created. As soon as the ACE Plan has been created 
successfully, the Plan modification rules become active and are continuously evaluated by 
the Facilitator during the Plan execution time. 

Plan creation rules are specified within the <creationRuleML> and Plan modification 
rules within the <modificationRuleML> element. Rules are defined in standard RuleML 
language. RuleML 0.88 stripped syntax is used and predefined keywords which will trigger 
different actions are specified. 

RuleML 0.88 stripped syntax is a lightweight version of the RuleML 0.88 syntax and is 
processed by the Facilitator pretty fast. For the Toolkit purposes, the following predefined 
keywords are specified:  

Keyword Description Creation Modification

initState Defines the initial state of the Plan. 
Initial state is the starting point of the 
Plan execution. 

X X 

createState Indicates that a new state should be 
created. 

X X 

deleteState Indicates that an existing state should 
be deleted. All transitions that lead from 
that state will be deleted as well. 

 X 

createTransition Indicates that a new transition should 
be created. Please note that before a 
new transition can be created, the 
source and destination states must be 
available. 

X X 

deleteTransition Indicates that an existing transition 
should be deleted. 

 X 
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startPlan Indicates that an additional Plan should 
be started. 

 X 

stopPlan Indicates that an active Plan should be 
stopped. 

 X 

Table 1: Predefined keywords for Plan creation and modification rules 
RuleML consists of rules and facts. Rules define conditions under which certain assertions 
are true, and facts define statements that are true. Developers are allowed to use 
statements defined in the table above in both, facts and rules. The difference is that the 
statements defined as facts will be always applied, whereas the statements defined within 
the rules will be applied only if the predefined conditions are satisfied. 

RuleML 0.88 starts always with “Assert” that contains the “And” child. Facts are specified 
within the “Atom” elements and rules within “Implies” elements. This is briefly depicted in 
Figure 8. For more information on RuleML 0.88 standard please look at [RuleML]. 

 

 
Figure 8: Basic RuleML structure 

When writing the RuleML you have to consider that you must use the keywords that are 
listed in Table 1 in order to apply any actions to the Plan creation or modification. Any 
variable names etc. can be used for rules and facts, but only the ones with the predefined 
keywords as specified in the table above will be applied for creating or modifying the Plan. 

As already mentioned, RuleML specifies Rules and Facts. Plan actions as specified in the 
table above can be applied within both: Rules and Facts. For example, if a transition is 
always a part of the Plan, then it makes more sense to specify its creation within the facts 
instead of specifying it within the rules. In the following example, the Plan creation RuleML 
consists only of facts.  
<creationRuleML> 
  <Assert> 
    <And> 
      <Atom closure="universal"> 
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        <Rel>createState</Rel> 
        <Ind>state1</Ind> 
        <Ind>state2</Ind> 
      </Atom> 
      <Atom closure="universal"> 
        <Rel>initState</Rel> 
        <Ind>state1</Ind> 
      </Atom> 
      <Atom closure="universal"> 
        <Rel>createTransition</Rel> 
        <Ind>tr1</Ind> 
        <Ind>tr2</Ind> 
      </Atom> 
    </And> 
  </Assert> 
</creationRuleML> 

Figure 9: Sample Plan creation RuleML 
While executing this RuleML, the Facilitator will create a new ACE Plan which contains two 
states (state1 and state2) and two transitions (tr1 and tr2). The initial state of the Plan will 
be set to state1. Please note that each Plan must have one initial state. 

The following example specifies the Plan modification RuleML. It consists only of one rule 
(user is at home AND weather is rainy then create transition tr3). No facts have been 
specified. The facts will be automatically applied by the Facilitator as the context data 
values change during the ACE runtime. In the example presented in Figure 10, transition 
tr3 will be created as soon as user_location changes to “at_home” and weather is “rainy”. 
<modificationRuleML> 
  <Assert> 
    <And> 
      <Implies closure="universal"> 
        <And> 
          <Atom closure="universal"> 
            <Rel>?contextData://user_location</Rel> 
            <Ind>at_home</Ind> 
          </Atom> 
          <Atom closure="universal"> 
            <Rel>?contextData://weather</Rel> 
            <Ind>rainy</Ind> 
          </Atom> 
        </And> 
        <Atom closure="universal"> 
          <Rel>createTransition</Rel> 
          <Ind>tr3</Ind> 
        </Atom> 
      </Implies> 
    </And> 
  </Assert> 
</modificationRuleML> 

Figure 10: Sample Plan modification RuleML 
The rules can depend on two types of data: 

- Changes to context data, using “?contextData://context_name“ 

- ACE execution process, using “?event“ 
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How to modify an ACE Plan with regard to context changes? 

In order to modify an ACE Plan with regard to context changes, you have to ensure two 
things: First, you have to apply “?contextData://context_name“ syntax in your Plan 
creation or modification rules. Second, you have to create a separate Plan that will gather 
the context data. This Plan must be executed at the beginning, before the context data are 
used. Context data are periodically gathered using the common functionality 
Context_acquisition_service. The Context_acquisition_service will periodically poll the 
context information in predefined intervals, and will store the information in the global 
session under the specified name. For example: 
Context_acquisition_service(query_interval=1000, 
service_name=?inputMessage://serviceName,variable_local_name=user_location, 
contract=?executionSession://userLocationProviderContract) 

The Context_acquisition_service will query a User Location Provider ACE which is a 
context provider ACE in 1000 ms intervals and will save the values as context data in the 
global session under “user_location”. If context data change, the Facilitator gets notified 
about the change and gets the new value. It will apply it to the rules and perform actions if 
required. 

Please note that the local_name parameter which is used for the 
Context_acquisition_service must be the same as the context name used in the RuleML 
?contextData://context_name. Otherwise the facts which will be applied by the 
Facilitator won’t affect the rules. 

Please note as well that context data might be also used by the specific functionality of the 
ACE. Therefore, the ACE might use the Context_acquisition_service in order to gather 
more context data than specified in the RuleML but which might be used by the application. 
These additional context data will not affect the creation or modification rules if they are not 
used there. 

 

How to modify an ACE Plan with regard to the ACE execution process? 

The ACE Execution process is characterised by sending events of a certain type. Events 
are either sent by the ACE itself during the execution process (e.g. 
CancelContractEvent which indicates cancelling of a contract with a certain ACE) or 
from a common or specific functionality.  

In order to modify an ACE Plan with regard to the ACE execution process, the ?event 
syntax has to be applied in the RuleML rules. For example: 
<modificationRuleML> 
  <Assert> 
    <And> 
      <Implies closure="universal"> 
        <And> 
          <Atom closure="universal"> 
            <Rel>?event</Rel> 
            <Ind>cascadas.app.MyEvent</Ind> 
          </Atom> 
        </And> 
        <Atom closure="universal"> 
          <Rel>createTransition</Rel> 
          <Ind>tr3</Ind> 
        </Atom> 
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      </Implies> 
    </And> 
  </Assert> 
</modificationRuleML> 

The rules above specify that the transition tr3 should be created if “cascadas.app.MyEvent” 
has arrived at the Manager. The following RuleML syntax has to be used in order to invoke 
the actions that are specified in Table 1: 

Rules: 
Relation = ?contextData://context_variable | ?event 
IndConstant = {context value} | {event type} 

Facts and Rule Results 
Relation = createState | deleteState | initState | createTransition |  
  deleteTransition | startPlan | stopPlan 
IndConstant = {state Id} | {transition Id} | {plan Id} 

Note: The Facilitator uses OOJDREW 0.92 Bottom-Up Reasoning Engine [OOJD]. In order 
to test and verify the Plan creation or modification RuleML developers can use the Java 
Web Application available on the website (www.jdrew.org/oojdrew/demo/bottomup92.jnlp).  

3.4.2.3 Self Model Syntax 
This part describes constants and variables that can be used within the Self Model. They 
are either used as input parameter for the service call within the <action> part or are 
used within the creation or modification RuleML. 

Constants 
Developers can specify either variables or constants within the Self Model. Constant values 
are defined as constant strings. For example, ace_name=ACE1 defines a constant value 
“ACE1” that is defined within the Self Model and will be used directly.  

An example of using constants as input parameters to a functionality call within the 
transition: 
<action>start_plan_service(planId=Plan2)</action> 
<action>wait_service(millis=2000)</action> 

Variables 
Variables on the other hand are specified using “?”. An ACE developer is allowed to use 
the following predefined variables within the Self Model: 

- ?inputMessage  Input message 

- ?executionSession Plan execution session 

- ?globalSession  ACE global session 

- ?contextData  Context parameters (are continuously updated) 

The variables specified within the Self Model can only be read. For example, in order to 
access parameters from the execution session executionSession://parameterName, 
the parameters must be first made available within the session object either using a 
common functionality like generic_add_to_execution_session_service or while writing them 
within the specific functionality executionSession.put(parameterName, 
parameterValue);. 
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In order to access parameters from the variables specified above, ACE developers have to 
use the following syntax: “?storageName://parameterName” where ?storageName 
can be one of the variables listed above and parameterName the name of the parameter 
that is available in the parameters list. 

?inputMessage represents the incoming message that has been received by the ACE. 
An input message can be received upon a service call to another ACE on behalf of actions 
in previous transitions. 
<transition id="tr1"> 
  <source>state1</source> 
  <destination>state2</destination> 
  <priority>1</priority> 
  <trigger>@auto</trigger> 
  <guard_condition></guard_condition> 
  <action>gn_sender_service(goalName=age,myAddress=?globalSession://aceAddress) 
  </action> 
</transition> 
<transition id="tr2"> 
  <source>state2</source> 
  <destination>state3</destination> 
  <priority>1</priority> 
  <trigger>cascadas.ace.event.GoalAchievableEvent</trigger> 
  <guard_condition></guard_condition> 
  <action>contract_establishment_service(user=?globalSession://aceAddress, 
provider=?inputMessage://providerAddress,contractId=ageContract)</action> 
</transition> 

Explanation: While executing transition tr1, the gn_sender_service will send a GN 
message searching for ACEs which can provide “age”. The Executor will then move to 
state3 and will wait for the first positive answer (GoalAchievableEvent). The 
providerAddress is carried by the GoalAchievableEvent and can be accessed 
using ?inputMessage://providerAddress. 

?inputMessage corresponds always to the external / incoming message, whose type is 
specified within <trigger>. Developers can access any parameter that is available within 
the input message. 

?executionSession represents the Plan Execution Session. ACE developers are 
allowed to access all parameters which are made available within the execution session. 
Variables have to be stored to the execution session first, in order to enable access to their 
values within the Self Model. Parameters can be written to the execution session within the 
specific functionality or using the common functionality 
generic_add_to_execution_session_service. 

One can write a parameter into the execution session in the following way:  
executionSession.put(“parameterName”, value) 

The value can be used within the Self Model using:  
?executionSession://parameterName 

?globalSession represents the Global Session of the ACE. Similar to the execution 
session, all parameters that are available within the global session can be accessed in the 
Self Model using: ?globalSession://parameterName. 

Please note that the execution session and the global session with all their parameters can 
be accessed directly within the specific functionality as well. In order to make your specific 
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functionality session aware (i.e. allowing direct access to the session objects within the 
specific functionality), it must implement the SessionAware interface. 

?contextData represents context information 7  that is available within the ACE. 
Developers can specify context data as the input parameters to services or to the ACE 
creation and modification rules. Before the context parameters can be read from 
?contextData, the context_acquisition_service() has to be called first.  

The context values are stored within the global session from where they can be accessed. 
Within the Self Model, ACE developers can access the context data using 
?contextData://paramName 

How to call the context acquisition service? 
<transition id="tr3"> 
 <source>state3</source> 
 <destination>state4</destination> 
 <priority>1</priority> 
 <trigger>@auto</trigger> 
 <guard_condition></guard_condition> 
 <action>Context_acquisition_service(query_interval=2000, 
   service_name=?inputMessage://serviceName, 
   variable_local_name=age, 
   contract=?executionSession://ageContract) 
 </action> 
</transition> 

In the example above, while running transition tr3, the Executor will call 
Context_acquisition_service which will then periodically (every 2 sec.) request the 
context date “age” form the context provider ACE which has been contracted before. 

Context_acquisition_service requires four parameters:  

- query_interval  (Context pulling interval) 
- service_name  (Service name, extracted from the GA message.) 
- variable_local_name  (Name of the context variable where to store the   

value. It should be unique.) 
- contract   (The contract established upon GN-GA.) 

The context values can be read within the Self Model using 
?contextData://variable_local_name. They can be applied to both, functionality 
input parameters and the RuleML for specifying certain rules. 

3.4.2.4 Self Model how to 
How to start multiple ACE Plans in parallel? 

There are two possible ways to start an additional ACE Plan in parallel. The first solution is 
to specify “startPlan” with the Plan ID of the additional Plan to be started within the Plan 
modification rules. In the modification rules you have to ensure that the Plan is created only 
once. The second possibility is to start a parallel Plan from another ACE Plan using the 
common functionality start_plan_service. 

 

                                                 
7 The Context is implemented as Map<String,Object> in the globalSession. It is also available for 

those specific functionalities that are session aware. 
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How to stop an ACE Plan? 

Same as for starting an additional ACE Plan, you can stop an already executing ACE Plan 
from the Plan modification rules using the common functionality stop_plan_service. An 
ACE Plan can also self terminate while performing the transition that executes 
stop_plan_service and pass its own Plan ID to it. 

How to pass the entire input message to the functionality? 

Developers can pass the entire input message (e.g. ServiceCallEvent) as the input 
parameter to the specific functionality. In order to do this, the functionality must implement 
a method that accepts the input message as the input parameter. In the Self Model you 
simply specify ?inputMessage as the input parameter, and the entire input message will 
be passed to the called functionality. This might be very useful for debugging purposes. 

For example:  
<transition id="tr4"> 
  <source>state4</source> 
  <destination>state5</destination> 
  <priority>1</priority> 
  <trigger>cascadas.ace.event.ServiceCallEvent</trigger> 
  <guard_condition></guard_condition> 
  <action>my_service(msg=?inputMessage)</action> 
</transition> 

The transition will call the my_service functionality and will pass the entire 
ServiceCallEvent as the input parameter to it. 

3.5 Functionality Repository 

The Functionality Repository (or just Repository) is an ACE organ responsible for storing 
and invoking the specific functionalities of the ACE instance, and for storing and invoking of 
the common functionalities.  

3.5.1 Basic Concept of the Functionality Repository 

3.5.1.1 Purpose 
The purpose of the Functionality Repository is to enable specific functionalities to get 
deployed into the ACE instance and get accessed on request. That’s why the Functionality 
Repository shows a two-faced behaviour: 

– It is a storage facility. It keeps track of the deployed functionalities, creates and 
stores instances of the underlying classes, and maintains call-related variables. 

– It provides an invocation interface, handles invocation requests (coming from the 
Executor) and interprets them as calls to the functionalities. 

The primary source of the invocation requests is the Executor. The Executor translates 
Plan actions into FunctionalityCallEvents, and sends them to the Repository8. 

                                                 
8 In the new release (2007 December) we introduced a direct communication channel between the 

Executor and the repository, instead of the Manager-based channel. This decision has advantages 
on both the user and the technical level, without limiting the supervisablility of the ACE. 
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– The Functionality Repository receives the FunctionalityCallEvents (FCEs) 
and maps them into method calls on the deployed functionalities. 

– The output of a call is a set of events. The Functionality Repository sends these 
events to the Manager or to the Gateway (depending on the event type: internal 
or external). 

Besides that, the Functionality Repository also follows the same Event based access 
model as the other ACE organs do. So it is also ready to receive 
FunctionalityCallEvents from the Manager (mainly for backward compatibility 
reasons). The handling of an event arriving from the Manager does not differ from the 
handling of an event arriving from the Executor directly. 

3.5.1.2 Connection with other ACE organs and external ACEs 

Functionality 
Repository

Executor Bus

Gateway
The Executor sends 
invocation requests

Backward compatibility: 
invocation requests may 
also arrive from the Bus

The Events resulting 
from the call are 
sent to the 
Bus/Gateway

 
Figure 11: Connections with other organs 

The Functionality repository is in connection with 3 ACE organs: 
– The Executor is the primary source of the invocation request. Requests are 

arriving on a direct communication channel (with direct method call) in form of 
FunctionalityCallEvents. 

– The Manager (formerly called Bus) is the destination of those result events of the 
call that result from the call and are ACE-local. For backward compatibility, the 
Manager is a secondary input source of the FunctionalityCallEvents. 

– The Gateway is the destination of those result events of the call that are 
addressed to other ACEs (external, inter-ACE).  

3.5.1.3 Design concepts 
The main design principle of the Functionality Repository is to support the transformation of 
existing libraries into the ACE functionalities in a seamless way. 

– The porting of existing libraries into an ACE functionality should be possible 
without the modification of the source code.  

– In normal cases, the porting process should not be more complex than providing 
an XML descriptor about the functionality. 

– On the other hand, the creator of the functionality should have complete freedom 
in customising the process. Custom loader, mapper etc. classes may be used. 
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Through implementing standard interfaces, the creator gets access to specifically 
ACE-related resources (e.g. sessions, logs).  

The Functionality Repository should be mobile in the meaning of moving from one 
computer to another. 

Based on the fact that the time needed for a functionality call may be long, the Repository 
should be able to perform the call in a separate thread, in order to prevent the blocking of 
the ACE. 

3.5.1.4 Terms 
To avoid the misunderstandings, we differentiate between service and functionality. 

– Service: the external view of the functionality. Other ACEs see the functionality 
as a Service, and access it with ServiceUsageEvents (or more precisely, with 
its subclasses, e.g. ServiceCallEvent and ServiceReturnEvent). 

– Functionality: the internal view of the functionality. The Plan refers to 
functionality names (IDs), and the Executor creates 
FunctionalityCallEvents to access them. The 
FunctionalityCallEvent usually contains a wrapped 
ServiceUsageEvent. 

3.5.2 The Functionality Model 

The functionality model used by the Functionality Repository consists of four parts: 
– Unique ID of the functionality (name) 
– Event model: the input and output events of the invocation. The input event is 

always a FunctionalityCallEvent. The output events are the events 
generated by the call. 

– Black-box model: input and output parameters (parameter names and types). 
– The underlying call sequence. Technical description: class and method names, 

and their parameter list. 

The functionality descriptor is provided in form of an XML file that is placed into a 
previously specified directory. A separate XML file is created for each functionality. 
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Figure 12: Functionality model 

There is a major difference between the classical functionality models and the model we 
are using in the Toolkit: we abstract the functionality as a set of input and output events. 
While in classical models, functionalities are abstracted as input and output values. We are 
using events to describe the functionality. This can also be considered as an additional 
abstraction layer above the classical model (event layer on top of the black-box layer).  

Referring to Figure 12, the two bottom layers (black-box and call layers) describe a 
classical functionality model. The innovative part is the uppermost layer (the event one). As 
most readers may be more familiar with the classical models, we give detailed description 
about the bottom layers before going to the event level. 

3.5.2.1 Functionality name 
The functionality name must be a string and must be unique. There are no other 
restrictions, it may consists of a single word or of more than one words, and may contain 
special characters. 

The recommendation is to use lowercase letters, delimit the words by a “_” sign, and to 
finish the service name with “_service”. For example, the followings are well-formed service 
names: 
call_counter_service 
simple_phonebook_lookup_service 

3.5.2.2 Black box model 
The black box model of the functionality describes the input and output of the underlying 
call.  
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Input and output parameters are both optional, as the Functionality Repository supports 
both no-arg methods and void return values. That’s why the following description is also 
valid. 
  <black-box-description> 
  </black-box-description> 

The input and output parameters are described with name and type. Type is specified as a 
string which can be either the fully qualified class name or the name of the primitive type. 
Own class types are supported as well. 
  <black-box-description> 
    <input> 
      <param name="name" type="java.lang.String"/>     // standard class 
      <param name="apple" type="mypackage.Apple"/>     // own class 
      <param name="i" type="int"/>                     // primitive type 
    </input> 
    <output name="line" type="java.lang.String"/> 
  </black-box-description> 

3.5.2.3 Underlying call sequence 
The underlying call sequence can be a simple method call or a complex series of calls.  

In case of a simple call, all the black-box defined input parameters are passed to the 
method of the described class. 
<simple-call-details  
  class-name="testfunctionality.sessioncontextexample.CallCounter"  
  method-name="add"/> 

In case of a complex call sequence, the input and output parameters of each call are 
described one by one.  
  <complex-call-details> 
    <call class-name="testfunctionality.MyPhoneBook"  
    method-name="loadPhoneBook" > 
      <arg ref="phone book file"/> 
    </call> 
    <call class-name="testfunctionality.MyPhoneBook"  
    method-name="lookupPhoneNumber"> 
      <arg ref="surname"/> 
      <arg ref="first name"/> 
      <return ref="phone number"/> 
    </call> 
    <call class-name="testfunctionality.MyCache" method-name="put"> 
      <return ref="phone number"/> 
    </call> 
  </complex-call-details> 

Input and output arguments are optional, just like in the black-box description, to support 
void and no-arg methods. The referred argument names are either coming from the black-
box model or from an output value of a predecessor call. 

Functionalities that are especially designed for ACEs may request access to the ACE 
variables (sessions, logs, ...). Some ACE variables can be used as a permanent storage 
for data. 



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D1.3

Appendix: Prototype 
Documentation and Tutorial

 

Editor: Sandra Haseloff 

Page 40 of 80 

3.5.2.4 Event layer 
The Event layer describes (the input and) the output events of the call. The input event is a 
FunctionalityCallEvent by definition, so this part is omitted from the descriptor. 

The output events can be described in two ways: as an event mapping or as an event 
mapper. The description also refers to the technical details. 

An event mapping simply describes which event type to create and how to fill it with 
contents. The content may come from the black-box model (e.g. output value of a call) or 
from an ACE variable. 

The following mapping means that two output events will be created, both are 
ServiceResponseEvents, the first will have the “apple” as parameter, and the second 
the “surname”, “first name” and the “phone number”. The referred parameter names must 
be available in from the black box model or from the output of a call.  
  <output-event-mappings> 
    <mapping event="cascadas.ace.event.ServiceResponseEvent" role=”user”> 
      <value ref="apple"/> 
    </mapping> 
    <mapping event="cascadas.ace.event.ServiceResponseEvent" role=”user”> 
      <value ref="surname"/> 
      <value ref="first name"/> 
      <value ref="phone number"/> 
    </mapping> 
  </output-event-mappings> 

The “role” attribute of the outgoing event refers to the role of the recipient party, as defined 
in the contract in which the service has been invoked. So, if the contract defines that ACE1 
plays as “provider” and ACE2 plays as “user”, the outgoing event addressed to “user” will 
go to ACE2. Each event can have only one recipient role. If the message should be sent to 
more than one recipient, separate mappings should be defined for each; or an 
OutputEventMapper. 

If the functionality is SessionAware or CallWideContextAware (cf. sections 3.5.6.2 
and 3.5.6.3), it may refer to parameter values coming from those contexts with the 
corresponding prefixes. 
    <mapping event="cascadas.ace.event.ServiceResponseEvent"> 
      <value ref="x"/>                           // in/out parameter of a call 
      <value ref="globalSession://sum"/>         // from the globalSession 
      <value ref="executionSession://y/>         // from the executionSession 
      <value ref="callWideContext://file name"/> // rom the CallWideContext 
    </mapping> 

If the direct event mapping is not enough (e.g. the number of outgoing event is not known 
when the descriptor XML is created), the programmer may provide a suitable output event 
mapper descendant (cascadas.ace.functionality.service.OutputEventMapper) class that 
creates the appropriate output events.  
  <output-event-mappings> 
    <mapper mapper-class="testfunctionality.MyOutputEventMapper"/> 
  </output-event-mappings> 

Mappers are able to create a set of events from the available call parameters (black box 
and output), and from the session and CallWideContext. The specified custom mapper 
class must be available in the classpath. 
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public interface OutputEventMapper { 
    public Set<Event> createOutputEvents(CallParameters params,  
    Session executionSession, Session globalSession, CallWideContext 
callWideContext); 
} 

Mappers and mappings can be used independently of each other, also in a mixed way. The 
following fragment specifies both two mappings and one mapper. 
  <output-event-mappings> 
    <mapping event="cascadas.ace.event.ServiceResponseEvent" role=”user”> 
      <value ref="apple"/> 
    </mapping> 
    <mapping event="cascadas.ace.event.ServiceResponseEvent" role=”supervisor”> 
      <value ref="apple"/> 
    </mapping> 
    <mapper mapper-class="testfunctionality.MyOutputEventMapper"/> 
  </output-event-mappings> 

Examples and more details can be found later. 

3.5.3 Accessing a Service from Another ACE 

In conformance with the dictionary, we are speaking about calling a service when the 
functionality is accessed by another ACE. 

In order to access the service, the other ACE creates a ServiceCallEvent and is going 
to get back a ServiceResponseEvent as a response. Both events are subclasses of the 
ServiceUsageEvent, and both make it possible to pass the parameters (names and 
values) and other specific data (functionality name, error) to the remote party. 

The Executor – when following a transition – extracts the call parameters from the 
incoming ServiceUsageEvent and wraps them into a FunctionalityCallEvent and 
forwards the FCE to the Functionality Repository which will result in the effective call.  

The ServiceCallEvent should contain all input parameter values that are described in 
the black box model of the functionality, to avoid faults. For example, if the black-box 
description of the phonebook-service functionality contains the following parameters 
  <black-box-description> 
    <input> 
      <param name="surname" type="java.lang.String"/> 
      <param name="first name" type="java.lang.String"/> 
    </input> 
    <output name="phone number" type="java.lang.String"/> 
  </ black-box-description> 

then the following ServiceCallEvents are valid because they contains all parameters 
ServiceCallEvent[first name=”Jack”, surname=”Smith"] 
ServiceCallEvent[first name=”Jack”, surname=”Smith",number=”1”] 

but the next ServiceCallEvent will result in an error: 
ServiceCallEvent[surname=”Smith"] 

The caller ACE has to prepare the ServiceCallEvent (with a Mapping or a Mapper) and 
send it to the called ACE. The called ACE has got the authority to make a decision whether 
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or not to perform the call. The decision is made by the Executor, based on the Plan (e.g. 
guard condition, trigger condition). 

3.5.4 Specific Functionalities and Common Functionalities 

Some functionalities are available by default on all ACEs while other functionalities are 
specific to certain ACE type(s). The first group is called “common functionalities” while the 
second one is called “specific functionalities”.  

3.5.4.1 Common functionalities 
Common functionalities are deployed (loaded) during the ACE start-up by default. For the 
time being, the following common functionalities are available. 
 

Scope Functionality name Description 
service_caller_service Calls a remote service. 

@deprecated, replaced by 
generic_service_caller_service 

service_caller_oneparam_service Calls a remote service with one 
parameter. @deprecated, replaced 
by generic_service_caller_service 

generic_service_caller_service Calls a remote service with arbitrary 
number of parameters. 

Service 
invocation 

send Sends an arbitrary inter-ACE event 
(also fills it with contents). 

gn_sender_service Sends a GN. 

gn_answer_service Answers the GN with a GA. 

contract_establishment_service Establishes a two-party contract 
(user-provider), and saves it to the 
executionSession. @deprecated, 
replaced by 
contract_n_establishment_service  

contract_n_establishment_service Establishes a multi party contract 
with an arbitrary number of ACEs 
and roles, and saves it to the 
executionSession. 

GN-GA, 
Contracting 

cancel_contract_service Cancels a contract 

add_to_execution_session Saves a key-value pair to the 
execution session. @deprecated, 
replaced by 
generic_add_to_execution_session 

Session 
manipulation 

add_to_global_session Saves a key-value pair to the global 
session. @deprecated, replaced by 
generic_add_to_global_session 
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generic_add_to_execution_session Saves any number of key-value 
pairs to the execution session. 

generic_add_to_global_session Saves any number of key-value 
pairs to the global session. 

store_contract_in_global_session Stores the contract in the global 
session. Also adds entries for all 
roles of the given contract, 
referencing to the AceAddress of 
the participant. 

Context 
acquisition 

Context_acquisition_service Initiates the context gathering from 
the given ACE and variable. 

event_scheduler_service Schedules an event to happen once 
in the future. @deprecated, use 
add_timer_service instead 

ntimes-event-schedule-service.xml Schedules an event to happen 
repeatedly n times. 

periodic-event-schedule-service.xml Schedules an event to happen 
repeatedly forever. 

wait_service Waits for a while. 

add_timer_service Adds a timer that will fire a 
TimerExpiredEvent in the given 
time. 

Event 
scheduling, 
timing 

cancel_timer_service Cancels a timer. 

plan_changer_service Requests Plan change. 
@deprecated, removed, use 
start_plan_service instead 

request_life_cycle_service Requests a life cycle action. 

start_plan_service Starts a new parallel Plan. 

Misc. 

stop_plan_service Stops a Plan. 

3.5.4.2 Specific functionalities 
Specific functionalities are prepared by the ACE programmer. They consist of the source 
code (called classes and methods, and optionally output mappers) and the XML descriptor.  

By default, the services are deployed to the Functionality Repository at the start-up of the 
ACE.  

The Repository gets a folder name, and loads all functionality descriptor XML files from it. 
When loading a descriptor XML, the repository checks the availability of the classes and 
methods, but does not create instances nor performs method calls. 
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3.5.4.3 Deploying a specific functionality to the Repository 
The functionality folder (the folder containing the XML descriptors of the specific 
functionalities) can be specified in the ACE descriptor file (normally 
conf/aces/my_type/ace_type.xml). 

The steps to deploy your functionality into the ACE are the following.  
– Place its descriptor XML into the “repo” folder of your ACE type 

(conf/aces/my_type/repo). 
– Make sure that your classes/jars are available in the classpath. 
– Specify the place of the “repo” folder in the ACE descriptor 

(conf/aces/my_type/ace_type.xml). 
– Add your ACE instance to the conf/aces.xml. 
– Start the Toolkit and check for error messages originating from the Repository. 

Sample descriptor XMLs can be found in the “conf” folder of the Toolkit. 

3.5.5 Statelessness 

The Repository does not maintain any state information between the calls.  
– It is not guaranteed that two subsequent invocations will be executed on the same 

instance of the called class. (E.g. two “phonebook-lookup-service” calls might be 
executed on two different MyPhoneBook instances). 

– Inside one invocation, in complex call sequence, if two call parts refer to the same 
class (MyPhonebook.loadFunctionality() and 
MyPhonebook.lookup()), it is guaranteed that they will be executed on the 
same instance of the class. 

The following data are lost at the end of the call (after the output events are sent): 
– All field values of the called classes. 
– All input and output (return) values of the calls. 
– Any other side-effect of the call, except for: 

• data that are stored in the global / execution session (see next section) 
• threads that are registered to the central ThreadPool of the ACE 

3.5.6 Accessing the Sessions and the Repository-Internal 
 Data Structures 

There are ways to store information during/between calls and to make information available 
for the output event creation: CallParameters, CallWideContext, 
ExecutionSession, GlobalSession. CallParameters is a data structure that can be 
used for output mapping/mappers only.  

The word “session” refers to ACE-local variables that store internal state information in a 
permanent way.  
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3.5.6.1 CallParameters 
CallParameters is an auto-created data structure, it contains the input and output 
parameters of all call parts (which is equal to or more than the black box model). 
Parameters are key-value pairs (parameter name – parameter value). This is the 
guaranteed minimum knowledge that is available for the output event creation. 

The CallParameters is not accessible from inside of a specific functionality class.  

For the output event creation, the data stored in the CallParameters are directly 
accessible by name. 
  <output-event-mappings> 
    <mapping event="cascadas.ace.event.ServiceResponseEvent" role=”x”> 
      <value ref="number"/>           // “number” was an in/out param of a call 
    </mapping> 
  </output-event-mappings> 

When using OutputEventMappers, the CallParameters is passed to it as argument. 

3.5.6.2 CallWideContext 
CallWideContext is a data storage facility (contains key-value pairs) that is available 
throughout the call: from the point when the Repository finds the requested functionality 
until the point when all output events are sent back.  

CallWideContext makes it possible to publish (and access) key-value pairs other than 
the return value of the call parts. It can also be used to store information for the event 
mapping. 

The CallWideContext may be available from inside of the called functionality class. In 
order to get access to it, the class of the specific functionality must implement the interface 
CallWideContextAware (cascadas.ace.functionality.service.CallWideContextAware), 
which makes it possible for the Repository to forward the CallWideContext to it. 
public interface CallWideContextAware { 
    void setCallWideContext( CallWideContext callWideContext ); 
} 

When event mapping, values stored in the CallWideContext should be prefixed with the 
string callWideContext://. 
    <mapping event="cascadas.ace.event.ServiceResponseEvent" role=”x”> 
      <value ref="callWideContext://file name"/> 
    </mapping> 

The CallWideContext is passed to the OutputEventMappers as an argument. If the 
functionality is not CallWideContextAware, this is an empty context (not null). 

3.5.6.3 Sessions 
Sessions contain key-value pairs that are guaranteed to be maintained throughout the 
session, so even between the calls.  

There are two sessions available in each functionality call: the globalSession and the 
executionSession. The global session is created at the bootstrap of the ACE and is 
maintained as long as the ACE is alive (even between migrations). The execution session 
is created when the current Plan is started, and is valid during the execution of the Plan.  
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Just like CallWideContext, a Session makes it possible to publish (and access) key-
value pairs other than the return value of the call parts. It can also be used to store 
information for the event mapping.  

Sessions should be handled with care. As they may keep their contents for long time 
(maybe even whole lifecycle of the ACE); they should not be abused for storing non inter-
call important data.  

The Session may be available from inside of the called functionality class. In order to get 
access to it, the class of the specific functionality must implement the interface 
SessionAware (cascadas.ace.functionality.service.SessionAware), which makes it 
possible for the Repository to forward the Session to it. The two setters will be called 
automatically by the Repository if the specific functionality implements the interface. 
public interface SessionAware { 
    void setExecutionSession(Session executionSession); 
    void setGlobalSession(Session globalSession); 
} 

In case of event mapping, the values stored in the two Sessions should be prefixed with 
the strings globalSession:// and executionSession://, accordingly. 
    <mapping event="cascadas.ace.event.ServiceResponseEvent"> 
      <value ref="globalSession://apple.weight"/> 
      <value ref="executionSession://pear.color"/> 
    </mapping> 

The two sessions are also passed to the OutputEventMappers as arguments. If the 
functionality is not SessionAware, they are empty (but never null). 

3.5.7 Accessing other ACE Resources 

3.5.7.1 Logging 
The specific functionality is able to gain access to the ACE (instance) logger in case it 
implements the interface LogAware. 

3.5.7.2 ThreadPool 
The thread pool is a tool to enable the specific functionalities to use own custom threads 
while ensuring consistency with the ACE life cycle (e.g. ACE shutdown, mobility).  

How does the Thread pool work? 
Specific functionalities start their custom threads with the help of the pool. The pool 
maintains a registry about these threads. 

On the corresponding life cycle event, the Repository shutdown process also 
includes the stopping (interrupting) of the threads of the thread pool. This way, the 
ACE does not leave “zombie” threads in the Java Virtual Machine after shutdown. 

Rules: 
Specific functionalities must not start threads the usual way (Thread.start()) 
they should use the ThreadPool for starting their custom threads. 

The thread pool is available for those specific functionalities that implement the 
interface cascadas.ace.functionality.service.ThreadPoolAware.  
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The ThreadPool interface defines a single execute method that executes the specified 
logic in a new Thread. 
/** General interface of the ThreadPool towards the specific functionalities. */ 
public interface ThreadPool { 
    /** 
     * Starts a new thread with the specified Runnable as target. 
     * @param r target 
     */ 
    public void execute( Runnable r ); 
} 

3.5.8 What Happens when a Service is Called? 

When the Functionality Repository receives a valid FunctionalityCallEvent, the 
following action sequence is performed.9  

1. The Repository looks up the referred functionality ID. 

2. Creates the CallParams and the CallWideContext. 

3. Gets the list of the classes that will be needed (that are referred in the call parts) 
and creates/gets an instance of each. 

4. Checks whether the classes are CallContextAware, SessionAware, 
ThreadPoolAware or LogAware. If yes, forwards them a reference to the 
concerning resource. 

5. Extracts the input parameters from the FunctionalityCallEvent. 

6. Performs the call parts one by one, and saves their result to the CallParameters. 

7. Performs the event mappings: creates, fills and sends the output events one by 
one. 

8. Performs the mapper based event mappings: asks the OutputEventMappers to 
create the set of outgoing events, then sends them one by one. The 
OutputEventMapper gets access to the CallParameters, to the 
CallWideContext, and to the Sessions. 

3.5.9 Technical Expectations, Error Handling 

3.5.9.1 Technical expectations 
The deployed functionalities must have default (no-arg) constructors. 

If an outgoing event is a ContractEvent, it must have a constructor that takes the 
contract as parameter. If the outgoing event is not a ContractEvent, it must have a 
default (no-arg) constructor. 

                                                 
9 Note: the Session is part of the FunctionalityCallEvent. 
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3.5.9.2 Error handling during the deployment 
All deployed functionalities are checked for availability during deployment. Errors are 
logged, erroneous functionalities are not loaded (but the loading of other functionalities 
continues). 

3.5.9.3 Error handling during the call 
By default, the errors are logged but are not sent back to the caller.  

In order to support error handling, please include error related fields into the return events. 
For example, the ServiceResponseEvent contains methods for this purpose. 

4 Integration Features 

This chapter describes how features like aggregation, security, Knowledge Networks and 
the Supervision System are integrated with and supported by the Toolkit. 

4.1 Knowledge Network Support 

Knowledge Networks as they are developed by WP5 are a mechanism to structure and 
organise knowledge. Their key elements are storage components, a querying interface, 
and a verification mechanism. Information can be stored in Knowledge Atoms and Atom 
Repositories where Atoms comprise one portion of information and Atom Repositories 
summarise a set of Atoms. Knowledge Containers are elements that organise other, 
related components in higher-level structures. The components to be organised can again 
be Atoms, Atom Repositories or Containers themselves. The querying interface can be 
used by entities, which do not necessarily need to be part of the Knowledge Network, in 
order to search for information related to a topic, i.e. a concept of interest. The answer to a 
placed query is the data found in any components of the Knowledge Network and related 
to the requested concept. Organisation and linking of data is internal to the network and 
takes place autonomically. In order to maximise the validity of information a Context 
Verification mechanism can be utilised to check the correctness of data with respect to 
former experiences and other related knowledge available within the network. This 
Knowledge Network paradigm enriches an environment with well organised and thoroughly 
maintained data, i.e. information. Services in an environment that provides a Knowledge 
Network can access and benefit from this information. Figure 13 shows the interaction 
between requesters and the Knowledge Network where all entities are realised as ACEs. 
Detailed explanations of that topic are available in [D5.3]. 
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Figure 13: Interaction between requesters and the Knowledge Network 

In order to enable the usage of Knowledge Networks for all applications within the scope of 
the CASCADAS project, their design was aligned with the development of the WP1 Toolkit. 
All Knowledge Network components can exist as separate entities exhibiting and utilising 
services and interfaces of others. During the last research period, these entities were 
ported to the Toolkit concept which means that they were realised as ACEs, as envisaged 
by WP1. Due to that, Knowledge Networks can now be integrated in any other ACE based 
application environment. Along with the porting to ACEs, further requirements arose and 
still arise which demand extension and adaptation of the Toolkit to the needs of WP5.  

Until now, the integration process made very large progress but is not yet entirely 
completed. Though the implementation is already done in large parts, more analyses and 
adaptation work have to take place. In order to demonstrate the results which have been 
achieved by now, the Context Verification system as one part of Knowledge Networks was 
integrated in the WP1 application example. The application itself is described in chapter 5. 
In the remainder of this section we will only explain how Context Verification was integrated 
to exemplarily show that the concept of Knowledge Networks is supported by the 
CASCADAS Toolkit. 
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The Context Verificator is integrated into the example application (cf. chapter 5) as one 
dedicated ACE. In order to verify all data the displaying ACE uses to select an advert, it 
searches for a component which offers a Context Verification service by sending out an 
according Goal Needed event. Subsequently, the Verificator ACE will answer with a Goal 
Achievable which comprises all information that is needed to call the verification service. 
This includes the service name and the parameters which have to be passed. When 
receiving the Goal Achievable, the Display creates a contract to the Verificator and is, from 
now on, able to call its service whenever this is required. In the flow of the application, the 
Display periodically collects data about the surrounding people and hands them to the 
Verificator ACE before selecting an advert accordingly. The Context Verificator then 
searches for formerly made experiences which are related to the data it currently has to 
validate. Based on the search results, it evaluates all available information and decides 
whether to classify the current contextual data as valid (true) or suspicious (false). An 
advert will only be displayed if the current context is regarded to be correct. The 
implementation of the Context Verificator and the performed algorithm are described in 
detail in [D5.3].  

4.2 Supervision Support 

The capabilities of being supervised are inherent to all ACEs as they are specified in a 
dedicated organ. Its implementation can be found in the cascadas.ace.supervision 
package. 

Supervision works by adding so-called checker objects to critical monitoring points in the 
ACE. Currently these are the outgoing queues of the Manager (enabling supervision of 
internally dispatched events) and the Gateway (enabling supervision of externally 
dispatched events). A checker is consulted every time a monitoring event occurs and the 
event is either accepted or denied, which may lead to an exception in the supervised organ 
(e.g. the Manager). It is planned to also integrate supervision checkers at other points 
within an ACE, for example during execution of a transition of the Self Model. 

Figure 14 gives an overview of the employed interfaces for the integration of supervision 
checkers with an organ. The supervised organ is supposed to implement the 
Supervisable interface. Once supervision starts, a call to the startBeingSupervised 
method passes a SupervisionChecker interface object to the supervisable. It is now 
expected that every monitoring event is handed to the check method of the interface and 
the returned Result followed. Supervision stops for the supervisable with a call to the 
stopBeingSupervised method, which anticipates that the corresponding checker object 
is returned. During supervision operation, a supervisable must be ready to integrate 
additional monitoring events in its operations that are passed via the 
insertEventBySupervisor method. 
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Figure 14: Interfaces of the supervision sub-system 

The SupervisionCheckerLifecycle interface is used by a Supervision organ in the 
setup of a supervision checker. As supervision checker objects are created independently 
of the supervised ACE, they are created by a supervision ACE and then passed to the 
supervised ACE, where the Supervision organ puts them into place. 

When a checker object is migrated to the Supervision organ of the supervised ACE, two 
independent DIET connections are automatically established: One connection leads to the 
supervision sensor responsible for the supervised ACE (a monitoring component), the 
other connection ends at an effector (a controlling component). Both connections are 
handed to the checker object by the corresponding methods connectSensor and 
connectEffector. 

Any supervision events that are received by the supervised ACE are reported via a call to 
the receiveFromSupervisor method. At the end of the supervision operation, a call to 
disconnect informs the checker that these connections are about to be removed. 
Afterwards the checker objects are considered to be unusable. 

Apart from the local setup of the checker objects, supervision is controlled by events. 
Figure 15 shows the basic events together with an abbreviated version of the Supervision 
organ’s signature, more specific the event handling routines of the central 
cascadas.ace.supervision.SupervisionJob class. Two small event hierarchies 
can be differentiated: Local events descending from the SupervisionEvent type 
(namely BusSupervisionEvent, and GatewaySupervision) and events that are 
being sent to other ACEs. These event types are descending from ServiceUsageEvent 
and are used to remotely control the supervision operation lifecycle of an ACE: 
ConfigurationEvent, StartSupervisionEvent, and StopSupervisionEvent. 
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Figure 15: Events of the supervision sub-system 

Before a supervision system (a construct of several ACEs, including effectors and sensors) 
will begin with a supervision task, it is contracted by a system that is looking to be 
supervised (via GN-GA protocol and subsequent contracting). After the control contract10 is 
in place, certain addresses are configured within the supervision system using messages 
of type ConfigurationEvent. When the supervision system is set up properly, it will 
send a StartSupervisionEvent containing instantiated checker objects to the system 
under supervision, triggering a local dispatch and connection of the transported checkers. 

At this point in time the supervision operation is fully working: checker objects transmit 
SupervisionEvents to the supervisor. A supervisor ACE (e.g. the effector) in turn 
influences the supervised ACE by using messages of type BusSupervisionEvent and 
GatewaySupervisionEvent. A standard communication pattern (e.g. Request-
Response) is not prescribed. This is freely designable and depends on the supervision 
system’s Self Model and the nature of the checker objects. At the end of a supervision 
session, the supervisor sends a StopSupervisionEvent using the control contract. 

The handleMessage and handle(SupervisionEvent) methods of the 
SupervisionJob class expose different behaviour, depending on the role of the ACE the 
Supervision organ belongs to. If they belong to a supervised ACE, handleMessage 
forwards the transported message to the supervision checkers and 
handle(SupervisionEvent) does nothing. If they belong to a supervising ACE, 
handleMessage distributes messages to the Bus (serving as triggers for the supervisor 
Self Model) and handle(SupervisionEvent) will forward the events to the supervised 
ACE. 

Requesting supervision is a much more trivial task. Any ACE may request supervision by 
following three steps: 

1) Discovering an available supervision system. This is done by sending a GN for 
“supervision” and by analysing the GA responses. 

                                                 
10 We refer to this as the main or control supervision contract 
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2) Contracting the supervision system (e.g. using the addresses returned by GA 
responses in step 1). 

3) Sending configuration event(s) to the supervision system that contain addresses of 
all ACEs that are part of the supervision. Currently this is a single event of type 
cascadas.supervision.interaction.protocol.SupervisionConfigEv
ent (part of WP2 toolkit extension), but this is likely to be replaced by a more 
flexible configuration mechanism in the near future. 

Once all addresses are transmitted to the supervision system, a supervision session is set 
up automatically. 

4.3 Aggregation Support 

In the Gateway section of the [D1.2] deliverable it has been shown that the GN-GA protocol 
is executed using a publish-subscribe middleware based on REDS. The Gateway 
component publishes the goals the ACE can achieve or needs and subscribes to the goals 
it is interested to.  

The main characteristics of this model are: 

• Broadcast communication of the goals using session-less event-based 
communication in REDS; 

• One-to-one session-capable communication managed by DIET contracts. 

 
Figure 16: A GN is sent to all the ACEs when there is only broadcast communication 
available. 
This mechanism is very powerful, but it is not suitable in situations when an ACE has 
limited computational or communicational resources. A possible limitation in its 
computational power can make it difficult for a node to keep up with processing all the 
goals that are produced in a network where there are thousands of nodes. For the same 
reason if we have limited communicational resources the broadcast solution does not scale 
well and can be an issue when the links have a low capacity. 
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A possible idea to solve this problem is the introduction of the concept of group (or cluster). 
A group can be seen as a way to reduce the scope in which other ACEs are reachable 
using GN-GA events. This way all the events are only sent to the group the ACE belongs to 
or, in different words, each ACE would have a list of other ACEs that are reachable directly. 

To apply this simple idea, the components of the group should be dynamically modifiable in 
order to put matching GAs/GNs in the same group, and therefore to establish one-to-one 
DIET contracts like in the broadcast approach. 

The solution to this problem is to integrate the self-aggregation algorithms that have been 
proposed and simulated in the [D3.1] and [D3.3] deliverables in the communication model 
of the ACE. The following paragraphs show how it is possible to create the concept of 
group communication and integrate the self-organisation algorithms in the Gateway 
component of the ACE Toolkit. 

 

 
Figure 17: If group communication is possible, there is no need to send the GN to all 
the ACEs of the network. In the figure the groups are represented by rectangles. 
Groups may also overlap. 

4.3.1 Group Communication 

As anticipated in the previous paragraph, the group communication requires that each ACE 
is capable of managing a list of ACEs called Neighbour List. Basic operations that can be 
done on this list are simply adding and removing known ACEs. Our goal is to limit direct 
communication only among ACEs and their neighbours. The criteria in which a group is 
created will be the equality of node goals, this way it is possible to aggregate nodes that 
offer/are interested to the same goals. 
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Figure 18: Diagram that shows the relations between Gateway, Neighbour List and 
the REDS middleware. 

4.3.2 Initialisation 

Each ACE should initialise its Neighbour List in order to create an initial overlay network 
among nodes (this will be built on top of the REDS middleware). This initialisation can be 
performed by providing a list of known nodes during ACE start-up or, alternatively, by using 
any other mechanism to find the initial neighbours. If broadcast communication is still an 
option, it can be used only for initialisation purposes by sending a “discover” message to all 
the other nodes. 

4.3.3 Group Communication using REDS 

After initialisation is completed each ACE connects to one of the brokers of the REDS 
overlay network. The difference with respect to the previous approach is that the initial 
subscriptions are more specific: each ACE subscribes only to events that are sent by a 
neighbour node. As soon as the Neighbour List changes due to the 
appearance/disappearance of a new node, or overlay network rewiring, the list of 
subscriptions to the REDS middleware changes accordingly. Broadcast communication, if 
available, can be always available to the ACE when it is deployed on small networks or 
networks where the saturation of communication channels is not an issue.  

4.3.4 Integration of Self-Aggregation in the Gateway Component 

The logic that is behind the group communication can be integrated into the Gateway 
component. This component can make group communication transparent to the rest of the 
ACE in such a way that other components are unaware of what is happening on the logical 
overlay level. 

4.3.5 Updating the Goals on the Neighbour List 

The first modification that is required on the Gateway is the storage of the Neighbour List. 
Each element of this list contains information about the identification of the neighbour ACE 
and its goals. It is also necessary that the Gateway component subscribes to the events 
that are sent to the Bus of the ACE when a new goal (GA or GN) is added or removed. 
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Each time a goal is changed, the Gateway component upgrades its state and sends an 
update message to the ACEs that are on the Neighbour List. 

 
Figure 19: Each GN-GA event that appears in the Event Bus updates the status of 
the local Gateway component and sends (using REDS) an update messages to all 
the neighbours of the ACE. 

4.3.6 Using Self-Aggregation Algorithm to Update the Neighbour List 

When the broadcast communication is no longer possible, the only possible way to 
establish a contract between two ACEs is that the ACE that has a GN of a particular type is 
a neighbour of the ACE that has the matching GA. Having this means that the overlay 
network should evolve in order to guarantee that all GAs will be matched with the GNs. The 
mechanisms that we are going to use are the self-aggregation algorithms that can be found 
in deliverables [D3.1] and [D3.3]. The purpose of these algorithms is to rewire the topology 
of a network in order to cluster nodes that share the same property (in this case the 
property is the goal of the node). This algorithm will be executed on a new thread that 
becomes completely independent from the other components of the ACE. The only shared 
resource will be the access to the Neighbour List, and to the REDS middleware to 
exchange the messages required by the clustering protocol. 

The initialisation of the algorithm is distributed and can be performed in three ways: 

1. During the ACE initialisation; 

2. When a new GN-GA event has been generated locally; 

3. When a neighbour node generates a new GN-GA event. 

Using the first policy we have an overlay network that evolves continuously, while with the 
other two approaches the algorithm is started only when it is needed. In the third 
approach a goal that has been received remotely should be forwarded to the neighbour 
nodes in order to activate the algorithm on all ACEs of the network. 

The termination problem can be addressed in the following two ways: 

1. Algorithm termination occurs when the ACE terminates; 

2. Termination occurs when the Neighbour List does not change for a certain 
amount of time. 

The first termination method simply means that the algorithm never stops when the ACE 
is alive. This can give more time to the algorithm to reach a good degree of convergence, 
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but requires more messages. Alternatively, the Gateway can monitor the activities on the 
Neighbour List and suspend the algorithm when there are no insertions/removals from 
the list for a certain amount of time. This amount of time can be chosen to obtain the right 
trade off between algorithm convergence and the network load. 

 
Figure 20: UML Sequence diagram with algorithm initialisation, self-aggregation, and 
termination. At start-up ACE2 is a neighbour of ACE1 and ACE3, then the connection 
between ACE1 and ACE2 is replaced with the new connection between ACE1 and 
ACE3. 

4.3.7 Self-Aggregation Issues with Multiple Different Goals 

The aggregation algorithms have been extensively studied and tested in networks where 
each node has only a single type that can be equal or different from another one (see 
[D3.1] and [D3.3]). To apply aggregation algorithms to ACEs we proposed to map nodes to 
ACEs (i.e., a node is an ACE) and node types to ACE goals (i.e., a type is a goal). The 
original aggregation algorithms are studied to work with only a single node type, while 
instead ACEs can have more than one goal. Accordingly, this situation is not compatible 
with the original version of the algorithms and will be studied in the next months.  

4.3.8 Load-balancing Example 

Until now we have seen the self-aggregation as a possible way to permit the creation of 
contracts between ACEs without using broadcast communication. The self-aggregation can 
be exploited also in different ways: if, for example, we consider an ACE that has multiple 
GNs of the same type, and it has in its Neighbour List more than one neighbour with the 
matching GA, then it can establish contracts with different ACEs without doing further 
rewiring on the overlay network. This means that when the network is clustered, load 
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balancing will be a natural consequence of the rewiring that is performed by the self-
aggregation algorithms. 

4.3.9 Discussion 

In this section we have seen that the broadcast communication mechanism does not scale 
well with network size, and therefore a different communication mechanism can be added 
to the ACE. A new mechanism, called group communication, has been proposed: it 
considers a network in which each ACE starts with a limited knowledge on the other ACEs, 
after start-up then all ACEs start a self-aggregation algorithm to reorganise their 
connections and finally to form clusters of ACEs that share the same goals. These groups 
have the property of putting together nodes with the same GA and nodes with the same 
GN.  

After the self-aggregation has been executed the system can benefit from the following 
situations: 

• Cluster of ACEs with the same GAs: this is positive because when some GN enters 
the cluster, its workload can be load balanced among all the others ACEs; 

• Cluster of ACEs with the same GNs: when one of the ACEs with the corresponding 
GA enters the cluster, it can then easily passed to all the ACEs of the cluster; 

•  Cluster of ACEs with corresponding GAs/GNs: a contract between each couple of 
ACEs is established, and the GNs are progressively cancelled. 

4.4 Security Support 

Security is integrated to the Toolkit on the service level: certain ACEs do have security 
capabilities, and provide security related services to the benefit of other ACEs. This way, 
security becomes accessible but not mandatory for all members of the ACE population. 

Security related services integrated to the ACE Toolkit are going to cover all basic security 
principles applicable for a distributed system: authentication, confidentiality, and integrity.  

– Authentication enables the node to ensure the identity of the other node it 
communicates with. Without authentication, the attacker could masquerade the 
node thus gaining unauthorised access to resources. Typical tools for 
authentication are digital signature, and shared common secret (e.g. password). 

– Confidentiality ensures that certain information is never disclosed to unauthorised 
parties. Transmission of sensitive information always requires confidentiality. 
Leakage of such information to an eavesdropper could result in severe 
consequences. The typical tool for confidentiality is the message encryption which 
can be achieved with numerous techniques (e.g. symmetric, asymmetric 
encryption). 

– Integration guarantees that the transferred message is not corrupted – corruption 
may occur due to failures or because of malicious attacks. A typical tool for 
integrity is to append an un-forgeable digest to the message, using hash 
functions. 

To comply with the lightweight and distributed ACE model, the automatic formation of 
security domains is envisioned. Members of the same domain are under the same 
administrative control.  
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The integration of security features addresses the specific part of the ACE: the 
Functionality Repository and the Self Model.  

In some cases, the cooperation of several security ACEs is required to provide the 
intended aggregated service (e.g. key provider, encoder, and decoder). 

5 Sample Application Description 

The advertisement demo application was developed in order to test and prove WP1 Toolkit 
features during their development. It provides other WPs with programming examples that 
show how to use the Toolkit properly. 

To highlight the new aspects of the ACE Toolkit we extended the advertisement demo 
application. The enhancements which were added have the purpose to show that the 
Toolkit supports the integration of the Supervision System and the Knowledge Network. 
So, the improved example application demonstrates that it is possible to develop a 
Supervision System as intended by WP2 and a Knowledge Network structure as WP5 
envisions it to prove that the work of WP1 fits to the work of the other WPs. 

To show that integration of the WP1 and WP5 results is possible, a Context Verification 
system was implemented and the WP1 advertisement application was adapted 
accordingly. Therefore, one additional Context Verifier ACE is needed. The application 
itself is only affected in so far that the display ACE will, before displaying adverts, send the 
gathered context information to the Verifier and only displays the associated advert if the 
context is correct. Otherwise an error message will be shown. The GUI was extended in 
the way that enables entering incorrect context information. What also was necessary is 
the adaptation of the context information to the scenario described in this chapter. 

5.1 Structure of the Application 

In order to adapt to the CASCADAS advertisement auction scenario, we use the display 
ACE to show adverts according to the interest of people which are supposed to be in front 
of the screen. Sensory data about present people can be of the categories gender, dress 
code, and hobbies. As already implemented in the last advertisement example (cf. [D1.2]), 
one ACE per category will provide the according data, gathered from all present persons. 
Table 2 shows, which sensory data is associated with which advert. 

 

Gender Dress code Hobbies Advert 

Male Business Cars Limousine 

Male Business Clothes Business suit 

Male Leisure time Cars Formula one  

Male Leisure time Clothes Jeans  

Male Swim suit Cars Invalid context 

Male Swim suit Clothes Invalid context 
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Female Business Cars Limousine 

Female Business Clothes Woman’s suit 

Female Leisure time Cars City car 

Female Leisure time Clothes Jeans 

Female Swim suit Cars Invalid context 

Female Swim suit Clothes Invalid context 

Table 2: adverts associated to sensory data 
 

The ACEs presented in Figure 21 are necessary for realising the adapted advertisement 
example.  

 
Figure 21: ACEs in the advertisement example application 

The advertisement display ACE shows adverts based on the information it gets from the 
ACEs around. It uses the dress code provider ACE and the hobby provider ACE as context 
providers and the gender provider ACE for delivering information as an answer to a service 
call. In case the context data seems to be suspicious or incorrect, the display ACE shows 
an according message instead of any advert. 

The context simulator ACE shows a GUI on which the values of all sensors can be set by 
the application user. To demonstrate the two concepts of data acquisition, i.e. context 
gathering and acquiring data via service request, it is clearly labelled which sensor is which 
kind of data source. The adjusted sensor values are handed over to the corresponding 
provider ACEs. 
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The context verification ACE offers the service to verify a context pattern, i.e. a set of 
sensor values, and to return whether this pattern is regarded as valid or not. This service is 
requested each time the advertisement display ACE selects a new advert. Before 
presenting any information on the screen, the recently acquired sensor values are passed 
to the context verification ACE in order to be tested. Only if a positive answer is returned, 
the advert is displayed. Otherwise an error message is printed on the screen. 

The gender provider ACE offers the service to deliver the information if the majority of the 
people in front of the advertisement display are female or male. The gender provider ACE 
gets this information from the context simulator ACE and only answers once, not 
periodically, per service request. 

The dress code provider ACE delivers context information about the dress code of the 
majority of the people standing in front of the advertisement display. It is only requested by 
the advertisement display once and then periodically updates the dress code information. 
The dress code provider ACE gets its data from the context simulator ACE. 

The hobby provider ACE delivers, similar to the dress code provider ACE, context 
information about the hobbies of the majority of the people standing in front of the 
advertisement display. It is as well requested only once, updates the hobby status 
periodically, and get its data from the context simulator ACE. 

The effector and sensor ACEs are part of mechanisms for realising supervision 
functionality. They instrument the supervised ACEs (advertisement display ACE and dress 
code provider ACE) with sensor and motor channels to be used by the correlator and 
assessor ACE.  

The correlator ACE is responsible for interacting with the sensor ACEs, monitoring the 
operation of the advertisement display and dress code provider ACE, and alerting the 
assessor ACE if an abnormal situation arises. In the example such a situation is 
characterised by triggering a “crash” of the advertisement display ACE Gateway using the 
context simulator. The crash is simulated by having the display ACE stop receiving external 
events with updated information. 

The assessor ACE analyses input alerts from the correlator ACE and decides if an 
intervention by the Supervision System is necessary. In the case of crash of the display 
ACE it employs the respective effectors to influence the instrumented ACEs: The 
advertisement display ACE’s Gateway is restarted and the provider ACE internal state is 
corrected. 

Figure 22 shows a screenshot of the application showing a GUI to simulate contextual data 
and providing the possibility to simulate a crash. The advertisement display and a set of log 
messages listed with the Chainsaw logging tool can be seen as well. 
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Figure 22: screenshot of the advertisement application 

5.2 Supervision in the Advertisement Example 

Figure 23 shows the integration of the supervision ACEs with the example logic ACEs in 
greater detail. 
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Figure 23: Integration of Supervision 

Supervision capabilities are demonstrated by issuing a “crash” command using the context 
simulator. The command is triggering the advertisement display ACE to pretend a crashed 
state by stopping to receive information updates from the provider ACEs. This event will be 
reported to the correlator ACE by a sensor ACE that is constantly monitoring the dress 
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code provider ACE’s operational behaviour. The correlator ACE recognises the critical 
event and instructs the assessor ACEs to take countermeasures by restarting the 
advertisement display ACE’s Gateway and changing the state of the dress code provider to 
successfully cope with the changed situation. 

5.3 Context Verification in the Advertisement Example 

In our example application, context verification is a service that is requested by the 
advertisement display ACE. The data to be verified are a set of sensor values that is, 
based on reference pattern analyses, classified as valid or invalid. 

The reference context patterns (sets of sensor values) needed for deciding whether a 
context is valid or not are stored in the context verificator ACE at the moment. This is 
subject to change. In the future, reference data will be stored in Knowledge Atoms or Atom 
Repository as they are provided by WP5. Context verification is described in detail in 
[D5.3]. 

Including context verification in the way described above, we integrate the context 
verification principle performed by active components of the Knowledge Network. This 
demonstrates the applicability of the CASCADAS Toolkit to the Knowledge Network 
principles on one specific application example. 

What is not included in our example so far are enhanced knowledge organisation 
mechanisms. Those could be an extension to our advertisement application. In detail, 
knowledge organisation could here mean that complex context patterns are analysed and 
parts of them are associated with corresponding context storage ACEs. Let us for example 
regard the context pattern 

“gender:female, dress code:business,  hobby:cars”. 

This is not only a member of the context group “gender, dress code, hobby” but parts of 
this pattern as well belong to the groups “gender, dress code”, “gender, hobby”, and “dress 
code, hobby”. An advanced knowledge organisation mechanism could figure out these 
additional relations and could aggregate the data in a suitable Knowledge Container. 

6 Tutorial: Programming and Executing ACEs 

The concept of programming ACEs using the CASCADAS Toolkit has not changed since 
deliverable D1.2. An ACE programmer has to create Self Models, specific functionalities, 
as well as descriptor and configuration files. What massively changed are the syntax (both, 
Self Model and functionality description syntax) and the set of available features in terms of 
architecture and common functionalities. This is the reason for significant differences to 
what was described in [D1.2]. The following section presents a tutorial on how to program 
ACE based applications using the current version of the CASCADAS Toolkit. 

When programming ACEs developers have to keep in mind the following: 

- An ACE is an Autonomic Communication Element that provides services to other 
ACEs or uses services from other ACEs or both. 

- A Service might be provided by a group of ACEs where each ACE contributes only 
a part (sub-service) of the overall service provided by the group. 
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- An ACE application usually consists of several ACEs which might reside in multiple, 
distributed and remote execution environments.  

- ACEs use the GN-GA protocol for service discovery. 

- Inter ACE communication is handled directly between two ACEs using contracts. 

- The entire ACE communication, both GN-GA and contract based, is asynchronous. 

- An ACE communicates using events. (The entire communication is event based.) 

- An ACE Plan is a state machine. 

- A Self Model defines how to create and modify ACE Plans. It defines different ACE 
behaviours. 

- Each ACE provides a set of common functionalities which can be used. 

- An ACE action is defined as calling a local functionality.  

These are a few main statements about ACEs developers should always keep in mind. In 
more general view, an ACE can be seen as a container that comprises all basic 
functionalities like life cycle functionalities, communication functionalities and a set of 
common functionalities.  

Developers do not need to care about how the communication between ACEs is 
performed. Both ACE discovery process using GN-GA as well as contracting which 
provides direct communication between ACEs are provided and handled by the ACE itself. 
The same applies for the ACE life cycle. The entire life cycle process is implemented and 
executed by the ACE. 

All developers need to do in order to create a new ACE is to implement its specific 
functionalities and to specify the ACE operation logic within the Self Model of the ACE (see 
yellow parts in the Figure 1). 

6.1 Developing ACE Specific Functionalities 

The goal of every ACE is to provide certain services to other ACEs. A service can be any 
functionality or information an ACE can provide. Controlling a power switch in the living 
room, providing the current value of an sensor or providing the telephone number for a 
user name are only a few examples of how an ACE service might look like.  

A service can be considered as functionality or a set of functionalities an ACE implements. 
All ACE functionalities are implemented as Java classes. In addition to the Java 
implementation, a functionality description file is required (see chapter 3.5.2) where the 
access to the specific functionality is specified.  

6.1.1 Functionality Java Classes  

The ACE functionality implementation is a regular Java class. It must have a default (no-
arg) constructor and a public method that is basically the interface to the functionality. It 
can use any other Java classes and features that are required.  

For example, an ACE functionality that provides a user’s phone number as String could 
look like this: 

 



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D1.3

Appendix: Prototype 
Documentation and Tutorial

 

Editor: Sandra Haseloff 

Page 65 of 80 

public class TelephoneProvider { 
  /** Default no-args Constructor */ 
  public TelephoneProvider(){ 
    //Default Constructor 
  } 
 
  /** Method that provides the functionality */ 
  public String getPhoneNumber(String userName){ 
    String phoneNumber; 
    //get phone number from the DB .... 
    return phoneNumber; 
  } 
} 

In the example above, the method getPhoneNumber(String userName) is the 
interface to the functionality. Before the Executor can call it, the developer needs to specify 
it within the service description file. This will be explained in the next section. 

How to access the session objects? 

Every ACE maintains the global and execution session objects (cf. chapter 3.5.6). The 
global session object remains active during the ACE life time whereas the execution 
session remains for the time of the Plan execution. There is one execution session object 
per ACE Plan. 

In order to access the global or execution session objects within the specific functionality, 
the functionality must implement the cascadas.ace.functionality.service. 
SessionAware interface, which makes it possible for the Repository to forward the session 
objects to it.  
public class TelephoneProvider implements SessionAware{ 
  Session executionSession; 
  Session globalSession; 
 
  /**This method sets a local reference to the executionSession*/ 
  public void setExecutionSession(Session executionSession) { 
    this.executionSession = executionSession; 
  } 
 
  /**This method sets a local reference to the globalSession*/ 
  public void setGlobalSession(Session globalSession) { 
    this.globalSession = globalSession; 
  } 
 
  /** Method that provides the functionality */ 
  public String getPhoneNumber(String userName){ 
    String phoneNumber; 
    //get phone number from the DB .... 
    /*Put phone number into execution session*/ 
    executionSession.put(“users_phone”,phoneNumber); 
    return phoneNumber; 
  } 
} 

How to access the CallWideContext within the specific functionality? 

In addition to session objects, every ACE maintains the CallWideContext (cf. chapter 
3.5.6.2). CallWideContext is a data storage facility (contains key-value pairs) that 
remains active during the functionality call: from the point when the Repository finds the 
requested functionality until the point when all output events are sent back.  
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CallWideContext can be used in order to pass the data to the event mapper for event 
creation or to the event mapping in order to initialise the output event with the desired 
parameters (cf. chapter 3.5.2.4).  

In order to access the CallWideContext within the specific functionality, the functionality 
must implement the cascadas.ace.functionality.service.CallWideContextAware 
interface, which makes it possible for the Repository to forward the CallWideContext to 
it.  
public class TelephoneProvider implements CallWideContextAware{ 
  CallWideContext callWideContext; 
 
  /**This method sets a local reference to the CallWideContext*/ 
  public void setCallWideContext(CallWideContext callWideContext) { 
    this.callWideContext = callWideContext; 
  } 
 
  /** Method that provides the functionality */ 
  public void getPhoneNumber(String userName){ 
    String phoneNumber; 
    String altPhoneNumber; 
    //get phone number from the DB .... 
    /*Put phone number into execution session*/ 
    callWideContext.put(“phone_number”,phoneNumber); 
    callWideContext.put(“alternative_phone_number”,altPhoneNumber); 
  } 
} 

How to create a custom event mapper? 

Calling the functionality usually results in sending events. For example in order to send the 
return values to the requester the functionality descriptor has to specify a 
ServiceResponseEvent to be sent using event mapping and initialise it with the 
required parameters (cf. chapter 6.1.2).  

If the direct event mapping is not enough (e.g. the number of outgoing events is not known 
when the descriptor XML is created), a custom event mapper has to be created. Such a 
Custom event mapper allows you to create events from scratch, initialise them with 
additional parameters or set contracts. 

An event mapper java class must implement the cascadas.ace.functionality. 
service.OutputEventMapper interface, which makes it possible for the Repository to 
access all output events which have been created by the mapper and send them to the 
bus. 
public class PhoneNumberEventMapper implements OutputEventMapper { 
 
  public PhoneNumberEventMapper() { 
    //Default Constructor 
  } 
 
  /** Method will be called by the Repository in order to produce  
   *  the output events of the functionality. 
   */ 
  public Set<Event> createOutputEvents(CallParameters params,  
 Session executionSession, Session globalSession,  
 CallWideContext callWideContext) { 
    Set<Event> ret = new HashSet<Event>(); 
    Contract c = (Contract) params.get("phoneContract"); 
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    ServiceResponseEvent evt; 
    evt = new ServiceResponseEvent(c); 
    evt.addParam("primary_phone_number", callWideContext.get("phone_number")); 
    evt.addParam("second_phone_numebr", 
callWideContext.get("alternative_phone_number")); 
 
    ret.add(evt); //Add ServiceResponseEvent to the set of output events. 
    return ret; 
  } 
} 

In the example above, the PhoneNumberEventMapper will create a 
ServiceResponseEvent which contains two parameters primary_phone_number and 
second_phone_number. While invoking the event mapper’s createOutputEvents() 
method, the Repository will send the event out.  

In the service call sequence, the Repository first calls the ACE specific functionality and 
afterwards calls the specified mapper. All parameters which are set to the 
CallWideContext within the specific functionality will be passed to the event mapper.  

These are the parameters which will be passed to the mapper’s createOutputEvents() 
method: 

• CallParameters params (Output parameter as defined in the functionality 
description.) 

• Session executionSession (The Plan execution session.) 
• Session globalSession (The ACE global session.) 
• CallWideContext callWideContext (The CallWideContext including all 

parameters which have been set within the specific functionality.) 

How to create custom events? 

An ACE distinguishes between internal and external events. Internal events are handled by 
the ACE itself. A functionality could for example send an internal custom event in order to 
trigger modification of the ACE behaviour. The external events will be delivered to the 
remote ACE.  

Internal events derive from the cascadas.ace.event.AceLocalEvent class whereas 
the external events derive from the cascadas.ace.event.Envelope class. Developers 
are free to use the standard ACE events or to create custom events. Any event can be sent 
from the specific functionality using the event mapper or while specifying its mapping in the 
functionality description file (cf. next chapter). 

How to write log messages from the specific functionality? 

Logging facility might be very helpful in order to understand what happens within the ACE. 
The ACE Toolkit provides a powerful and easy to use logging facility which is capable of 
writing log messages to multiple outputs (cf. chapter 2.1 and chapter 6.3.2). 

In order to write log messages to the standard ACE logger the specific functionality class 
must implement the cascadas.ace.functionality.service.LogAware interface. 
public class TelephoneProvider implements LogAware { 
  Logger logger; 
 
  public TelephoneProvider() { 
    //Default Constructor 
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  } 
 
  /**This method sets a local reference for the logger*/ 
  public void setLogger(Logger logger){ 
    this.logger = logger; 
  } 
 
  /** Method that provides the functionality */ 
  public void getPhoneNumber(String userName){ 
    //get phone number from the DB .... 
    logger.severe(“Unable to connect to database”); 
  } 
} 

ACE logging uses java.util.logging facilities. Log levels used by the ACE loggers are 
the same as defined by the java.util.logging. 

How to handle custom threads within the specific functionality? 

Sometimes a specific functionality requires additional threads for fulfilling a desired task. In 
order to ensure the consistency with the ACE life cycle (e.g. stop or move) an ACE 
provides developers the ability to use a thread pool. The ACE autonomously manages the 
thread pool and decides what to do with threads when a life cycle action is performed. This 
way, the ACE does not leave zombie threads in the Java Virtual Machine after being 
terminated.  

Specific functionalities should use the thread pool for starting their custom threads. In order 
to access the thread pool the specific functionality must implement the 
cascadas.ace.functionality.service.ThreadPoolAware interface.  
//======= Specific functionality class that uses multithreading 
public class TelephoneProvider implements ThreadPoolAware { 
  ThreadPool threadPool; 
 
  public TelephoneProvider() { 
    //Default Constructor 
  } 
 
  /**This method sets a local reference for the Thread Pool*/ 
  public void setThreadPool(ThreadPool pool){ 
    this.threadPool = pool; 
  } 
 
  /** Method that starts a thread in the ACE thread pool */ 
  public void myMethod(){ 
    Runnable myThread = new BasicThread1(); 
    threadPool.execute(myThread); 
  } 
} 
 
//======= A Basic thread class 
class BasicThread1 implements Runnable { 
  public void run() { 
    //Do something 
  } 
} 
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6.1.2 Functionality Descriptor 

In order to call a specific functionality, developers must provide its functionality description. 
The functionality description specifies parameters like functionality id, input and output 
parameters, class and method to be called as well as event mappers if used. More details 
on the functionality description model can be found in chapter 3.5.2. 

The ACE functionality descriptor is an XML file that specifies how to call the functionality 
and is available in the ACE configuration folder (subfolder /repo). Each ACE functionality is 
specified in a separate XML file. The file names can be freely chosen. The Repository will 
read all XML files that are available in the specified /repo subfolder and will initialise the 
parameters accordingly. The functionality description syntax is specified in 
conf/dtd/functionality.dtd file. 

Functionality description contains: 

Functionality ID Functionality ID that is unique for all functionalities available 
within the ACE. The functionality ID is used within the Self 
Model in order to invoke the functionality. 

Black Box Description Specifies all input and output parameters which are required for 
calling the functionality. The parameters must be in sync with 
the input parameters of the java method that will be called. The 
parameter number and type can be also variable.  

Simple call details Specifies the name of the Java Class that should be instantiated 
and the name of the method that will be called.  

Output Event 
Mappings 

Output event mappings specification is only required if specific 
functionality needs to send an event. It specifies which event to 
send and parameters it should be initialised with. 

 
<functionality id="hello_world_service"> 
  <black-box-description> 
    <input> 
      <param name="userName" type="java.lang.String"/> 
    </input> 
  </black-box-description> 
  <simple-call-details class-name="example.HelloWorld" method-name="sayHello"/> 
  <output-event-mappings/> 
</functionality> 

The example above shows a very simple hello_world_service which has been 
implemented in the example.HelloWorld class in the sayHello(String userName) 
method. Neither mappers nor mappings are specified which means the service call will not 
send any events. Using this service description the hello_world_service can be called 
from the Self Model.  

Black Box Description Input Parameters  
The input parameters have to be specified within the <input> section of the functionality 
black box description. Either a predefined set of parameters with the parameter name and 
type <param name="" type=""/> can be used, or the amount and types of parameters 
can be kept variable. 
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If a predefined set of input parameters is used, every input parameter must be specified as 
it is required by the java method call. 
<functionality id="get_phone_number"> 
  <black-box-description> 
    <input> 
      <param name="firstName" type="java.lang.String"/> 
      <param name="surName" type="java.lang.String"/> 
    </input> 
  </black-box-description> 
  <simple-call-details class-name="example.PhoneBook" method-name="getTelNumber"/> 
  <output-event-mappings/> 
</functionality> 

In the example the get_phone_number service requires two input parameters 
firstName and surName. 

If the amount of parameters needs to be kept variable, then the <varargs/> element 
must be specified within the <input> section of the functionality description file. 
<functionality id="get_phone_number2"> 
  <black-box-description> 
    <input> 
      <varargs/> 
    </input> 
  </black-box-description> 
  <simple-call-details class-name="example.TelephoneProvider"  
method-name="getTelNumberVararg"/> 
  <output-event-mappings/> 
</functionality> 

In the example above the get_phone_number2 service can be called with a different 
amount of arguments. If the input parameters specifies <varargs/> the Java method 
must accept an Array of cascadas.ace.functionality.service.Argument objects. 
A Java implementation for the example above could look like this: 
import cascadas.ace.functionality.service.Argument; 
 
public class TelephoneProvider { 
 
  public void getTelNumberVararg(Argument[] args) { 
    for (Argument a : args) { 
      String paramName = a.getName(); 
      String paramvalue = a.getValue(); 
      //Do something 
    } 
  } 
} 

The parameter specified within the <output> section defines the name of the parameter 
where the method’s return value (if any) will be stored. The input and output parameters 
can be any Java objects. 

Output Event Mappers and Mappings  
In case specific functionality needs to send events (for example if it returns a value, a 
ServiceResponseEvent has to be sent), output event mappings must be specified 
within the service description. There are two possibilities when specifying output events. A 
functionality can send either predefined output events like ServiceResponseEvent for 
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example and initialise them with the desired parameters, or it can call a custom event 
mapper that will create events from scratch and send them. 

How to send return value using a predefined event? 

Within the <mapping> section, developers can specify the predefined event to be sent 
when the functionality is invoked. The <value> elements specify the event initialisation 
parameters.  
<functionality id="get_phone_number_service"> 
  <black-box-description> 
    <input> 
      <param name="userName" type="java.lang.String"/> 
    </input> 
    <output name="phone_numer" type="java.lang.String"/> 
  </black-box-description> 
  <simple-call-details class-name="example.TelephoneProvider"  
method-name="getPhoneNumber"/> 
  <output-event-mappings> 
    <mapping target-role="provider" 
event="cascadas.ace.event.ServiceResponseEvent"> 
      <value ref="phone_numer"/> 
    </mapping> 
  </output-event-mappings> 
</functionality> 

In the example the get_phone_number_service corresponds to the public String 
getPhoneNumber(String userName) method. The return value of the method is 
stored as the phone_number output parameter. When invoking the 
get_phone_number_service the ServiceResponseEvent initialised with the 
phone_number output parameter will be sent to the requester.  

In addition to the return value as presented in the example above, the output event can be 
initialised with values from:  

• Call Wide Context using ?callWideContext://param_name 
• Execution Session using ?executionSession://param_name  
• Global Session using ?globalSession://param_name 

<output-event-mappings> 
  <mapping target-role="" event="cascadas.ace.event.ServiceResponseEvent"> 
    <value ref="?callWideContext://param_name"/> 
    <value ref="?executionSession://param_name"/> 
    <value ref="?globalSession://param_name"/> 
  </mapping> 
</output-event-mappings> 

Please look at chapter 3.5.2 for more details. 

How to send multiple predefined events when calling the functionality? 

In case the functionality call needs to send multiple events, multiple <mapping> sections 
have to be specified within the <output-event-mappings> section. 
<output-event-mappings> 
  <mapping target-role="" event="cascadas.ace.event.ServiceResponseEvent"> 
    <value ref="?callWideContext://param_name"/> 
  </mapping> 
  <mapping target-role="" event="example.SampleEvent"> 
  </mapping> 
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</output-event-mappings> 

In the example above the service call will result in two events, the 
ServiceResponseEvent and the SampleEvent. 

How to use a custom event mapper? 

As explained in the previous chapter, developers can also write a customer event mapper 
that sends events. In order to use a custom mapper, the developer needs to specify it 
within the <mapper> section in the <output-event-mappings>. 
<output-event-mappings> 
  <mapper mapper-class="example.PhoneNumberEventMapper"/> 
</output-event-mappings> 

The Repository will instantiate the mapper class and will call its createOutputEvents() 
method. All events returned by the method will be sent out. 

6.2 Creating the ACE Self Model 

Chapter 6.1 explained how to create specific ACE functionalities and how to create their 
functionality description in order to use them. This chapter explains how to create the ACE 
Self Model which basically describes the ACE behaviour. Based on the Self Model 
definitions, ACE Plans will be created that use (invoke) functionalities, both specific and 
common functionalities, which are available within the ACE. 

A Self Model is an XML file (usually /model/selfmodel.xml is used) that defines the 
ACE behaviour. In the ACE Self Model developers have to specify when and how to create 
and modify different ACE Plans. Each ACE Plan performs certain tasks and all ACE Plans 
together form the ACE behaviour. 

Here are some statements developers should keep in mind when creating Self Models: 

• A Self Model contains all possible Plans that might be created by an ACE. 
• A Self Model must have one default Plan. 
• The default ACE Plan is the starting point of the ACE execution process. 
• A Plan can initiate the creation of further Plans. 
• An ACE Plan is a state machine. 
• Every Plan in the Self Model contains: full set of states, full set of transitions as well 

as creation and modification rules which define how to combine the states and 
transitions into a state machine. 

• States define different states the ACE Plan execution has to go through. 
• Transitions specify the actions which need to be performed as well as conditions 

under which they should be triggered. 
• Plan creation and modification rules are written in standard RuleML language. 

The Self Model syntax is described in chapter 3.4.2. It s required to read it first before 
continuing with this chapter. 

For demonstration purposes a sample Self Model of an ACE that contains only one Plan 
which provides the phone book service is used. 
<!DOCTYPE selfModel SYSTEM "../../../dtd/selfmodel.dtd"> 
<selfModel> 
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  <plan id="Plan1" default="true"> 
    <description>Self Model of the Phone Book ACE</description> 
    <states> 
      <state id="state1" > 
        <friendly_name>InitializationState</friendly_name> 
        <desirability_level>1</desirability_level> 
      </state> 
      <state id="state2" > 
        <friendly_name>Ready</friendly_name> 
        <desirability_level>1</desirability_level> 
      </state> 
      <state id="state3" > 
        <friendly_name>PhoneNumberProvided</friendly_name> 
        <desirability_level>1</desirability_level> 
      </state> 
    </states> 
    <transitions> 
      <transition id="tr1"> 
        <description>Initialize the DB connection</description> 
        <source>state1</source> 
        <destination>state2</destination> 
        <priority/> 
        <trigger>@auto</trigger> 
        <guard_condition/> 
        <action>init_db_connection</action> 
      </transition> 
      <transition id="tr2"> 
        <description>Answer GN=phone_number</description> 
        <source>state2</source> 
        <destination>state2</destination> 
        <priority/> 
        <trigger>cascadas.ace.event.GoalNeededEvent</trigger> 
        <guard_condition> 
        EQUALS(?inputMessage://goalName,phone_number)</guard_condition> 
        <action>gn_answer_service(goal=?inputMessage://goal, 
          serviceName=get_phone_number_service, 
          myAddress=?globalSession://aceAddress) 
        </action> 
      </transition> 
      <transition id="tr2"> 
        <description>Answer GN=phone_number</description> 
        <source>state2</source> 
        <destination>state3</destination> 
        <priority/> 
        <trigger>cascadas.ace.event.ServiceCallEvent</trigger> 
        <guard_condition> 
          EQUALS(?inputMessage://serviceName,get_phone_number_service) 
        </guard_condition> 
        <action> 
          get_phone_number_service(userName=?inputMessage://user_name) 
        </action> 
      </transition> 
    </transitions> 
    <creationRuleML> 
      <Assert> 
        <And> 
          <Atom closure="universal" > 
            <Rel>createState</Rel> 
            <Ind>state1</Ind> 
            <Ind>state2</Ind> 
            <Ind>state3</Ind> 
          </Atom> 
          <Atom closure="universal" > 
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            <Rel>initState</Rel> 
            <Ind>state1</Ind> 
          </Atom> 
          <Atom closure="universal" > 
            <Rel>createTransition</Rel> 
            <Ind>tr1</Ind> 
            <Ind>tr2</Ind> 
            <Ind>tr3</Ind> 
          </Atom> 
        </And> 
      </Assert> 
    </creationRuleML> 
    <modificationRuleML> 
    </modificationRuleML> 
  </plan> 
</selfModel> 

The Self Model shown in the example above will create one ACE Plan with 3 states and 3 
transitions. The initial state is state1 which is the starting point of the Plan execution. The 
ACE model describes a service provider ACE. This service provider ACE waits for a Goal 
Needed to arrive and responds with a Goal Achievable if the goal can be fulfilled.  

Action in terms of the Self Model means invoking a local functionality and is defined within 
the transition. An action has to be specified within the <action> element. It has to contain 
the functionality ID as specified within the functionality description with all required 
parameters including initialisation values within the brackets. For example: 
<action>get_phone_number_service(userName=?inputMessage://user_name
)</action> calls the specific functionality get_phone_number_service and initialises 
its input value username with the user_name parameter from the input message.  

Beside the specific functionalities, there is also a set of predefined functionalities called 
“common functionalities” (cf. chapter 3.5.4.1) which can be used within the Self Model of 
every ACE. In the example above gn_answer_service is the common functionality that 
allows sending the GoalAchievableEvent as the response to the GoalNeededEvent. 

The event type specified within the <trigger> element specifies the event type that might 
trigger the transition. The transition will be evaluated only if this event type arrives. Within 
<guard_condition> developers can define the condition that needs to be fulfilled in 
order to run the action. After the action has been successfully executed, the Plan execution 
will move to the state defined within the transition’s <destination> element. 

Finally, you have to define the Plan creation and modification rules which will create or 
modify Plans. Please look at the chapter 3.4.2.2 for more details how to create the RuleML. 

It is important to realise that in order to program an ACE you do not write a main 
application.  
You have to write a selfmodel.xml file specifying the global behaviour (i.e. business 
logic) of your ACE.  
Then you write separate methods (i.e. functionalities) specifying the basic individual 
actions the ACE has to undertake (you can also have a general library of these 
functionalities).  
Then you hook-up such functionalities in the Self Model, so that the functionalities 
will be called when the Self Model is executed. 



 

IST IP CASCADAS “Component-ware 
for Autonomic, Situation-aware 

Communications, And Dynamically 
Adaptable Services” " 

 

Deliverable D1.3

Appendix: Prototype 
Documentation and Tutorial

 

Editor: Sandra Haseloff 

Page 75 of 80 

All the bindings and all the machinery required to run the Self Model are the core of 
the ACE architecture and a developer should not care about them. 

6.3 Executing the ACE Application 

6.3.1 Setting Up the ACE Application Environment 

All application configuration files are located in the /conf folder. The subfolder structure is 
used as follows: 

 
The settings.properties and aces.xml contain the application configuration 
parameters. The settings.properties specifies the application environment settings 
like the location of the common functionalities folder and location of the aces.xml file. 
Parameters for ACE logging as well as DIET and REDS parameters have to be defined 
here. Please look at the comments of a sample settings.properties file for more 
details.  

The aces.xml file specifies all ACEs which will be created when starting the application. 
ACEs will be initialised and started in the same sequence as specified within the 
aces.xml file. Each ACE has to be specified within the <ace> element with its name and 
path to its ace type description file. 
<aces> 
  <ace name="display" type="conf/aces/advertizement_display/ace-type.xml"/> 
  <ace name="age_provider" type="conf/aces/age_provider/ace-type.xml"/> 
  <ace name="weather_provider" type="conf/aces/weather_provider/ace-type.xml"/> 
</aces> 

This basically states that our application will be composed of three ACEs. Each ACE is 
characterised by a name and a type that is a reference to another XML configuration file. 

Each ACE must have its “type description file” where the path to the Self Model file and the 
path to the specific functionality folder with the functionality description files are defined. 
Here is the example ace-type.xml from the weather_provider ACE.  
<properties> 
<comment></comment> 
<entry key="model">./conf/aces/weather_provider/model/selfmodel.xml</entry> 
<entry key="functionalDescription">./conf/aces/weather_provider/repo/</entry> 
</properties> 

The two most important elements of this file are the <entry> tags. They indicate a 
reference to the two fundamental building blocks of an ACE: the Self Model and the 
Functionality Repository. 

Specifically, <entry key="model"> specifies the location of the selfmodel.xml 
describing how the ACE Plans will be executed.  
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Similarly, <entry key="functionalDescription"> specifies the directory that 
contains the description of the ACE functionalities. 

If the application requires multiple instances of the same ACE type (for example multiple 
weather provider ACEs), developers can specify this within the aces.xml file. Please note 
that the ACE names in the aces.xml file must be unique in order to distinguish between 
them. 
<aces> 
  <ace name="display" type="conf/aces/advertizement_display/ace-type.xml"/> 
  <ace name="age_provider" type="conf/aces/age_provider/ace-type.xml"/> 
  <ace name="weather_provider1" type="conf/aces/weather_provider/ace-type.xml"/> 
  <ace name="weather_provider2" type="conf/aces/weather_provider/ace-type.xml"/> 
  <ace name="weather_provider3" type="conf/aces/weather_provider/ace-type.xml"/> 
  <ace name="weather_provider4" type="conf/aces/weather_provider/ace-type.xml"/> 
</aces> 

The example above will create four weather provider ACEs of the same type. 

6.3.2 Running the ACE Application  

ACEs are created through an instance of the class cascadas.ace.AceFactory by 
analysis of application configuration files described in the previous chapter. The 
AceFactory contains the the AceFactory.main() method. You can pass the path to 
your custom settings.properties configuration file. When no argument is passed, the 
factory will use the ./conf/settings.properties by default.  

With respect to the settings from the settings.properties file, AceFactory will 
create specified ACEs by resolving their model definitions and specific functionality 
mappings as defined in the corresponding XML configuration files (cf. chapter 6.3.1). 

Can I see the ACEs? 

In order to visualise your ACE application and see the running ACEs you should either use 
the Elvis visualisation tool or the VISA (Visualising ACEs) tool.  

Elvis is a DIET agent visualisation tool which has been provided together with the DIET 
Agents platform. It shows you the ACEs in a DIET specific manner including all supporting 
components like mirror agents and connections for example (see Figure 24). 
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Figure 24: Visualising ACEs using Elvis 

In order to visualise the application using Elvis, you have to start the Elvis tool passing the 
reference to the AceFactory as parameter to it: com.btexact.diet.elvis.Elvis 
cascadas.ace.AceFactory. 

VISA (Visualising ACEs) was developed in order to visualise ACEs in an ACE-specific way, 
without additional “DIET specific things” like Elvis does. The VISA tool is a java applet that 
can be started using a web browser or applet viewer. It uses application log messages and 
displays ACEs based on log messages.  

In order to use VISA the log level must be set to at least INFO, and an additional socket log 
output that sends log messages in XML format to port 4001 must be specified within the 
settings.properties file. 

logging.outputs = socket,localhost:4001,xml 
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Figure 25: Visualising ACEs using VISA 

VISA shows all ACEs that are involved in the ACE application independent of their location. 

How do I view the log messages? 

The new ACE Toolkit provides an extensive logging facility that can produce various log 
outputs like for example logging to the console or to a socket. The best way to view the log 
messages is to use the Chainsaw log viewer [Chsw]. It is an open source toolkit developed 
by the apache software foundation. 

In order to use the Chainsaw log viewer, you have to initialise it with the misc/chainsaw-
config.xml file. The log viewer will create a socket receiver to port 4000 and will wait for 
log messages to be displayed. In the settings.properties file the corresponding log 
output must be specified. 
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Figure 26: Viewing ACE log messages using Chainsaw 

Chainsaw will show a folder tree with log messages placed within different ACE folders. As 
presented in the figure above, this tool allows you to filter and view log messages per ACE 
name. The ACE internal messages can be viewed on ACE organ basis. This allows you to 
analyse the ACE execution in a very convenient way.  

7 Conclusion and Outlook 

The document at hand is part of the CASCADAS deliverable D1.3, first prototype 
integration. It constitutes the documentation accompanying the source code of the 
integrated CASCADAS Toolkit. In this document we have described in detail the ACE 
component model and the features and mechanisms of each of the organs an ACE is 
composed of. Furthermore, the Toolkit’s mechanisms to support security, supervision, 
aggregation, and Knowledge Networks have been described. The document also includes 
a description of the example application included in the Toolkit as well as a tutorial on how 
to program ACEs using the Toolkit. 

Apart from providing a stable basic run-time environment for the creation and execution of 
ACEs the CASCADAS Toolkit also possesses a variety of advanced features as described 
in this document. It is also integrated with the concepts and tools provided by other work 
packages. The example application included in the Toolkit shows some of the Toolkit’s 
potential in a practical manner for the project’s pervasive advertisement scenario. 

Therefore, in summary, the current release of the CASCADAS Toolkit is fully in line with 
what was expected to be available at this point in time. For the future, it is planned that the 
Toolkit will – besides continuously being adapted to the requirements from other work 
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packages – be enhanced by additional features for contract negotiation, advanced lifecycle 
management including deployment decision making, ACEs’ self-reflection capabilities by 
means of semantics as well as further tools to facilitate ACE development. 


