

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 1 of 41

Deliverable 6.2
Part B: Distributed test bed specifications.

Status and Version: Final

 Date of issue: 15.01.2007

 Distribution: Public

 Author(s): Name Partner

 A. Manzalini, A. Mannella, R.
Alfano

TI

 R.Lent (Editor), A. Di Ferdinando ICL

 Matthias Baumgarten UU

 T. Al-Bagikni, P. Deussen, E.
Höfig

Fokus

 R. Cascella, M. Brunato, R.
Battiti

UNITN

 Checked by:

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 2 of 41

Table of Contents
1 Introduction 4

1.1 Purpose and Scope 4
1.2 Reference Material 4
1.3 Document History 6
1.4 Document overview 7

2 Test-bed Overview 7
3 Use-cases to validate the CASCADAS framework 8

3.1 Service for Pervasive applications 8
3.1.1 Use-case: Pervasive Services supporting independent Living 11
3.1.1.1 General System and Service Requirements 11
3.1.1.2 What will be demonstrated? 12

3.1.2 Use-case: Scenario Behavioral Personal Advertisement 14
3.1.2.1 What will be demonstrated 15

3.2 Non-pervasive, communication-intensive applications 16
3.2.1 Use-case: Autonomic Distributed Auctions 16
3.2.1.1 Summary and rationale 16
3.2.1.2 Users 16
3.2.1.3 Basic course of events 17
3.2.1.4 What will be demonstrated 18

4 Test-bed Design 19
4.1 Basic Requirements 19
4.2 Structure 20
4.3 Using Virtualisation for Testbed Implementation 21

4.3.1 Proposed Testbed Node Design 21
4.3.2 Virtualisation 23
4.3.3 Virtual Machine Concepts 24
4.3.4 Virtualisation Products Overview 27

5 Test-beds interconnection 31
5.1 Leased lines 32
5.2 GÉANT2 and NRENs 32
5.3 Internet 33
5.4 Using Virtual Private Networks (VPN) 33

5.4.1 Technology 33
5.4.2 Topologies 35

6 Roadmap 37
6.1 Summary of Planned Activities 38

7 Conclusions 39

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 3 of 41

Appendix “What is available” 39

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 4 of 41

1 Introduction

The key objective of CASCADAS is the creation of an autonomic toolkit based on
distributed self-similar components and characterised by self-* features, such as self-
configuration, self-optimisation, self-healing and self-protection. The autonomic toolkit is
aimed at establishing a foundation for a next generation service layer, whose purpose is to
facilitate the creation, execution and provisioning of situation-aware and dynamically
adaptable communication services. Therefore, the CASCADAS project addresses the
design of an open service environment, which relies on ACEs (Autonomic Communication
Elements) as basic building blocks for the construction of services. As a result, autonomic
services will emerge from the composition of ACEs with low development and operational
effort.

The next phases of the project aim at prototyping an autonomic toolkit that will offer ACE
functionality. The toolkit will be used for the creation of selected application scenarios. As
part of WP6 activities, a number of application scenarios have been identified and
recognised as particularly useful to demonstrate key research ideas. These scenarios
cover a wide range of applications and they will be developed and deployed in a test-bed
setting as proof-of-concepts of the project vision of an Open Autonomic Service
Framework.

In a more general context, test-beds can serve in two roles: 1) as an evaluation tool on
which CASCADAS researchers can quantify techniques against objectives or benchmark
different solutions, and 2) as a demonstration platform to promote CASCADAS technology.
Three principal test-beds will be available to CASCADAS researchers for their studies.
These test-beds are physically located at the premises of CASCADAS’ partners ICL,
FOKUS and UNITN. It is anticipated that independent studies will be carried out on these
test-beds initially. However, there are plans of interconnection at a later phase of the
project to conduct larger-scale demonstrations and evaluations. In addition, a test-bed
located at UNIMORE’s premises will serve to demonstrate specific situation-aware
algorithms.

This document describes the foundations of the CASCADAS test-bed design, development
and deployment, by addressing the main requirements and obligatory parameters for
usability and flexibility. It also discusses specific use cases that will be developed and
deployed, and technical specifications and test-bed interconnection.

1.1 Purpose and Scope
This document constitutes Part B “Distributed test bed specifications Document” of
Deliverable 6.2. Specifically, it covers a technical description of the CASCADAS’ test-beds
and selected applications that will be developed and deployed to demonstrate key research
results of the project.

1.2 Reference Material
[CASCADAS1] Annex 1 – Description of Work
[CASCADAS2] Minutes of the Bruxelles WP6 4th May 2006

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 5 of 41

[CASCADAS3] Minutes of the PhC between WP Leaders 21st April 2006

[CASCADAS4] Minutes of the WP 6 PhC 21st June 2006

[CASCADAS5] Minutes of the Belin WP6 18th September 2006

[AdBa66] Adair R., Bayles R. U., Comeau L. W. and Creasy R. J., A Virtual Machine
System for the 360/40, IBM Cambridge Scientific Center report 36,
Massachusetts, May 1966.

[Be05] Fabrice Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA,
USA, 2005, pp. 41–46.

[BrDr03] Paul Braham, Boris Dragovic, Keir Fraser, Steven Hands, Tim Harris, Alex HO,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield, Xen and the Art of
Virtualisation, in Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, Bolton Landing, NY, USA, 2003, pp. 164–177.

[BuBa03a] Mauro Brunato, Roberto Battiti. PILGRIM: A Location Broker and Mobility-Aware
Recommendation System. Proceedings of PerCom2003, Fort Worth (TX), USA,
march 2003.

[BuBa03b] Mauro Brunato, Roberto Battiti. A Location-Dependent Recommender System
for the Web. Proceedings of the MobEA Workshop, Budapest (Hungary), may 20
2003.

[Cr81] Creasy R.J., The Origin of the VM/370 Time-Sharing System, IBM Journal of
Research and Developments 25 (Sep 1981), pp. 5.

[Di06] Jeff Dick, User Mode Linux, Prentice Hall, ISBN-13 97-801-31865051, 2006.

[FeSc99] Niels Ferguson, Bruce Schneier, A Cryptographic Evaluation of IPSec,
unpublished manuscript from BT counterpane, available online:
http://www.macfergus.com/pub/IPsec.html, February 1999

[Intel01] Intel Corp., Architecture Software Developer’s Manual, volume 2: Instruction Set
Reference Manual, Intel®, Santa Clara, Order Number 243191.

[Intel02] Intel Corp., Vanderpool Technology for IA-32 Processors (VT-x) Preliminary
Specification, Intel®, Santa Clara, Order Number C97063-001.

[Intel03] Intel Corporation, “Preboot Execution Environment, (PXE) Specification Version
2.1,” Intel® 1999.

[KeSe03] Kenneth B. Kent. and Micaela Serra, Reconfigurable Architecture Requirements
for Co-Designed Virtual Machines, Proceedings of the 17th International
Symposium on Parallel and Distributed Processing, IEEE Computer Society,
Washington, DC, USA, 2003, pp. 187-189.

[KiSm03] Ho-Seop Kim and James E. Smith, Dynamic Binary Translation for Accumulator-
Oriented Architectures, Proceedings of the international symposium on Code
generation and optimation: feedback-directed and runtime optimisation, IEEE
Computer Society, San Francisco, California, USA, 2003, pp. 25-35.

[Le05] R. Lent. Design of a manet testbed management system. The Computer
Journal, 49(4):171–179, July 2006.

[LiFl02] Hans Liebig and Thomas Flik, Rechnerorganisation. Prinzip, Strukturen,
Algorithmen, Springer, Berlin, ISBN 3540000275, 2002.

http://san.ee.ic.ac.uk/publications.shtml

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 6 of 41

[MeBo05] Mira Mezini, Christoph Bockisch, Tom Dinkelaker and Michael Haupt, Lecture:
Virtual Machines, Technische Universität Darmstadt, Darmstadt, 2006.

[NeBr05] Newman M., Braswell C.M. and Wiberg B., eds., Server Consolidation with
VMware ESX-Server, International Business Machines Corporation, Redpaper,
http://www.redbooks.ibm.com/abstracts/redp3939.html, 2005.

[PoGo74] Gerald J. Popek and Robert P. Goldberg, Formal requirements for virtualisable
third generation architectures, Communications of the ACM, 17 (1974), pp. 412–
421.

[Si06] Amit Singh, An Introduction to Virtualisation, Kernel thread,
http://www.kernelthread.com/publications/virtualisation/, 2006.

[SmNa05] James E. Smith and Ravi Nair, Virtual Machines: Versatile Platforms For
Systems And Processes, Morgan Kaufmann Publisher, ISBN 1-55860-910-5,
2005.

[Tr05] Win Treese, Virtualisation virtually everywhere, ACM Press, netWorker, 9 (June
2005).

[VmWare06] VMware Inc., Accelerate Software Development, Testing, and Deployment,
VMware White Paper http://www.vmware.com/pdf/dev_test.pdf, 2006.

[WoHa05] Chris Wolf and E. M. Halter, Virtualisation: From the Desktop to the Enterprise:
Apress, ISBN 1-59059-495-9, 2005.

[YuJie06] Chen Yu, Ren Jie, Zhu Hui and Shi Yuan Chun, Dynamic Binary Translation and
Optimisation in a Whole-System Emulator – SkyEye, Proceedings of the 2006
international Conference Workshops on Parallel Processing, ICPPW. IEEE
Computer Society, Washington, DC, USA, August 14 – 18, 2006, pp. 327-336.

1.3 Document History

Version Date Authors Comment

0.1 15/06/2006 A. Manzalini (TI) Initial documents

0.2 13/09/2006 A. Manzalini (TI) Revised Draft after WP6 PhC
and Ricardo’s contribution

0.3 03/10/2006 A. Manzalini (TI) Revised Draft after WP6 meeting
in Berlin (19/09/2006)

0.3.1 23/11/2006 A. Di Ferdinando (ICL) Amended description of the
Distributed Auctions scenario.

0.5 11/12/2006 R. Lent (ICL) General edition, UNITN,
UNIMORE, TI contributions

0.6 14/12/2006 E. Hoefig (Fokus) Added Fokus contribution

0.7 27/12/2006 R. Lent (ICL) General edition

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 7 of 41

1.4 Document overview
The document is structured as follows. Section 2 presents an overview of the future
CASCADAS test-bed. In section 3, use cases of selected application scenarios to be
developed and deployed in the test-bed environment are described. Section 4 discusses
the test-bed requirements and design. A roadmap of next WP6 activities related to the
establishment of the test-bed is discussed in section 5. Finally, section 6 ends the
document with a description of alternatives for test-bed interconnection.

2 Test-bed Overview

A key milestone of the CASCADAS project is the design and deployment of a distributed
test-bed that will be used to evaluate, help improve and demonstrate a prototype of an
autonomic toolkit based on distributed self-similar components. A number of representative
applications have been selected to demonstrate in the test-bed environment, a real-time
execution and provision of situation-aware and dynamically adaptable communication and
content services. The results will validate the project vision of an Open Autonomic Service
Framework, which aims at developing a next generation service layer. Figure 1 outlines a
model of the CASCADAS test-bed, which has been broken down for discussion purposes
into four conceptual layers: application, service, network and users.

The user layer covers person-to-person and person-to-environment types of
communication services, which might require situation-awareness for the provision of
specific services, for example, in the provision of behavioural personal advertisement
services. Users might offer knowledge to enable enhanced functionally, such as advice
about potential problems in certain areas of the network based on their personal
experience. In a wider scope, the application layer covers general purpose and
dynamically adaptable services to users.

In the model, the network layer provides the means for moving information across users
and applications, and implements continuous monitoring of status. Network status
information, such as the available bandwidth of communication links, might become
available to the service layer to enable the provision of autonomic solutions, such as fault
recovery, load balancing, etc.

The service layer will be offered by the autonomic toolkit, which will provide the means for
the creation and execution of services and the provision of the Open Autonomic Service
Framework. The service layer forms a dynamically reconfigurable overlay network relying
on an autonomic composition of distributed resources and decentralised functionalities,
taking advantage of external information offered both by the application and network
layers.

The design of the CASCADAS test-bed and experiments with selected application
scenarios will be defined around this model, to demonstrate in a realistic environment the
advantages of the Open Autonomic Service Framework in the provision of situation-aware
and autonomic services.

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Figure 1 - CASCADAS test-bed

3 Use-cases to validate the CASCADAS framework

This section describes a number of use cases of selected application scenarios to illustrate
some of the expected results of WP6 during the next phase of the project.

3.1 Service for Pervasive applications
Within such general scenario, we foresee to demonstrate two different classes of services:
(i) smart environments services for supporting independent living; (ii) behavioral pervasive
content sharing services. In practice, such kinds of services, though serving different
purposes, all represents instances of either people-to-environment coordination or of
people-to-people coordination. Let us now recall the key characteristics we envision for
such general scenario.

First, the scenario considers an environment, which is densely enriched with sensorial and
computational capabilities. In particular, sensor networks as well as RFID tags are
embedded in the environment, and can act both as sources of environmental data as well
as a sort of environmental computing infrastructures. Sensors can interact with each other
in an ad-hoc way, with some users nearby, and can possibly (not necessarily) be
connected to some “sink-server” that can be used to collect data. RFID tags can be
accessed by nearby users and devices to read and/or store data.

Second, humans populate the scenario, live in it and interact with each and with each
other. It is expected that users carry with them some kind of mobile devices (e.g., smart

Page 8 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 9 of 41

phones and/or PDAs). Via such portable devices, users can be given access to the
information produced by nearby sensors and tags, can possibly interact with each other in
an ad-hoc way (e.g., via bluetooh or WiFi), and can possibly access to the Internet via
some wireless connection.

As discussed in more detail in D6.1 part A, the above scenario can soon become reality.
For example, a big exhibition center may already have the resources to invest in making it
a reality, so as to make it possible to deliver, as an additional value of the exhibition, a
number of innovative services to guide people in better enjoying the exhibition, to socialize
with each other, and to support visitors with limited abilities.

Of course, since it is impossible to actually deploy a test-bed of a pervasive exhibition, the
demonstration will focus on a small scale pervasive computing test-bed, where some
pervasive devices such as sensors and RFID tags within an locally-confined environment
(e.g., a hall) are exploited to enforce the exploitation of situation-aware services by a
number of mobile users. Overall, the demonstration could be organised as follows (see
Figure 2):

- The general architecture considers users (circle 1 in Figure 2) equipped with portable
computing devices (i.e., laptops or PDAs), as the clients of pervasive services.

- Such portable devices can integrate localisation devices (i.e., GPS – circle 6 in
Figure 2) and devices to acquire information from the physical world (i.e., RFID
readers and sensors, circles 4 and 5 respectively in Figure 2).

- Also users have supposed to have means to connect to the Internet (i.e., WiFi and/or
UMTS connections, circle 7 in Figure 2) and/or to interact with each other in an ad-
hoc way (circle 8 in Figure 2).

- Services, implemented via proper ACEs, execute on the users’ portable devices
(circle 2 in Figure 2) and, in the case of distributed services made up of a number of
interacting ACEs, can be implemented with the support of ACEs executing remotely
(circle 3 in Figure 2).

- Similarly, contextual information, in the form of proper knowledge networks, can be
acquired either remotely (via ad-hoc interactions with other devices or from the Web)
or directly from the environment (as it can be provided by accessing RFID and
sensors around).

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Figure 2. Demonstration Test-bed for Pervasive Services

Based on this architecture, we will be able to demonstrate in practice how the CASCADAS
concepts can be effectively used for the design and deployment of effective pervasive
services. In particular, with reference to the services described in D6.1, it will be possible to
use this architecture in order to demonstrate the following services:

- Behavioural pervasive advertisement, which is a service to ensure that advertisers
reach the target audience in a more effective way. In the envisioned scenario, this
may results in specific advertisement being directed in a personalised way to
individual PDAs, and/or in wall displays at the exhibition to show those ads that, at a
given moment, would better fit the surrounding audience.

- The Living Diary, which is a personal user-centric applications, which aimed at
exploiting the pervasive devices embedded in an environment to produce a sort of
digital self-composing diary. This is a very useful services to enable people to better
interact with the surrounding physical world, and can also be of use as a cognitive
reinforcement to people with cognitive problems.

Strictly related to the above Living Diary Example, we will be able to demonstrate some
simple services for supporting independent living (see also D6.1), such as “Whereareyou”,
“GoTo”, which helps people to navigate in a physical environment and other similar
services introduced in D6.1.

In a first release, the above services will be realised in the test-bed infrastructure via
means of ACEs that will be able to dynamically aggregate and interact with each other in a
reliable and autonomic way (thus demonstrating some key WP1 features), that will become
situation-aware by accessing knowledge networks (thus demonstrating some key WP5
features), and that will exploit some basic mechanism of self-monitoring and self-
preservation (thus demonstrating some WP2 features). In a second release, we expect to
be able to integrated advanced security solutions (to demonstrate WP4 features) and
advanced self-organisation features (to put WP3 algorithms at work).

The demonstration of more advanced and realistic services to support independent living is
worth a separate discussion. In fact, from a technical perspective, addressing the problem

Page 10 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 11 of 41

of realising realistic pervasive services to support independent living is largely more
complex for a number of reasons. In the first instance, the service must be delivered to
available stakeholders at a number of levels of granularity. For example, provision of
service with those in close proximity perhaps in the same building or street, or those in the
same town or alternatively those who may be simply ‘available’ to offer support but may be
located within a larger geographical area. A secondary issue for consideration is are the
people or services within proximity able to provide support at all and if so at what level?
For example a person who requires some advice as to why they have left the house may
only be able to receive support in this instance by a family member who has access to the
person’s daily agenda. On the other hand, if the stakeholders’ prosthetic raises an
‘emergency suggestion for intervention’ message then the appropriate stakeholder who
can be contacted should be made aware of the situation.

If we assume in the first instance that communication between the person’s cognitive
prosthetic and the stakeholder’s prosthetic can be established the problem becomes one of
complex information management within a networked environment addressing the dynamic
sensing of very detailed information of the person and stakeholders. This calls for general
system requirements that go beyond the simple test-bed of Figure 2. For instance, we may
require advanced sensing techniques to acquire knowledge from motion sensors, pressure
sensors, perhaps some vital signs like Heart Rate or blood pressure. Also, this may require
advanced computational system to perform complex knowledge management tasks. Thus,
at present we believe that such realistic scenarios can only be demonstrated in a virtual,
that is simulated, environment, although realistic case scenarios for persons that require
individual support in their living environment and beyond could be used. Additional
recourses would be necessary to implement a demonstrator that incorporates a real world
test environment

3.1.1 Use-case: Pervasive Services supporting independent
Living

3.1.1.1 General System and Service Requirements
From a technical perspective addressing the problem of realising pervasive services to
support independent living is largely complex for a number of reasons. In the first instance
the service must be delivered to available stakeholders at a number of levels of granularity.
For example, provision of service with those in close proximity perhaps in the same
building or street, or those in the same town or alternatively those who may be simply
‘available’ to offer support but may be located within a larger geographical area. A
secondary issue for consideration is are the people or services within proximity able to
provide support at all and if so at what level? For example a person who requires some
advice as to why they have left the house may only be able to receive support in this
instance by a family member who has access to the person’s daily agenda. On the other
hand, if the stakeholders’ prosthetic raises an ‘emergency suggestion for intervention’
message then the appropriate stakeholder who can be contacted should be made aware of
the situation.

If we assume in the first instance that communication between the person’s cognitive
prosthetic and the stakeholder’s prosthetic can be established the problem becomes one of
information management within a networked environment addressing the dynamic
positioning of the person and stakeholders. This suggests that the requirements of the
technical service should provide for the following:

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 12 of 41

• Situation awareness – to identify the positioning of the person concerned and
relevant stakeholders

• Self organising – to identify the closest stakeholder in instances of alarm
• Autonomy – the ability of the service to dynamically self adapt
• Knowledge management – the ability to infer from the knowledge within the network

Given we wish to exploit such services it may be possible to use a dedicated laboratory
environment with selected domotic devices in order to provide suitable test environment on
a smaller scale. The general system requirements that have to be realised before such
services could be deployed efficiently could be summarised as follows:

• The provision of smart world infrastructures: Reaching from single sensors over
localised smart environments to global and openly accessible smart infrastructures
that are necessary to achieve situation awareness at all relevant levels of
granularity.

• Unique identification and flexible communication methods of and among sensors,
devices, people etc. in order to enable self-organisation among relevant entities and
to implement and coordinate support activities of and among individual entities.

• A number of distributed computational resources to enable advanced knowledge
management techniques and to access dedicated services

For example, we may have knowledge from motion sensors, pressure sensors, perhaps
some vital signs like Heart Rate or blood pressure. These could all be the core elements
which would provide relevant knowledge for the knowledge network (WP5) and be used in
some means as an aggregate to actually facilitate knowledge support for pervasive
services in this domain. This may be appealing due to the fact that two people's homes are
similar while their activities will be largely different hence it will be possible to demonstrate
this adaptability and perhaps the ad-hoc nature of the service by using a number of
different people within the same test environment. The supervision element (WP2) could
be introduced to show how the environment could adapt to the person's behaviour. For
example, if there is significant wandering within a room or between rooms the system or
service should react in some way.

3.1.1.2 What will be demonstrated?
Based on the example scenario outlined in Deliverable 6.1 and assuming that a large scale
smart world infrastructure or a more local smart environment is available, either real or
simulated, the following demonstration activities are envisioned.

• People to Environment (localised) Interaction: Consider a localised smart
environment as e.g. as depicted in Figure 1, which illustrates a home environment.
The flexible and dynamic interaction between such an environment and its
inhabitants, and vice versa, offers a wide range for possible pervasive services.
Such services could be applied to:

o Raise alarms in the case of dangerous situations.
o React to the specifics of individual inhabitants.
o Organise daily life activities.
o Etc.

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Figure 1: Smart Home Environment

• People to Environment (global) Interaction: For this, consider a more global
oriented smart world infrastructure such as depicted in Figure 2. Such an
environment is by far more dynamic, that is the type and amount of available
contextual information is much more diverse and larger, respectively. Furthermore,
the types of services to be applied may differ for different locations. For instance,
the same type of service in two different towns may produce a different result.
Therefore, the type of possible services, for such an environment, is virtually
unlimited. Nevertheless, some of the most interesting once may stem from the
areas of cognitive and spatial reinforcement where the following example services
represent suitable demonstration tasks:

o Cognitive reinforcement (helping people to remember)
 GoTo(Location(x))
 This may be considered as a form of person-to-environment

interaction.
 This may be considered as a form of person-to-person interaction

o Spatial reinforcement (in order to improve and extend a person’ mobility)
 AlertCare(IfPersonLost(Client(x)))
 WhereAmI?

Figure 2: Smart World Infrastructure

Page 13 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

• People to People Interaction: The interaction between people or applications, in
this case, represents another area where dedicated pervasive services can be
applied to. In this case specific interactions may be invoked; configured or individual
personal interest may be shared to achieve separate goals. As depicted in Figure 3,
the identification of individual interaction entities (people or applications) and the
negations of available and needed services represents a distinct objective of the
project and thus forms the basis for possible services such as:

o Social reinforcement (aiming to help people to maintain social contact inside
and beyond their own family)

 Call(Person(x))
 WhereIsPerson(y)
 WhoIsClosestPerson(x)
 This may be considered as a form of person-to-person interaction

o Functional reinforcement (to help perform daily life activities)
 EatLunchAt(Time(x), Restaurant(y))
 A form of person-to-environment interaction to provide direct

assistance.

a) b)

Figure 3: People-to-People Interaction (a) Person can obtain information
from a single stakeholder (b) Person can obtain information from a hoist of
stakeholders.

The actual focus and scale of the demonstration activities will, obviously, strongly depend
on the contribution of each work package towards the overall framework but also towards
specialised configurations thereof, which are required to address the specifics of this
scenario.

At present we believe that this scenario can only be demonstrated in a virtual, that is
simulated, environment, although realistic case scenarios for persons that require
individual support in their living environment and beyond could be used. Additional
recourses would be necessary to implement a demonstrator that incorporates a real world
test environment.

3.1.2 Use-case: Scenario Behavioral Personal Advertisement
Behavioral Pervasive Advertisement (BPA) applies pervasive and autonomic computing to
the nowadays emerging advertisement technique called behavioral advertisement (or
behavioral targeting) aiming at advertising targeted audiences in a very effective way.

Page 14 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 15 of 41

In principle, behavioral targeting should allows marketers to better grasp customers' needs
and interests, mainly by tracking and monitoring consumer behaviors on the web. The use-
case proposes to extend such advertising techniques to a general person-to-person,
person-to-environment communication context where Users’ interests and needs
(according to their authorisation) can be grasped.

Moreover, exploiting the pervasive nature of CASCADAS based applications, BPA may
provide customised contents and advertisement, not only during web navigation, but
different channels may be personalised to the single user or to groups of users (e.g. digital
screens in the road may autonomously provide advertisement customised to the profiles of
the user moving in the zone of the screen).

Behavioral Pervasive Advertisement is considered and excellent use-case to demonstrate
the CASCADAS autonomic component-ware framework to the key role played by
autonomic communications.

The service provider should be able to respond to users needs as they arise, by
implementing a pull-based VAS offer, in which customers can access a set of functionality
in multiple ways, driven by their context and interests. Such functionality should be
dynamically composed and made available by the autonomic features.

To enable that vision, it is necessary that the service development and delivery
infrastructure available to Telecommunications operators provide means:

 To maintain a large and ever growing portfolio of basic service building blocks;

 To allow the available building blocks to rapidly self-organise them exploiting
context information;

 To get user habits and lifestyle from the communication services provided by the
operator.

3.1.2.1 What will be demonstrated
The Behavioral Pervasive Advertisement system will heavily depend on the combination of
quasi-static user profiles with dynamic context data describing the user's current status in
terms of physical position, current activity and other relevant information. Such combination
of data will enable the system to provide time- and position-sensible information to
customers, therefore improving the effectiveness of the displayed information.

User profile information can be maintained by means of a loop where users provide
feedback information to the system. Such feedback information can be either explicit (vote)
or implicit (e.g. time of permanence in front of the display), and can be continuously
merged into the system, together with information describing the actual context in which
the advertisement information was delivered [1,2]. The importance of context information
can be understood by many examples: for instance, the same restaurant ad can be very
appealing at noon and pass unnoticed at mid afternoon; in many cases, this relationship
can be predetermined and hard-wired in the system. However, inspection of correlations
between context data and user feedback can unveil previously unexpected relationships.

Besides the time of day, relevant context data might include position, crowd density, and
presence of similar people, even weather conditions. An autonomic network can provide
aggregate context information by fusing data from a number of sensor nodes; detection of
similar people in the same place can be operated by appropriate ACEs that implement
learning/optimisation algorithms to identify clusters and cliques in relationship graphs.

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 16 of 41

By default, the pervasive advertisement system will operate as a display that alternates
among all possible ads; once the presence of any user is sensed in a proximity area, the
system will switch to its autonomic behavior. The demonstration of the feasibility of the
scenario can be conducted by providing the system with detailed user profiles and with all
the context information required to trigger the display of the appropriate advertisement. If
many users dynamically interact with the system at the same time, the screen should
determine the advertisement that best matches all the different profiles by employing the
clustering functionality of the optimisation-capable ACEs.

The adaptive features of the systems will be tested by modifying user profiles, context
information and/or specific features of the system. For instance a variation of the location of
the user or the information on the mobility of the user will trigger different advertisements.

From the security and survivability viewpoint, we can expect this system to react to false
information introduced by malicious parts of the system in order to increase their utility
beyond a reasonable point. For instance, a single mobile ACE could decide to impersonate
many similarly-profiled nodes in order to trigger the visualisation of a particular ad. Security
and self-management properties of the system can be demonstrated with the application of
a reputation system as the system relies on user feedbacks to advertise points of interest
or other information. The trustworthiness of the components interacting in the system might
exclude from the system malfunctioning components or malicious users who attacks the
system to modifying opportunistically the advertisement that should be shown.

3.2 Non-pervasive, communication-intensive applications

3.2.1 Use-case: Autonomic Distributed Auctions

3.2.1.1 Summary and rationale
The scenario models future economies, which we expect to be organised around
networked and completely automated transactions between enterprises, and between
individuals and enterprises. Such systems are expected to carry a high number of short-
lived electronic transactions operating at a high frequency. To succeed, auction
participants will need to operate in an opportunistic way.

The support of an autonomic communication network will ensure the delivery of
uninterrupted economic services with a defined, yet customisable, Quality of Service (QoS)
to a large number of users, which can be automated, such as agents, or physical users.
Such communications will exploit aspects, typical of autonomic computing, such as
situation-awareness and self-adaptation to network conditions (in order to deliver the
fastest response time and the best protection against failures) and self-protection
techniques (against malicious users). Likewise, self-configuration would allow auctions to
virtually move in the network to “position” participants in the most advantageous places and
allow them maximise their revenues. Operating at a global scale, the managing complexity
of this application would scale up without control unless autonomic support emerges.

3.2.1.2 Users
The scenario will consist of several nodes physically located on different networks,
interconnected each other to form a single bigger network. This platform will be populated
by:

• Buyers: users searching for, and willing to bid for, items of interest.

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

• Sellers (or auctioneers): users owning items that sell them through auction. These
users are also said to start an auction by advertising the item.

• Auction Centers (ACs): represent markets where buyers and sellers meet. Contain
representation of (sub-system of) networked auctions, typically visualised as
Auction Web Pages (AWPs). There contain the list of items currently auctioned
along with a description of auction terms and conditions. ACs have an influence
area that might be related (or not) to a geographic position, or to a particular type of
products or services.

3.2.1.3 Basic course of events
Sellers and bidders will advertise their goods (or services) through ACs by providing a
description of the item to be advertised, containing all needed information eventual users
interested in participating to the auction need to know. In detail, by means of an
advertisement sellers will publicly notify their will to sell an item according to a set of rules
(there also provided), while buyers will publicly notify their will to buy an item (eventually
under certain auction rules).

Typically, information contained in an advertisement will include initial price for the item,
starting and expiration date (for timed auctions) and the model of auction (or a set of rules
regulating the auction, if these cannot be arranged into a well known auction model)
chosen for the process. ACs will enable some level of control over the auctions, for
example, by regulating access control, including qualification and verification of users'
credentials.

Buyers will find sellers auctioning goods of interest (and sellers, buyers willing to participate
to auctions on goods they want to auction) by consulting ACs on demand. Interested
buyers will then contact sellers (and, conversely, sellers will contact buyers) privately in
order to proceed with the auctioning process. Updates on auctions being carried out will be
instantly reflected in ACs.

To succeed in auctions, participants will
act in an opportunistic way: self-
configuration will allow virtual movements
of participants, that will be able to position
themselves in the most advantageous
places in the network, in such a way to
maximise their chances to succeed in the
auction process. This location, which we
have named Virtual Location (VL), will be
determined with respect of certain QoS
requirements to fulfill, and will require the
support of the autonomic communication
network in a way that it will determine the
ideal position to migrate to in the network.
In addition, autonomic elements will be
necessary to facilitate the exchange of
Auction Messages (AMs). As it can be
figured out, there are stringent communication requirements (including migrations) of a
high complexity in the process of finding offers and in conducting the rational process of
the auctions. As an example, let us consider location in a time-constrained auction: bidders
capable of reaching the seller quicker (e.g. closer to the seller in terms of end-to-end delay)
will have better chances to snipe the auction than bidders a few milliseconds further away

Figure 4: Auction Scenario

Page 17 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 18 of 41

from the seller. This creates an undesirable position to certain participants. Another
example can be seen in auction participants connecting from networks of different
characteristics. In fact, different networks provide different communication service levels,
which produce a differential effect (e.g. a wireless user may have higher loss probability).
The complexity scales up further if we consider that users will often interact with more than
one AC to try to increase their profits.

3.2.1.4 What will be demonstrated
The distributed test bed will consist of a number of nodes geographically distributed,
running the Distributed Auction (DA) platform. On each node, users will have the option of
choosing manual or automated auction management. In the latter case, the user will
specify an overall utility that the application will aim at achieve. When automated
management is selected, the application will have the freedom to decide participation in
auctions while attempting to maximise revenue (utility). As an example of utility, the user
might ask the application to manage a company’s warehouse by requiring a fast turnover of
goods. In the manual case, the user will manage auctions herself by deciding auction
participation.

As a second part of the management choice, when the application is managed in an
automated way, an agent will randomly generate items to auction (as a seller) and join
auctions (as a buyer). The agent will reside at application level (i.e. will be an application-
level agent) and will be in charge of instructing the application to generate random items
(along with the correspondent description) to be auctioned based on random auction
models. However, in contexts where the application will act as seller the agent will be smart
enough to preserve consistency between the nature of the generated item and the rules
under which to auction it.

The application will visually display the current activity of the AU (and, eventually of the
whole network) by providing detail of each auction the local application is currently involved
in with all relevant data such as description of the item under auction, enumeration of other
participants (whereas the auction model allows these to be known), current price, bid
history and so forth.

After creation, the item will be advertised at one or more ACs. This latter will be reachable
by means of connections on specified IP addresses and will essentially contain an AWP.
Items in the AWP will be represented by an object containing everything necessary for a
hypothetical bidder to participate. The AWP will be linked to a database containing items
objects. Buyers’ request of specific items will query the database to the extent of obtaining
a list of relevant item objects based on a set of characteristics specified by the buyer in the
query.

The actual bid will be placed by means of a point-to-point connection with the auctioneer,
and this will mark the start of an auction from the perspective of the buyer. Point-to-point
communication between auctioneer and bidders will allow all parties involved to interact in
the context of the auction, while other point-point communication between auctioneer and
the ACs currently containing the advertisement for the item under auction will allow
reflecting every change in the item in the involved ACs.

The test-bed is expected to highlight the benefits of autonomic computing in the process of
auctioning. In particular, aspects tied to self-configuration and self-mobility will allow the AU
to act opportunistically by migrating to other nodes in order to maximise the chances to
succeed in the auction. In addition, exploitation of self-aggregation will allow dynamic
creation of new, more sophisticated services. For instance, when an AU finds an auction

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 19 of 41

for an item of interest auctioned under an auction model it cannot correctly interpret, it
might aggregate to another AU to the extent of forming a new AU capable of interpreting
rules from all auction models correctly interpreted by the two original AUs. However, the
AU chosen for aggregation might request payment for the actual aggregation to take place.
This is an aspect that the AU is expected to handle autonomically, based on the available
budget and the overall convenience.

4 Test-bed Design

The design of the CASCADAS test-bed has a life cycle, which consists of four principal
phases. These phases will be carried out in a cyclical way, so that the revisiting of phases
should help in improving the design of ACEs and the test-bed itself with every cycle.

1. Requirement analysis. Consist in identifying the key needs to be fulfilled both in
defining the infrastructure and software development. Most requirements can be
recognised from the specific characteristics of the application scenarios to be deployed
and the particular needs of the autonomic toolkit.

2. Physical design. Consists in selecting specific technologies and products to materialise
the test-bed. Includes the selection of computer hardware, operating systems,
communication service providers, etc.

3. Logical design. Includes the integration of the the autonomic toolkit and supplementary
tools for experimentation and demonstration purposes of application scenarios. The
logical design also includes setting overlay networks and computer virtualisation to
increase the available nodes in the network.

4. Evaluation and Optimisation. The final step after constructing the test-bed and
deployment the applications is the evaluation and optimisation of the design to identify
potential amendments.

4.1 Basic Requirements
The following are various properties that are desired in constructing an effective test-bed
for CASCADAS. The requirements have been identified from expected experimentation
needs in addition to software development/maintenance and logistic necessities. It is
important to notice that these requirements have appeared from the information currently
managed across different WP of the project. However, the list is not necessarily exhaustive
and new requirements may appear in the future as project research progresses.

• Modularity. Similar to the software construction approach of ACEs, the test-bed
should be modular and it should permit an easy exchange of components for easy
experimentation. Also, it should be possible to test implementations of diverse
capabilities for comparison and validation purposes without disrupting on-going
experiments.

• Controlability. The test-bed should permit an easy adjustment of parameters for a
variety of applications. It should also allow for introducing perturbations into the
system, which are intended to trigger autonomic behaviour.

• Observability. Experiments need to be quantified via data collection both in a
centralised and decentralised way. Centralised data collection will be particularly
useful in demonstration activities where a user interface will show application

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 20 of 41

behaviour on-line. In evaluation studies, decentralised collection will be useful in
most cases.

• Availability. Researchers should have the possibility of conducting experiments
without limitations of geographic location or time.

• Security. Access to the inner details of the CASCADAS test-bed should be
restricted with proper authorisation and authentication, in particular, during the initial
phases of development.

• Universal access. In later phases of development, certain portions of the test-bed
may become public to be a general demonstration tool or “display window” of on-
going experiments and key research ideas.

• Uniform tools. A set of common tools should be made available to CASCADAS’
researchers across the distributed test-bed. Such tools might include a common
development framework, libraries, etc.

4.2 Structure
The CASCADAS test-bed structure consists of two main parts: infrastructure and custom-
built software.

The infrastructure part has three principal local test-beds deployed at premises of ICL,
FOKUS and UNITN, which will be interconnected to form a larger test-bed. A specialised
test-bed located in premises of UNIMORE will be devoted to specific demonstration
purposes within the project. Appendix A lists the equipment available at each location.

The custom-built software part consist of the following parts:

• ACE toolkit. An ACE toolkit will be developed and made available as a project-wide
milestone and it will be used to support the development of autonomic services.
The ACE toolkit will be deployed in the CASCADAS test-bed as a component to be
used by the applications.

• Selected applications. Application scenarios are described in detail in Deliverable
6.1-Part A. Among these applications, there are a number of them devoted to the
applicability of the autonomic principles for the evolution of the Service Layer.
These particular applications, for example, next generation service infrastructures
and ubiquitious grid computing for pervasive services, will be used as evolutionary
architectural enablers that will assist in the provision of essential ACE functionality
and the definition of the Open Autonomic Service Framework.

Application services will be developed from ACEs along two directions to maximise
application coverage. The first direction will focus on autonomic communication
aspects, for example, situation and context awareness. The main idea is to be able
to evaluate and demonstrate pervasive applications. At least two applications will
be developed and deployed in test-beds: smart environments supporting
independent living and behavioral pervasive content sharing. The second direction
is along supporting communication-intensive applications. We will develop and
deploy a distributed auctions application.

• Workload generators. Although interactions with real users are expected in the
experimental evaluation and demonstration of the autonomic toolkit and
applications, a synthetic source of workload would be required for convenience in
most cases to persistently conduct tests for long periods of time.

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

• Monitors. Dedicated monitors will observe and record events of interest in the
systems under study. Such events might be triggered for example, by the
application of autonomic properties of the system, which we would like to measure.

• Control. Another piece or pieces of software will control the execution of
experiments, e.g., by injecting specific perturbations into the system to enable
autonomic properties to emerge.

4.3 Using Virtualisation for Testbed Implementation
To achieve flexibility and extendibility in the CASCADAS testbed, a solution based on
virtualisation will be proposed as an approach to create an additional layer allowing for
independency in regards to the employed hardware, operating system, and network
technology. The basic idea is to construct the testbed from machines that are configured in
a very basic and simple manner (hereafter called testbed “nodes”), running a minimal
operating system and exposing the capability to start virtual machines that are able to
emulate a wide range of existing operating systems and middleware technologies. In this
scenario a developer wishing to evaluate, e.g., an ACE design choice would create a
virtual machine image on her personal workstation and configure an appropriate runtime
environment, system libraries, network setup, etc. for the test. Afterwards the image would
be distributed to the testbed nodes and started automatically, creating a distributed,
custom-tailored version of the infrastructure. When the tests conclude virtual machines
should be halted, leading to a clean testbed exhibiting the same configuration state as
before running the test. This vision is detailed in the following sections.

4.3.1 Proposed Testbed Node Design
Each node participating in the testbed is configured with certain functionality yielding the
necessary abstraction to use virtualised scenario evaluation. For better understanding,
consider this functionality to be divided into five layers as illustrated in Figure 4.1.

Figure 4.1: Testbed Node Abstraction Layers

Page 21 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 22 of 41

The layers of abstraction are arranged in a hierarchy, with a lower layer implemented in
hardware and higher layers in software. In the hardware layer all the components are
physical and have real properties. Its interfaces are defined so that the various parts can
be physically connected. In the software layers components are logical with fewer
restrictions based on physical characteristics. The layers interact with each other through
software interfaces.

Hardware Layer

The hardware layer consists of the physical devices, providing hardware resources for the
testbed. Resources are processing capability, memory, mass storage and network access.
These enable an infrastructure node to communicate and interact with other nodes in the
local or distributed testbed. The network of the testbed is proposed to be based on
Ethernet technology or Wi-Fi, potentially allowing for portability of the testbed, e.g. for
demonstration purposes.

Minimal Operating System (MOS) Layer

The MOS contains just an operating system kernel (proposed to be linux based) and most
needed functionality such as drivers, communication protocol implementation, and an
application binary interface (ABI). The ABI provides a program with access to the hardware
resources and services available in a system. The MOS is responsible for CPU, memory,
device driver management, I/O (Input and Output), process, and application management.
The MOS is proposed to create the interface between hardware and virtualisation software
and can be considered as a very thin layer between them. It may also contain some part of
the virtualisation software, which would care for execution and optimisation of some
instructions operating in privileged (kernel) mode.

Virtualisation Software Layer

This layer allows several operating systems to run at the same time by portioning and
sharing the underlying hardware resources. To achieve that, the virtualisation software
builds and simulates an abstract and unified hardware layer upon the underlying operating
system. The virtual hardware layer will be the same on each node regardless of the real
hardware, i.e. the hardware layer contains the same CPU instructions, memory,
motherboard, storage and I/O devices. Therefore, any running operating system depending
on a virtual hardware layer can be copied, cloned and replicated without a reconfiguration
and in a convenient way. Moreover, virtualisation software is able to simulate more than
one hardware instruction where more than one operating system could be deployed on the
same virtualisation software as depicted in Figure 4.2.

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Hardware

Minimal Operating System

Virtualization Software

CPU RAM Storage I/O
Devices

V-Hardware

Common OS

Applications

V-CPU V-RAM V-
Storage

V-I/O
Devices

Common OS

Applications

Figure 4.2: Using Two Operating Systems on One Node

Common Operating System (COS) Layer

The COS is proposed to be the place where technology developed within the CASCDAS
project is executing. Due to the abstraction from the hardware it is possible to deploy
different operating system such as Windows, Linux, Solaris, etc. which runs within the
virtualisation software behaving like a natively executing operating system (of course there
is a small penalty for virtualisation overhead, this should not be more than 20%). The OS
will not see the real hardware; it just senses the virtual hardware that is simulated by the
virtualisation software. The virtual hardware and the common OS build the virtual nodes.
Each virtual node will be able to communicate with other virtual nodes as part of the

Application Layer

This layer contains the application scenarios that will be developed during the CASCADAS
project.

Owing to the flexibility through employment of virtualisation developers would be able to
experiment with several ideas by using different operating systems and deploying many
concepts with minimal configuration efforts in order to compare them.

4.3.2 Virtualisation
As the utilisation of virtualisation technology is a key part of the proposed testbed
infrastructure, this section gives an overview of the involved concepts, technologies and
products.

Virtualisation is a broad term that refers to the abstraction of resources in many different
aspects of computing. “Virtualisation is a framework or methodology of dividing the
resources of a computer into multiple execution environments, by applying one or more
concepts or technologies such as hardware and software partitioning, time-sharing, partial
or complete machine simulation, emulation, quality of service, and many others” [Si06].

Hardware and Software abstractions permit to manage complexity in computer systems
mainly by providing interfaces. For example of abstraction in computer systems, consider

Page 23 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 24 of 41

the construction of a physical hard disk that is divided into sectors and tracks and
abstracted by an operating system so that it appears to an application as a set of files. An
opposite example would be the ability to make a set of physical hard disks appears as one
logical hard disk partition through a virtualisation layer. This implies a fine differentiation
between abstraction and virtualisation, i.e. virtualisation is about creating illusions whereas
abstraction is about hiding complexity. The level of detail in a virtual system is often the
same as that in the underlying real system without necessarily hiding details. Moreover
„virtualisation provides a way of relaxing the foregoing constraints and increasing the
flexibility” [SmNa05], i.e. when a system or subsystem, e.g., a processor, memory, or I/O
device, is virtualised, its interface and all resources visible through the interface are
mapped onto the interface and resources of a real system actually implementing it.
Consequently, the real system is transformed so that it appears to be a different virtual
system or even a set of multiple virtual systems.

The idea of virtualisation is not new; the concept was in existence since the 1960s when it
was first developed by IBM to provide concurrent, interactive access to a mainframe
computer. Virtualisation was used as an instance of a physical machine that gave users an
illusion of accessing the physical machine directly [AdBa66]. Popek and Goldberg made
their exploration of virtualisation in 1974 [PoGo74]. They developed a formal model of a
third generation computer system in order to find sufficient conditions to determine whether
a particular third generation machine can support virtualisation. According to their research
formal virtualisation involves the construction of a homomorphism that maps a virtual guest
system to a real host. This formal construct has then been used to characterise abstraction
as well as virtualisation.

The concept of virtualisation can be applied not only to subsystems such as hard disks, but
to entire machines, which are then called virtual machines. A Virtual Machine (VM) is
implemented by adding a layer of software to a real machine to support the desired virtual
machine’s architecture.

4.3.3 Virtual Machine Concepts
 Virtual machines depend on the computer architecture or the Instruction Set Architecture
(ISA), which makes the division between hardware and software [LiFl02]. ISA describes
aspects of computer architecture including native data types, instructions, registers,
addressing modes, memory architecture, interrupt and exception handling, and external
I/O. Any software build to a given ISA can run on any hardware which supports that ISA.

There are two parts of an ISA that are central to the definition of virtual machines: User
ISA, containing all instructions for application processes and System-ISA, including
instructions for supervisor software such as operating systems. Another important interface
is the Application Binary Interface (ABI), which provides the interface between process and
system space and gives access to hardware resources and services. ABI contains a set of
user instructions and a system call interface, which are provided by operating systems. It
allows applications to interact indirectly with the shared hardware resources after checking
access privileges. A program binary compiled to a specific ABI can run only on systems
with the same ISA and operating system. Virtualisation has not only to take care of the
proper mapping of virtual resources or states (see [SmNa05]), e.g., registers, memory, or
files, to real resources of the host machine, but also of using real machine instructions and
system calls to carry out the actions specified by virtual machine instructions and system
calls, e.g., emulation of the virtual machine ABI or ISA.

Process Virtual Machines

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

This type of VM is often referred to as the “runtime software”. It is used support a guest
process and to run on top of conventional operating systems. The VM support will run as
long as the guest process runs. As illustrated in Figure 4.3, virtualisation software
translates a set of operating system and user-level instructions composed for one platform
to another, thereby forming a process virtual machine capable of executing programs
developed for a different ISA.

Therefore a process VM provides user application with a virtual ABI environment for a
different implementation.

Virtualization Software

Application Process

OS

Hardware

Guest

Runtime

Host

Application Process

Virtual Machine

Figure 4.3: Process VM

Multiprogramming

A modern operating system supports multi user process, where each user process is given
the illusion of having a complete machine to itself. This is called process multitasking and
hardware time-sharing. In effect the operating system provides a replicated process-level
virtual machine for each of the concurrently executing applications. A new virtual concept
called User Mode Linux (UML) [Di06] extends this technology in order to provide more then
one kernel at the same time.

Process Emulation

Process emulation is the ability of a process-level VM to support program binaries
compiled for a different instruction set than the one executed by the host’s hardware. For
example, a software application which is compiled for x86 architecture can run on
PowerPC architecture through emulation. Emulation in general is realised through two
methods, interpretation, and binary translation. The interpretation method may be a slow
process, requiring an interpretation of each source instruction for the native target platform.
The binary translation method converts blocks of source instructions, which are mapped to
equivalent functions as used in the target platform. Because this method causes a high
overhead due to the translation process, translated blocks can be cached and repeatedly
executed. The latter method is known as dynamic binary translation [YuJie06, KiSm03].

HLL VM

High-level Language Virtual Machines are used to achieve cross platform portability
through independence from concrete ISAs. HLL VMs are based on intermediary instruction
representation, e.g. bytecode that encodes instructions as a sequence of bytes. To
eliminate register requirements, bytecode instruction sets are stack based and have an

Page 25 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

abstract data specification and memory model. The Sun Java VM and Microsoft common
language infrastructure (CLI) are examples of HLL VMs.

System VM

System VMs provide a complete environment enabling the installation of arbitrary operating
systems and applications. Therefore System VMs need to create a set of virtualised
hardware resources, such as a processor, storage resources, and peripheral devices.
From the user perspective a System VM behaves like real hardware. System VMs are able
to support different operating systems running on the same, single hardware platform at
the same time. Dividing a single set of hardware resources among multiple guest operating
system environments is a central problem of System VMs [PoGo74].

Co-Designed VM

As the name suggests, these VMs use a combination between hardware and software
virtualisation, where VM software appears as a part of the hardware implementation, as
illustrated in Figure 4.4. Co-designed VMs are not intended to virtualise hardware
resources or to support multiple VM environments, but to provide better performance,
power efficiency and design simplicity. Co-designed VMs provide binary translation in order
to convert a guest instruction into native ISA. The CPU of Transmeta Crusoe is a good
example of a co-designed VM. In this processor, the underlying hardware uses a native
Very Long Instruction Word (VLIW) instruction set, and the guest ISA is the Intel x86.
Another example is the IBM System/38 (later System/370 [Cr81]), where the aim was to
minimise the gap between ISA and HLL. Further information can be found in [SmNa05,
KeSe03].

Application
Binary

Application
Binary

Virtual Machine

Hardware

Application
Binary

VM Software

VM Hardware

Conventional HW/SW
Interface

Conventional VM
Interface

HW/SW Codesigned VM

Hardware

Figure 4.4:Co-Designed VM

In Figure 4.5 an overview of a possible classification of VM according to ISA and
virtualisation level is given along with examples. It is proposed to use solely hardware that
is based on the x86 architecture for the CASCADAS testbed, as this commodity hardware
and supposed to be readily available at most partners’ sites.

Page 26 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Multiprogramming

Dynamic Translator

Binary Recoding

HLL VMs

Linux/Unix
Windows

Digital FX! 32
Transm. Rosetta

HP Dynamo Valgrind Java VM
MS .net CIL

Different ISASame ISA

Pr
oc

es
s

V
M

s

Hypervisor

Hosted VMs

System Emulation

Co-Designed VMs

VMware ESX
Server, Xen MS Virtual PC,

QEMU

VMware Ws. and
VMware Server

AS/400
Transmeta Crusoe

Sy
st

em

V
M

s

Figure 4.5: VM Classification

4.3.4 Virtualisation Products Overview
In order decide on concrete virtualisation products that may be used within the testbed the
following section gives are a brief introduction to major competing products.

Xen

Xen is a free system virtual machine monitor which began as a research project at the
University of Cambridge and is now commercially supported by the company XenSource
Inc. The first public version was released in 2003. Xen is mainly based on the x86
architectures and supports Intel Itanium and PowerPC processors. Xen is referred to as a
native virtual machine, but it can also be considered as a dual host system virtual machine
concept. After some modification of the kernel, Xen runs under Linux as a host system. In
order to be able to do this it uses a technology called paravirtualisation that is able to
perform most of the instructions in a native way. Paravirtualisation presents a virtual
machine interface to a system that is similar but not identical to the underlying native
hardware, as is shown in Figure 4.6 which has been taken from [BrDr03]. Many Linux
distributions, e.g. SUSE Linux already include the Xen-packages in order to make the
installation easier. Kernel modifications are made on the guest operating system by Xen,
whereby the guest operating system is modified to use a special hypercall ABI instead of
using the features of the normal architecture.

Page 27 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Figure 4.6: Xen organisation

Research about Xen reports in [BrDr03] that the number of lines of the Linux code base
that are needed to be changed in order to virtualise the complete OS are less than 3000, or
1.36% of the total. Xen is very close to the native OS and achieves a good runtime
performance (better than 90% of the original system speed across most benchmarks).

To deploy Windows XP as a guest operating system a modification of the OS should be
performed. Such modification was reported possible with but is not publicly available as it
involved changing Windows source code. The latest version of Xen (Xen 3.0), which at the
moment of writing is available as beta is based on a hardware assisted virtualisation,
where new instructions are offered to support direct calls by a paravirtualised guest OS into
the hypervisor or the Virtual Machine Manager (VMM), alleviating the need to modify the
guest operating systems.

QEMU and KQEMU

QEMU is emulation software written by Fabric Bellard [Be05]. QEMU implements a
processor emulator and allows simulating a complete computer system within another one.
It is open source and achieves a good emulation speed by using dynamic binary
translation. QEMO offers two operation modes:

• Full system emulation: in this mode, QEMU emulates a full system, including a
processor and various peripherals. It can be used to launch different operating
systems without changing the system codes.

• User mode emulation: this mode works on Linux hosts only, in which QEMU can
launch Linux processes compiled for one CPU on another CPU.

QEMU is able to emulate various hardware instruction architectures, such as x86, SPARC,
PowerPC and MIPS processors. It is designed to execute on x86, x86_64 and PowerPC
architectures and able to simulate a number of hardware devices, such as motherboards,
different CPUs, and network devices. There are also many additional plug-ins and tools for
QEMU that have been developed to provide means for simple installation and
administration. Of special interest here is the KQEMU acceleration module, which is

Page 28 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 29 of 41

available only on the x86 architecture and runs under Linux and Windows as host
operating systems. The KQEMU Accelerator Module does nost modify the guest operating
system. It is free to be used, but it is a closed source proprietary and currently free-of-
charge product.

One of the major features of QEMU and KQEMU is the flexibility. They are able to execute
on a wide combination of host OS and guest OS without modification of the sources of one
of them.

VMware

There are many products which are associated with VMware Inc. The products considered
are: VMware Server, VMware Player and in particular VMware Workstation because
VMware Server and Player are based on the VMware Workstation engine [WoHa05] which
supports mainly x86 architecture. For these products VMware Inc. produces various
additional administration and management tools. The products in general support SMP
(Symmetric Multiprocessing) systems and are able to bootstrap from FDD (Floppy Disk
Drive), HDD (Hard Disk Drive), CD-ROM, DVD-ROM or Preboot Execution Environment
(PXE), which allows computers to bootstrap using a network interface card [Intel03].
VMware provides Application Program Interfaces (APIs) and a Service Development Kit
(SDK) for scripting and programming in Perl, C++ and Visual Basic for Developers in order
to extend their products.

VMware Workstation provides a virtual machine and software tools. It allows configuring a
multiple processor x86 hardware architecture. Each virtual machine instance can execute
its own operating system. VMware Workstation supports virtual bridging and host only
virtual network adapters. It is also possible to configure the virtual network adapter driver to
use network address translation (NAT) through the host machine rather than bridging
which would require an IP address for each guest machine on the host network. Besides
the network adapters, CD-ROM, hard disk, and USB devices, VMware Workstation can
simulate other hardware such as graphic cards and sound cards. The specialty of the
VMware Workstation is the ability to take more than one snapshot of a running virtual
machine. This allows users to make a backup or to do a rollback to a certain situation in a
convenient way.

VMware Server is based on the VMware Workstation engine uses a client-server model to
allow remote access to the virtual machines. It is also able to run virtual machines images
by other VMware products and also by Microsoft Virtual PC. The VMware Server is also
able to create a single snapshot copy of each separate virtual machine within the VMware
Server environment. The VMware Server is a free product for up to 50 machines but it is
closed source.

VMware Player is free software that can run guest virtual machines that have been created
by other VMware products using the same engine as VMware Workstation. VMware Player
is supposed to be not able to create a new virtual machine. It is intended to run virtual
machines that have already been created on other machines.

Microsoft Virtual PC

Microsoft Virtual PC was originally created to emulate a PC in a Macintosh environment. It
uses virtualisation on x86 architectures and emulation software on PowerPC architectures,
but does not support the Intel dual core architecture under Mac OS X. Virtual PC was
written by Connectix and subsequently acquired by Microsoft, who released the Windows
version as a free product: Virtual PC is able to deploy various guest operating systems that
are able to run on the x86 architecture such as Windows or Linux. It is very similar to the

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 30 of 41

VMware Workstation and specified for the use under Windows operating systems as a
host. It supports bridged network mode and NAT mode and it is able to bootstrap from
FDD, HDD, CD-ROM, DVD-ROM or PXE. There is also a commercial server version of
Virtual PC, which is based on the server-client model and similar to the VMware Server
product. Microsoft plans to integrate the Virtual PC in future Windows operating systems.

Parallels Workstation

The Parallels Workstation was released in 1999 as a commercial product. It supports
PowerPC and x86 architectures and runs under Windows, Linux and Mac OS X on x86
hardware as host operating systems. Similar to the VMware products Parallels Workstation
uses a hardware emulation and virtualisation approach. The new products of Parallels
Workstation support the hardware virtualisation of Intel’s Vanderpool Technology [Intel02]
and AMD Pacifica architectures. The hardware virtualisation and implemented instructions
for CPUs that are able to optimise virtualisation are examined more closely in [WoHa05].
Parallels Workstation supports bridged network and NAT mode. It is able to bootstrap from
several media such as VMware products and Virtual PC, but it cannot bootstrap from PXE.
Parallels produce additional products, such as Parallels Compressor Workstation and
Server, which are able to import and to manage VMware images.

Products Summary

The flowing table summarises the features of the introduced virtualisation products.

Name Xen QEMU /
Accelerator

VMware
Server

Virtual PC Parallels
Workstation

Producer University of
Cambridge, Intel
and AMD

Fabrice
Bellard

VMware Microsoft Parallels Inc

Host
architecture

Intel x86,
Intel x86_64,
(PPC planned)

Intel x86,
Intel x86_64

Intel x86,
Intel x86_64

Intel x86 Intel x86,
Intel VT-x

Guest
architecture

Intel x86,
x86_64,
(PPC and IA64
ports planned)

Intel x86,
x86_64,
ARM,
Sparc 32/64,
PowerPC,
MIPS

Intel x86,
x86_64

Intel x86 Intel x86

Host OS NetBSD,
Linux

Windows,
Linux,
Mac OS X,
FreeBSD

Linux,
Windows,
Mac OS X-
Intel

Windows Windows,
Linux,
Mac OS X
on Intel

Guest OS Linux,
BSD,
Windows XP,
Windows 2003

Windows,
Linux,
FreeBSD,
BeOS,

DOS,
Windows,
Linux,
FreeBSD,
Netware,
Solaris

DOS,
Windows,
OS/2

DOS
Windows,
Linux,
FreeBSD,
OS/2,
Solaris

SMP Yes Yes with Yes Yes Yes

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 31 of 41

Support Plug-ins

Mechanism Paravirtualisation
and Porting or
Hardware

Virtualisation
(Vanderpool &
Pacifica-CPU)

Emulation
and
Virtualisation
(KQEMU)
using
dynamic
recompilation

Virtualisation
using
dynamic
binary
translation

Virtualisation
using
dynamic
binary
translation
and
emulation on
PowerPC

Virtualisation
using
dynamic
binary
translation

Support No No no Yes Yes

Guest OS
Speed
relative to
Host OS

Native Near to
native with
acceleration

Near to
native with
VMware
tools

Near to
native on
x86

Near to
native

Additional
Tools or
Drivers

Integrated Many plug-
ins

VMware
tools and
management
Tools

Management
Tools

Management
Tools

Usability Command line
configuration

Command
line
configuration

GUI
configuration

GUI
configuration

GUI
configuration

Allocation
of RAM

Yes Yes Yes Yes Yes

Guaranteed
allocation
of RAM

Yes Yes Yes No No

Fixed
allocation
of CPU
power

Yes No No No No

License GPL GPL / LGPL Proprietary –
Free to use

Proprietary -

Free to use

Proprietary

Price 0€ 0€ 0€ 0€ 50€

5 Test-beds interconnection

Three principal test-beds will be available to evaluate and demonstrate the autonomic
toolkit and selected application scenarios to be developed during the next phase of the
project. Initial experiments are anticipated to be conducted cooperatively, but managed
independently at each location. However, the three test-beds are projected to be
interconnected at a later stage of the project to create a distributed test-bed for larger scale

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

experimentation. This section explores possible mechanisms to achieve the
interconnection.

Figure 5 - Possible solutions for test-bed interconnection

5.1 Leased lines
A technical solution is to establish permanent and dedicated connections among the three
principal test-beds. The solution requires local telecommunications carriers at each
interconnection point to create circuits of a selected rate. The circuits will be leased to the
consortium for a period of time. Having dedicated circuits to interconnect the test-beds
offers several advantages: 1) consistent bandwidth links, 2) privacy with a high-level of
security (e.g. against denial of service attacks), and 3) availability of telecommunications
operator support and commitment for ensuring a service level. The downside of this
solution is that it might require a long setup time.

Telecommunication carriers offer various alternatives for creating high-speed digital lease-
lines. The most common ones are based on time division multiplexing (TDM, e.g. T1),
Frame Relay and ATM circuits. In terms of equipment, routers with specific interfaces will
be needed to support the interconnection via leased lines. Each site will require a router
with integrated or non-integrated CSU/DSU (TDM), a serial interface (Frame Relay) or an
ATM interface.

5.2 GÉANT2 and NRENs
NRENs connect, within a given country, research and educational institutions. GÉANT2 is
a pan-European backbone network connecting national research and education networks
(NRENs) that was created to provide a high-speed (multi-gigabit) network infrastructure to
support joint research of networking technologies and services.

Page 32 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 33 of 41

Test-bed interconnection via GÉANT2 and NRENs can be accomplished via IPv4 or IPv6
and QoS might be achieved with MPLS. The advantages of this solution are: 1) easily
accessible, 2) large bandwidth, 3) low cost. It might require a few months to setup.

5.3 Internet
Finally, it is also possible to establish test-bed interconnection via Internet connections.
The solution is of low cost and can be implemented in a very short time, as no third-party
setup would be required. On the downside, the solution does not offer consistent
communication channels for the interconnection and in addition, the solution might be
exposed to security attacks. Nevertheless, the solution is attractive and the inconsistency
of channels might create a more realistic network infrastructure to test the ability of the
autonomic toolkit to adapt to changing network conditions.

One approach for interconnection via Internet is tunneling, also known as port forwarding. It
consists in encapsulating private network packets in Internet packets (IPv4). This way,
private information regarding test-bed experiments and remote access can be passed
through the Internet. Tunneling is a simple concept that can be easily adopted and
developed. However, there are as well a few well-known tunneling protocols, such as the
point-to-point tunneling protocol (PPTP, RFC 2637) and the generic routing encapsulation
(GRE, 2784) that can be used. These protocols also enable a certain level of security and
allows for the creation of virtual private networks (VPN).

5.4 Using Virtual Private Networks (VPN)
The communication within the overall testbed would be based on the Transmission Control
Protocol and Internet Protocol (TCP/IP) and use mainly the Internet Protocol version 4
(IPv4). The Internet Protocol version 6 (IPv6) may be deployed optionally if partners see a
need due to test requirements. Address assignment is planned to be done through
dynamic host configuration protocol (DHCP) service or auto-configuration in the case of
IPv6. Communication between local testbeds is proposed to be done by employing virtual
private network (VPN) technology allowing partners to deploy one homogenous address
space independent of domain boundaries and geographical location. VPN technology also
helps to protect and secure the distributed infrastructure.

Employing this technology also yields some negative aspects: For example as VPN traffic
is encrypted, the network throughput is less than when using leased lines. As encrypted
connections are end-to-end, VPN connections are more prone to Internet connection
problems. Setting and administrating a VPN network may also be challenging from an
administrative perspective, depending on whatever concrete technology is chosen to
create the network.

5.4.1 Technology
Several competing software and hardware solutions are available to create VPNs that
would suit the purpose of local testbed interconnection; following is a summary of the most
widely used solutions for establishing secured connections over public internet.

IPSec

IP security (IPSec) is the most widely known protocol suite to secure
IP streams and was originally designed to be implemented in
hardware. It is now often used with software (for example by the
OpenSwan and StrongSwan projects, which are both derivates of

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 34 of 41

FreeS/WAN that ended in 2004 as a development project). IPSec is
integrated with all recent Windows versions, Mac OS X, BSD
derivates and some Linux distributions. It is also an integral part of
the IPv6 protocol suite and therefore the logical choice for securing
IPV6. Pure IPSec is regarded as to be complex to administrate and
not working well in NAT environments (“too complex to be secure”
[FeSc99]).

PPTP /

MPPE

A common combination is an utilisation of the Point-to-Point
tunnelling protocol (PPTP) in combination with Microsoft Point-to-
Point Encryption (MPPE). This technology is integrated in all modern
versions of windows and also supported for Linux, BSD derivates
and Mac OS X. Encryption strength is considered as quite weak
(40bit or 128bit key length).

L2TP

A different approach for securing interconnections between Windows
based systems has been jointly developed by Cisco and Microsoft
and is known as the Layer 2 Tunnelling Protocol (L2TP). It is also
compatible with PPTP and employs IPSec to achieve a stronger
encryption than MPPE. L2TP development is focused on the
Windows platform; implementations for other operating systems are
not in a production state.

OpenVPN

OpenVPN is an open source solution for building VPNs using Secure
Sockets Layer (SSL) technology. SSL is widely used for securing
connections between UNIX-like systems and offers strong
encryption, as well as a flexible configuration, e.g. supporting
password and certificate authentication. Implementations are
available for all major platforms, including Windows, Mac OS X, all
BSD derivates, Linux and other UNIX distributions. OpenVPN has
support for IPV6, dynamic IP and NAT, but configuration may be
complex.

Hardware

Several companies sell Hardware VPN Routers with support for
IPSec and L2TP. These enable secure connections without the need
for installation of software on another device and are therefore less
error-prone and difficult to set up. In general this solution may be
more stable than the software variant; also manufacturer support is
available to deal with problems. Buying such a box may cost
between 500 € – 4500 €, depending on manufacturing company and
capacity / features of the hardware in question.

Considering the CASCADAS project requirements, two solutions seem to be favourable:

Solution 1: Using OpenVPN

While OpenVPN is a rather new technology, SSL has proven to be stable and is the de-
facto software standard for encrypting system interconnections. From experience the
configuration and administration is easier than pure IPSec, but not as easy as using a
hardware solution. The source code is open, potentially allowing for extension and also
fixes in the case of problems; there is also an active community supporting the product.

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 35 of 41

IPv6 is supported and the product itself is freely available under the OpenVPN license
(based on GPL).

When using OpenVPN, contributing partners need to install the software on a commodity
hardware machine (Hereafter called the “gateway”) in their local domain, enabling secured
access for the other partners using public internet.

Solution 2: Using a Hardware VPN Gateway

As the gateway machine would not to be set up proprietary, this solution will most likely be
more stable and need less configuration effort that the software solution. Connections will
be directly handled by the networking element, resulting in faster and more reliable
connections. Support if available either separately or as part of the product package; in any
case such a solution makes it necessary to spend money on specialised hardware.

Apart from the gateway machine there are requirements on the testbed network:

 Each partner’s testbed network should be moved to the extranet, a so-called De-
Militarised Zone (DMZ), which would greatly simplify the overall network
configuration. An alternative for situations where this is not feasible would be to use
VPN pass-through technology.

 Usage of static IP to give a consistent and plain topology configuration. This is not a
strict requirement but as there is no need to have the testbed use dynamic
addressing it’s the easiest way. Once a distributed testbed exists, several dynamic
overlay networks might be used on top of the static base configuration to evaluate
aspects of autonomic network configuration.

 Use IP addresses that are contained in a single subnet. This will also make
configuration much easier and would allow for instant multicast and broadcast
capability. If v6 of P will be used, standardising on a common address prefix would
be a similar step.

 Provisioning of sufficient bandwidth. As concrete requirements on the testbed in
terms of throughput, delay, etc. are not fixed at this stage of the project there are no
clear numbers on this. Nonetheless we should assume that every partner will be
able to utilise an infrastructure that is able to satisfy the test scenario needs.

5.4.2 Topologies
Regarding the testbed topology there are two proposals, either using a fully meshed
topology or using a centralised “star” layout.

Meshed Topology

In a fully meshed topology every partner will be directly connected to everyone else, please
see Figure 5.1 for an example of a fully meshed network.

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Figure 5.1: A fully meshed network of 12 nodes

The advantages are as obvious as the disadvantages: a direct line ensures the best
possible connection speeds between all partners, but the more partners join the network
the more complex and time consuming administration and connection establishment will
become. This topology is best employed using dedicated gateway machines (e.g. VPN
routers) at each partner as the load and routing effort is equally high at each partner.

“Star” topology

Using this topology, one partner has to take a leading role and the other partners are
connecting to this central server (hereafter called “network head”). See Figure 5.2 for an
example with a hypothetical “partner 2” as the network head.

Page 36 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Figure 5.2: “Star” topology for a VPN network
This topology is easier to understand, deploy and administrate and may therefore be more
stable. As only the network head needs to manage all connections and route packages
load is high at this single gateway, whereas other partners only need to invest modest
effort to keep the network running. This topology supposes a stable and appropriate
gateway machine at the network head as this obviously is a single-point-of-failure for the
testbed network. Connections may expected to be more delayed than in the fully meshed
scenario, as all traffic needs to be routed through the central gateway.

6 Roadmap

The development of the autonomic toolkit, application scenarios and test-bed activities
aimed at demonstrating the Open Autonomic Service Framework is a horizontal task that
requires integrated work across all work packages of CASCADAS. The following is an
estimated of what can be delivered on the dates outlined. It is worth noticing that because
of the research nature of the project, dates might deviate and alternative or extra features
may be incorporated to the roadmap in the future.

Page 37 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

6.1 Summary of Planned Activities
The anticipated activities related to the development of application scenarios and
demonstrators are summarised in Figure 4. The activities are planned from month 13 to
month 30 of the CASCADAS project.

Figure 4 –Planned activities related to testbed and application scenarios

NOTE: An elaboration on the activities follows (to be revised according to WP1 and WP6
activities and draft planning).

1. Definition of low-level details of demonstrators. Consists in extracting and analysing
the low-level requirements to be developed from each application scenario starting
from the work reported in D6.1 part A. The purpose of this activity is to ensure that
such requirements are consistent with the services and features of ACEs and to
identify potential demonstrations to be developed (e.g this might include additional
software for the visualisation of specific parameters).

2. An extended study of the test-bed setup will be conducted during the indicated
period.

3. First release of autonomic toolkit. The first release of the autonomic toolkit is
expected to happen not after M24 and it will be coordinated by T6.3 with the
participation of all technical WP.

4. Independent test-bed setup. Test-beds at each location will be independently setup
to have them ready to test imminent software releases of the autonomic toolkit and
application scenarios.

5. Test-bed interconnection. We expect that the initial development and testing
activities will require only a local test-bed for their initial experiments. However, by
means of test-bed interconnection we expect to make available a larger test-bed to
CASCADAS researchers for larger scale experimentation and demonstration.

6. At least one demonstrator based on an application scenario will be developed
during the indicated period.

7. Additional features will be integrated in to the initial release of the demonstrator and
potential extra demonstrators will be released. During this phase, it is expected that
specific software to support demonstrations will be developed and tested.

8. Evaluation studies. Evaluation studies will be conducted by means of analysis,
simulation and test-bed experimentation concurrently with other phases of the

Page 38 of 41

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 39 of 41

project with the purpose of providing adequate feedback to the design of the
autonomic toolkit and applications.

9. Second release of autonomic toolkit. Following the initial release of the autonomic
toolkit, work will be concentrated on improvements suggested by WP while
evaluations occur.

7 Conclusions

CASCADAS aims at developing an autonomic toolkit based on distributed self-similar
components that will serve to construct future services, which will exhibit self-properties to
simplify their creation, usage and management. A key milestone of CASCADAS is the
design and deployment of a distributed test-bed to evaluate, improve and demonstrate a
prototype of the autonomic toolkit.

This document has described the foundations for the materialisation of a CASCADAS test-
bed that will be used both to evaluate key ideas and to demonstrate the use of the
autonomic toolkit for the construction of selected application scenarios. The goal of the
work has been the identification of design, development and deployment needs, by
addressing the principal requirements and obligatory parameters for usability and flexibility.

The document has depicted specific use cases of selected application scenarios to
illustrate some of the key issues that we intend to demonstrate in a test-bed. Moreover, the
document has analysed the main phases of test-bed design and requirements, as well as
the main structure. Solutions to two key problems were addressed. The first problem is
related to the limited number of nodes available for experimentation. The solution resorts to
virtualisation to increment the number of possible nodes hosting ACEs. The second
problem is related to test-bed interconnection. The requirements and various techniques to
achieve test-bed interconnection have been evaluated. It is expected that the selection and
implementation of one interconnection technique will take place at a later phase of the
project.

Finally, the document has provided a roadmap for future activities, which are necessarily
integrated to the work of other WP, the implementation of the autonomic toolkit and the
development of selected application scenarios. Such activities will take place during the
next months of the project.

Appendix “What is available”

The distributed CASCADAS’ test-bed will physically consists at least of three local test-
beds (potentially interconnected via an Internet VPN) located at the premises of FOKUS,
UNITN and ICL. The following is a description of the available equipment at each location.

FOKUS
The local Fokus testbed consists of a single management server and 9 small devices,
everal of them mobile. Most of the testbed is also portable.

The equipment in detail:

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 40 of 41

 5 x Portable Mini-ITX PC’s VIA EPIA-MII12000 with a x86 compatible processor
with 1.2GHz frequency, 1GB RAM, 40GB HD, 100Mbit LAN, PCMCIA Wi-Fi

 2 x Ultra-Mobile PC’s OQO Model 1+ with 1GHz Transmeta Crusoe processor,
512MB RAM, 30GB HD, Wi-Fi, Bluetooth

 1 x MacBook Pro with 1.86 Intel Core Duo processor, 2GB RAM, 120GB HD, Wi-Fi,
Bluetooth

 1 x Nokia 770 Internet Tablet with 250MHz TI OMAP 1710 processor, 64MB RAM,
Wi-FI, Bluetooth

 1 x Dell Rack Server with dual 64Bit Intel Xeon 2.8GHz, 2GB RAM, 2 x 250 GB HD,
2 x Network cards

UNITN
The UNITN test-bed consists of access points deployed in the Faculty and serve both
students and professors. The authentication system has been designed and implemented
by our team, and supports user localisation and other profile information. It allows for
multiple authentication sources, and its interface should now be general enough to support
the implementation of some carefully designed self-* property, for instance to let clients
assist devices with low computing capabilities in choosing the best authentication
procedure, or to enable a wireless client to help the authenticator itself by asserting other
nodes’ identities under its own responsibility. The widescreen displays are part of a student
information system, and are placed in the halls of our buildings. They are driven by
MacMini boxes. While our group doesn’t own the displays, we can use them to some
extent for experimenting context-aware information systems. In particular, we are now
integrating them with a bluetooth interface to detect the proximity of users’ cellphones and
react by displaying the most appropriate information. Once an early platform is deployed,
evolution towards a testbed for the Behavioral Personal Advertisement scenario shall be
considered.

The equipment in detail:

• 6 Intel-based Servers

• 3 Desktop PCs (Dell)

• 20 Access Points (Cisco, 3Com, D-Link, LinkSys)

• 2 Routers (LinkSys)

• 3 LAN Switches (Allied Telesyn, D-Link)

• 5 Palmtops (iPAQ)
ICL
The ICL test-bed consists of a number of mobile and stationary computers. The computers
run a version of the Linux operating system modified by our team to investigate self-aware
networks.

• 82 Rack PC Intel P4 2.4 GHz (single core, hyper-threading)

• 512 MB RAM, 5 - 12 Ethernet interfaces Linux (Debian)

• 3 Desktop PC Intel P4 2.4 GHz (single core, hyper-threading)

IST IP CASCADAS

“Bringing Autonomic Services

to Life"

D6.2 Part B

Editor: Antonio Manzalini / Ricardo Lent

Page 41 of 41

• 512 MB RAM, 4 Ethernet interfaces, WiFi 802.11g Linux (Debian)

• 1 Wireless access point

• 7 PDA H5500 Linux Familiar 0.8.2

• 4 Fast Ethernet LAN switch (24 ports)

• 3 Cabinet, patch panel

UNIMORE
The UNIMORE test-bed consists of hardware and software that will be specifically devoted
to experiment with situation-aware algorithms.

• 2 sensor network kits “CROSSBOW MICAZ”

• 2 short range RFID readers

• 1 long range “Alien” RFID reader

• 4 Compaq IPAQ PDAs

• 2 Bluetooth GPS receivers

• various WiFi access points

	1 Introduction
	1.1 Purpose and Scope
	1.2 Reference Material
	1.3 Document History
	1.4 Document overview
	2 Test-bed Overview
	3 Use-cases to validate the CASCADAS framework
	3.1 Service for Pervasive applications
	3.1.1 Use-case: Pervasive Services supporting independent Living
	3.1.1.1 General System and Service Requirements
	3.1.1.2 What will be demonstrated?

	3.1.2 Use-case: Scenario Behavioral Personal Advertisement
	3.1.2.1 What will be demonstrated

	3.2 Non-pervasive, communication-intensive applications
	3.2.1 Use-case: Autonomic Distributed Auctions
	3.2.1.1 Summary and rationale
	3.2.1.2 Users
	3.2.1.3 Basic course of events
	3.2.1.4 What will be demonstrated

	4 Test-bed Design
	4.1 Basic Requirements
	4.2 Structure
	4.3 Using Virtualisation for Testbed Implementation
	4.3.1 Proposed Testbed Node Design
	4.3.2 Virtualisation
	4.3.3 Virtual Machine Concepts
	4.3.4 Virtualisation Products Overview

	5 Test-beds interconnection
	5.1 Leased lines
	5.2 GÉANT2 and NRENs
	5.3 Internet
	5.4 Using Virtual Private Networks (VPN)
	5.4.1 Technology
	5.4.2 Topologies

	6 Roadmap
	6.1 Summary of Planned Activities

	7 Conclusions
	Appendix “What is available”

