

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 1 of 72

WP5: “Knowledge Networks”
Deliverable D5.1: Knowledge Networks
Specifications, Mechanisms, and Alpha Software
Release

 Status and Version: Version 1, Draft

 Date of issue: 11.12.2006

 Distribution: Public Deliverable

 Author(s): Name Partner

 Franco Zambonelli UNIMORE

 Matthias Baumgarten UU

 Nicola Bicocchi UNIMORE

 Checked by:

Table of Contents

1 Introduction 3
1.1 Purpose and Scope 3
1.2 Document History 3
1.3 Document overview 3

2 General Vision and Basic Knowledge Networks Concepts 3
2.1 Basic Definitions 4
2.2 An Abstract Architectural Perspective 5
2.3 Knowledge Networks and Autonomic ComponentWare 8
2.4 Self-similarity and Semantic Self-organization 8

3 Grounding Related Work 10
3.1 Gathering and Representing Knowledge 10
3.2 Mechanisms for Networking Knowledge 11
3.3 Models and Mechanisms for Component Coordination 12
3.4 Predictive Knowledge Networks 13

4 Building Knowledge Networks: Specifications 14
4.1 A Note on the Process of Identifying Specifications 14
4.2 Operational Architecture for Knowledge Networks 15

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 2 of 72

4.3 Knowledge Networks Specifications 18
4.3.1 Knowledge Component 18
4.3.2 Add-Ons 20
4.3.3 History Component 22
4.3.4 Knowledge Atom, KA 22
4.3.5 Knowledge Container, KC 27

4.4 Interfaces, Summary 31
4.5 Knowledge Execution 31
4.6 Knowledge Organization 32

4.6.1 Batch vs. On-line Organisation 32
4.6.2 Vertical vs. Horizontal Organization 33

4.7 Knowledge Network Components and ACE’s 36
4.7.1 Implementing Knowledge Network Components with ACEs 37
4.7.2 How application ACE accesses the Knowledge Network? 38

4.8 Checking Knowledge Network Specifications Against WP6 Requirements 39
5 Mechanisms and Applications of Knowledge Networks 40

5.1 Self-Maintaining Overlay Data Structures as Knowledge Networks 40
5.1.1 Modeling Overlay Knowledge Networks and Their Self-Maintenance Algorithm 43
5.1.2 Experiments 44

5.2 Self-organized Region-based Knowledge Aggregation 46
5.2.1 The Region Aggregation Noise Algorithm 48
5.2.2 Experiments 51

5.3 Application Use Cases 53
5.3.1 Living Diaries and Social Serendipity 53
5.3.2 Overlay Field-based Knowledge Networks for Supporting Independent Living 55
5.3.3 Examples of Batch vs. On-line organization of Knowledge Networks 56
5.3.4 Knowledge Networks for ACEs Discovery and Interaction 58

6 Alpha Software for Testing Knowledge Networks Concepts 60
6.1 Knowledge Network Components and KN Repository 60
6.2 A Simulator for Knowledge Network Mechanisms 63
6.3 Future Extensions 64

7 Conclusions and Roadmap 65
7.1 Knowledge Network Mechanisms 66
7.2 Knowledge Network Ensembles and Knowledge Network Software 66

8 References 67

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 3 of 72

1 Introduction

1.1 Purpose and Scope
This document represents the M12 deliverable for the CASCADAS WP5 “Knowledge Networks”.
It includes a general introduction to knowledge networks concepts and to related work in the
area, the description of the first specifications for knowledge networks, and the description of the
preliminary software developed to test knowledge networks concepts and functionalities.

1.2 Document History

Version Date Authors Comment

0.2 19/11/2006 Franco Zambonelli Structure and
Introductory parts

0.4 4/12/2006 Matthias Baumgarten
& Nicola Bicocchi

Finalized KN
specifications &
software description

1 11/12/2006 Franco Zambonelli Added application
parts &
integrated/harmonized
parts from TI and
UNIK

1.1 09/01/2006 Franco Zambonelli Integrated all revisions
and comments form
partners and from BT

1.3 Document overview
The document is structured as follows. Section 2 sketches the general vision of knowledge
networks and introduces some basic knowledge network definitions and concepts. Section 3
puts knowledge networks in context, by discussing relevant related works in the area. Section 4
details the preliminary specifications of knowledge networks, in terms of the structure of
knowledge networks components and their relations. Section 5 details several mechanisms and
examples of use of knowledge network. Section 6 describes the characteristics of the first
(alpha) release of a software system for testing and experiencing with knowledge networks.
Eventually, Section 7 defines a roadmap for the future activities to be performed within WP5.

2 General Vision and Basic Knowledge Networks Concepts

The capability of services to autonomously adapt to the context from which they are requested
and in which they execute is necessary to achieve effective autonomic behaviour to effectively

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 4 of 72

satisfy increasingly demanding users [ManZ06, CMN+06]. This however requires the
technologies to capture contextual data and at the same time the ability of the system and of
application services to effectively exploit this data at the best.

Much of the technology to acquire contextual information is already becoming available, and it
will soon become pervasive with the increasingly frequent deployment of sensors, location
systems, users and organization profiles, and run-time systems for the monitoring of
computational and network resources [Est02, Phi04]. What is still in its infancy and still needs to
be properly resolved, however, is the investigation of the principles and the algorithms with
which this growing amount of distributed information can be properly organized, aggregated, and
made more meaningful, so as to facilitate their exploitation by services [MulZ06].

In other words, we think there must be an evolution from a model of simple context-awareness,
in which services are given access to isolated pieces of contextual data, to a model of “situation-
awareness”, in which services are given access to properly elaborated and organized
information representing, in much more expressive yet still simple to be exploited ways,
comprehensive knowledge related to a “situation” [DeAb01, Tum05].

This is where the idea of “knowledge networks” arises: providing models and tools to analyze
and organize contextual information into sorts of structured collections of related knowledge
items, so as to support application and services in reaching effective of adaptability and
autonomicity.

2.1 Basic Definitions
To unambiguously frame all the concepts and ideas we will present, it is necessary to provide a
few basic definitions for the key terms adopted.

Context: In general terms, the context defines the “surrounding and interrelated conditions in
which something exists” (Mirriam-Webster Dictionary). In CASCADAS, the context identifies the
operational environment in which a service situates, which could include network, application,
social, and physical context (Cfr. Knowledge).

Contextual Information: Information related to some actual characteristics of the operational
environment, i.e., to some facts occurring in it.

Context-awareness: The capability of software (i.e., as far as CASCADAS is concerned, of
services) of being aware of the context in which they are invoked and/or executed, and of
adapting their behaviour accordingly.

Concept of Interest. A computational model of any real world object or event (there included
services and processes).

Ontology: a formal specification detailing how to express concepts of interest in a specific area.
In CASCADAS, a shared ontology is expected to be defined for ACE’s so as to enable them to
properly represent in a semantic and inter-operable way all needed contextual information.

Knowledge: Contextual information as it can be made available to some actors (i.e., ACE’s) to
make them aware of some facts and reason about them. In CASCADAS, we account for:
network knowledge, representing facts about the current configuration of the physical network
and of the related devices; application (or ACE-level) knowledge, representing fact about the
current status of (some) ACE’s; social knowledge, representing facts about the human actors
currently exploiting the network and its ACE-based services, and the social context in which they

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 5 of 72

are doing so; physical knowledge, representing facts about the physical world. We emphasize
that the difference between Contextual Information and Knowledge is really subtle, and mostly
related to the observation viewpoint: the context generates contextual information which then
becomes something that the agent knows, i.e., knowledge.

Knowledge Atom: A knowledge atom is a record-based data structure, expressing a single
specific concept of interest, and represented according to a specific ontology. For example, one
can imagine the information related to the current physical location of a person can be a
knowledge atom reporting the name of that person, its location in terms of latitude and longitude,
and possibly some information related to the activities currently undertaken by that person. The
specifications of the identified structure for knowledge atoms follows of this document.

Situation. In general terms, a situation defines a “relative position or combination of
circumstances at a certain moment” (Mirriam-Webster Dictionary). Accordingly, in CASCADAS,
a situation is considered as “something that is happening in the context” and, for generalization,
also something that “is likely to occur at a certain moment in the future”.

Situation-awareness. In general terms, situation-awareness relates to the capability of being
aware and of adapting behaviour to situations other than to context (Cfr. Context-awareness).
While components and services (i.e., ACE’s) are situated in a context and can perceive
contextual information in the form of knowledge atoms to become context-aware, perceiving
situations (present and future) and becoming situation-aware implies a higher degree of
understanding. In particular, it requires properly acquiring all the needed knowledge about
“combinations of circumstances”.

Knowledge Network: A network of knowledge is an ontology-based structured collection of
knowledge atoms, describing specific situations, and built in order to facilitate ACE’s in acquiring
high degrees of situation-awareness in an efficient way. This is not to be confused with “network
knowledge”, intended as the information available about the status of a network.

Knowledge Container: As it will appear clearer in the following of this document, the structuring
of knowledge atoms in networks may also imply the need to create higher-level structures
aggregating existing knowledge atoms into a component which, besides being a knowledge
atom in itself, aggregate a set of related knowledge atoms into a composite. Besides the basic
definitions, the question arises in CASCADAS of what actually implies structuring knowledge in
networks, and what types of architecture can properly support knowledge networks. The next
section will try to somewhat identify some preliminary directions.

2.2 An Abstract Architectural Perspective
Once we have absorbed the general idea of “knowledge networks”, the question then arises of
how such networks could actually look, and what an abstract reference architecture for
knowledge networks could be.

Obviously, the construction of a single knowledge network capable of mirroring the universal
situational knowledge is illusionary. On the one hand, when considering that even relatively
small network scenarios can (due to the availability of several sensors and devices) generate
enormous amount of knowledge, it is necessary that knowledge network can provide – other
than for correlating knowledge – for properly pruning it and making it manageable. On the other
hand, different kinds of services may have different needs in terms of type of knowledge
required and in terms of the relations that must be outlined on this knowledge.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 6 of 72

Accordingly, one should necessarily consider the possibility of a multiplicity of knowledge
networks to co-exist within a globally accessible knowledge space where each network is limited
by clearly defined knowledge boundaries in order to serve application-specific and/or service-
specific goals. Although the context is the same for all situations (and thus the basic contextual
information is the same) the way this has to be perceived and elaborated by ACE’s in terms of
properly organized knowledge may depend on the specific type of service one has to enforce. In
other word, the context may be in need to be perceived by ACE’s as a variety of situations, and
one should thus consider that several “dimensions” according to which knowledge atoms can be
networked with each other exists.

Although it is generally impossible to identify all possible dimensions around which one can think
at organizing knowledge, a few of them are likely to be recurrent and exploited in several
applications.

First, we have a purely semantic dimension, in which knowledge atoms related to a situation
network with each other according to the relations institutionalized in (or inferred from) some
shared ontology. This can be the case of knowledge facilitating and supporting spontaneous
interoperability in pervasive computing and service-oriented computing [HuhS05].

Second, we may have a spatial dimension, in which knowledge atoms related to a local fact
network to knowledge atoms at different location (or distribute/replicate themselves in different
locations). This can be of use to express some distributed situation (as in the case of
computational fields or pheromones), in which spatiality actually refers to physical spatiality, and
which can be of great use for pervasive computing applications. Also, we could conceive any
class of spatially distributed P2P structures to distribute knowledge across a network and to
facilitate access to knowledge (as in the case of networks of knowledge brokers) [Rat01,
AndS04].

Third, we may have a temporal dimension, in which knowledge atoms express facts occurred (or
already to occur) at different times. This can be the case of elaborating knowledge for predictive
purposes: starting from the knowledge available about the situation at current time, analyze and
extract new knowledge in the form of a knowledge network expressing the most likely future
situation.

Figure 1 tries to somehow summarize these considerations into a sort of conceptual reference
architecture. Figure 2 tries to exemplify the concept via an example in the area of pervasive
computing, where a situation as simple as that related to the position (“location”) of a user can
tolerate both a semantic (vertical) knowledge network and a spatial (horizontal) knowledge
network.

In addition to that, we may also have any number of application-specific dimensions on which to
rely to network knowledge atoms in variously shaped knowledge networks serving different
purposes, and possibly overlapping with each other.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Knowledge Atoms

Spatial
Knowledge Networks

prune and build

Semantic
Knowledge network
(relations in an ontology)

Temporal
Knowledge Networks

semantic

space

time

Knowledge AtomsKnowledge Atoms

Spatial
Knowledge Networks

Spatial
Knowledge Networks

prune and build

Semantic
Knowledge network
(relations in an ontology)

Temporal
Knowledge Networks

Temporal
Knowledge Networks

semantic

space

time

Figure 1: A Conceptual architecture for knowledge networks: knowledge atoms
expressing contextual fact can be processed and elaborated to produce different
knowledge networks according to different conceptual dimensions. Such a reference
architecture can consider the presence of multiple knowledge networks for each
conceptual dimensions, each serving application specific purposes.

Figure 2: Vertical (semantic) vs. Horizontal (spatial dimension) in a simple example
related to the “location” situation. On the left, we can see how an ontology for the
concept and the mechanisms of location could be. On the right, we could see how the
location per se can lead to a spatially distributed structure expressing where specific
persons are (as a sort of overlay computational field – see also Section 5).

Page 7 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 8 of 72

2.3 Knowledge Networks and Autonomic ComponentWare
The above introduced abstract reference architecture does not say anything about how
knowledge networks should actually be implemented. Indeed, the concepts can and should be
as general and implementation-independent as possible. However, in the context of the
CASCADAS project and in respect of the general CASCADAS principle of “autonomic
componentware” [ManZ06], knowledge networks can and should be provided as sorts of
services to be realized by means of ACE’s.

One the one hand, one could have dedicated ACE’s in charge of storing knowledge and, by
interacting and aggregating with each other, in charge of building knowledge networks in the
form of networks of ACE’s. In other words, there will be special-purpose ACE’s acting as
knowledge atoms and knowledge containers. These ACE’s will be part of a sort of “middle-level”,
making available knowledge networks as if it were a “middleware” service make available to
other (application-level) ACE’s. For the sake of simplicity, and to enforce a better separation of
concern, activities have focused till now on such a perspective.

On the other hand, one could also think at avoiding any distinction between ACE’s, and at
enabling any kind of ACE’s to contribute to the forming of application-specific knowledge
networks and at storing pieces of such knowledge networks, depending on specific attributed
and roles (i.e., with reference to the ACE model, by having ACE’s expose their self models and
states as knowledge). In later stages of the CASCADAS project we will account for this
perspective.

In any case, nothing prevents making the two perspective co-exists: special-purpose middle-
level ACE’s and application-level ACE’s could cooperate together for the building of application-
specific knowledge networks, each making available its own capability and knowledge. Possibly,
such a perspective is the most flexible one, and also avoid introducing strict layerings in the
overall architecture, with the consequent reduction in flexibility. In any case, the presence of
primitive-level ACE’s to abstract the presence of information sources and to make available
atomic items of contextual information (i.e., knowledge atoms), seems unavoidable.

Whenever an ACE’s is devoted to store knowledge and to interact with other ACE’s for the
forming of knowledge networks, such ACE will have to include the necessary capability to
participate in knowledge management activities. Also, it will have to provide some standard
interface to interact with other ACE’s and to provide access to knowledge and updating of
knowledge. It is expected that relying on ACE’s to implement knowledge networks by ACE’s will
facilitate a flexible and adaptive building of complex knowledge networks structure, and an ease
composition of knowledge networks.

We forward to the WP1 State of the Art report for a detailed analysis of component models, and
to section 4 of this document for an analysis of how the current ACE model is suited for the
implementation of knowledge atoms and knowledge containers.

2.4 Self-similarity and Semantic Self-organization
CASCADAS is centered around four key scientific principles: situation-awareness, autonomic
componentware, self-similarity, and semantic self-organization. While the principle of situation-
awareness is at the very core of knowledge networks, the previous sub-section has also outlined
the relations with the principle of autonomic componentware.

As far as the principle of self-similarity is concerned, we consider that knowledge networks
should be made accessible by services at different levels of observations. In other words, and
depending on the application needs, services (i.e., ACE’s implementing them) should be allowed

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 9 of 72

to access both very detailed information about facts occurring in a context, as well as more
coarse-grained aggregated information, as if they were “observing” the system from farther.
Such possibility requires that whether a service accesses individual knowledge atoms directly
connected with the information sources or, instead, aggregated knowledge contained in some
“knowledge container”, they can adopt the same mechanisms.

It is worth emphasizing that the term “self-similarity have been recently over-exploited in the
context of social networks and technological networks (e.g., the Internet and the Web), and have
been mostly related to the idea “scale-free” topological structures [AlbB02, Doy05],
characterized by the small-world phenomenon [Wat98]. We consider that the above properties
could be very important for representing evolving distributed knowledge in a robust way, and for
enabling a scalable way with which to structure and compose knowledge. Thus, it will be
interesting to explore how to structure knowledge networks into scale-free structures, so as to
reflect the structure of the social and technological networks they support and to support robust
adaptive evolution. Moreover, the study of such network structure could be of use to support
scalability of network structure and, possibly even more important, to better support scale-free
composability and self-similar multi-level perception of knowledge at different scales of
observation. However, our concept of self-similarity does not reduce to the topological structure
of knowledge network but is mostly concerned with the possibility of enforcing different level of
observations, independently of whether this is enforced via scale-free topologies or via
hierarchical aggregation of knowledge.

As far as semantic self-organization is concerned, it has been observed that global self-
organizing and self-adapting behaviour can be made emerge in systems of a large number of
lightweight agents that indirectly interact via the mediation of an environment [Par97, BonDT99,
Bab05, HWBM02]. Agents, by depositing and by sensing “pheromones” [ParBS04] or fields
[MamZL04] in an environment, and by having the environment properly diffuse pheromones
according to specific laws, can – to most extent unconsciously – self-organize their global
activities into robust and adaptive patterns.

Knowledge networks could potentially act as a sort of computational environment via which
indirect, stigmergic interactions, may take place to promote self-organization and self-adaptation
of activities. Still, this requires leveraging the traditional concept of stigmergy into a concept of
cognitive stigmergy. Self-organizing and self-adaptive coordinated activities at both the network
and the application level should be enforced not simply by reacting to a local concentration of
meaningless pheromones. Rather, they should be driven by the actual meaning of the
knowledge represented within knowledge networks. Clearly, to preserve the advantages of
swarm intelligence approaches, this should occur without requiring ants to become heavyweight
agents, and a proper trade-off between the purely reactive behaviours promoted by traditional
stigmergy and the purely cognitive behaviour promoted by artificial intelligence approaches have
to be found. However, as far as we know, this is a largely unexplored research area, and only a
few “position papers” exists claiming the need for such kinds of semantic self-organization
models [Tum05, Zam06].

All of this said, and beside the clear need to stay up-to-date with the continuous scientific
advances in the area of complex networks [AlbB02] and self-organization [Bab05], researches in
WP5 have firstly to pay a careful attention at the most pragmatic issues related to: gathering and
representing knowledge, building knowledge networks via proper mechanisms, and identifying
how to exploit knowledge networks in applications and services. These issues, which contribute
to the definition of the knowledge network specifications, are analyzed in the following sections.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 10 of 72

3 Grounding Related Work

We shortly report here an overview of the basic models and technologies that somehow relate to
our concept of knowledge networks, which have already played some role in the earlier
knowledge network specifications, and/or will play some role in future researches in knowledge
networks. This is of relevance here to have the reader get a more general clue of our general
vision on knowledge networks.

A more extended overview of the state of the art in the area, detailing the characteristics of
several systems that are here only mentioned, can be found in the “M4 State of the Art Report”
of WP5.

3.1 Gathering and Representing Knowledge
A great amount of current researches in context-aware systems tend to focus on the context of
users, based on contextual information such as temperature, humidity, light intensity, spatial and
temporal location that can be provided by available sensors and algorithms, to adapt services to
the current situations in which users exploit services. In CASCADAS, we require a much broader
notion of context. In fact, the context required for autonomic and robust behaviour of services
has also to strictly relate to the status of computer systems and of the exploited networks. Also,
the context should include information related to the current status surrounding/interacting
ACE’s. In addition, context may refer to the social context from which services are exploited by
users. In any case, as far as the issues of gathering and representing such information are
concerned, we argue that there is no big difference for algorithms regarding the different context
information. In fact, provided that sources for contextual information exist (e.g., sensors, user
profiles, etc.), it makes usually no difference if context information that is represented by a
number describes the current temperature, or the current CPU load. Indeed, as described in
[BaDR04], contextual information of any kind can always be thought of as being provided by
“sensor abstractions”, which may include physical sensors (e.g., sensor networks), virtual
sensors (e.g., producing information by browsing existing digital information) or logical sensors
(capable of somewhat merging and synthesizing information from a variety of sensors). In our
knowledge networks researches, the idea that all kind of contextual information can be
represented as a “knowledge atom” is – in the end – a specific instantiation of the concept of
sensor abstraction.

The issue of how information is gathered from its actual source and made available to
application/services is also deeply analyzed in the literature [Win01, Chen04]. One can consider
that: applications access sensors directly without any mediation [HPSH00, LaFI94, WHFG92]; or
by exploiting the APIs of a middleware infrastructure [NSNT96, Dey00, DeAb01]; or by
accessing some sort of “context server” in the form of a network service [HoLa01, Chen04,
Peri02] or context blackboard [Cab03]. Because CASCADAS adopts the unifying ACE model for
implementing all types of tools, including services to access and organize contextual
information, we think that a solution that provides direct access by application service ACE’s to
knowledge in the form of direct access to a virtual sensor (as defined by the general concept of
knowledge atom) is the one to be preferred as a starting point. In any case, this does not
exclude the possibility of organizing sensor ACE’s into proper network structures, so as promote
context brokering and enable them to act as a sort of network service for knowledge
provisioning. Nor does it exclude the possibility of defining (when needed) specific ACE’s that
can act as sorts of blackboard to mediate access to other sensor ACE’s. However, we think
CASCADAS should not rely on pre-defined complex and heavy-weight middleware and network
services to enable gathering of contextual information.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 11 of 72

The issue of representing contextual information, i.e., identifying suitable models to facilitate the
understanding of such information by software and services is also extensively analyzed
[BaDR04, BrLe04]. Apart from graphical representations [HelR03, ShBe05] of limited interest for
CASCADAS, context information can be represented in terms of simple key-value pairs, via a
mark-up language such as XML [StPo04], in object-oriented terms or in logic one [HSPL02]. For
the CASCADAS project, key-value models may appear too simplistic to represent significant
contextual information (although these may be appropriate for resource-constrained devices and
small sensors). Mark-up languages such as XML may be very effective to provide open and
easy to process representations, and we indeed commit to such a representation. However, one
has also to consider that some inspiration from object oriented models will be taken, which is in
accord with the goal of representing and providing access to knowledge via ACE’s.

3.2 Mechanisms for Networking Knowledge
The high level goal of knowledge networks can be summarized as the provision of a vehicle
capable of creating, storing, propagating and discovering information in a light-weight, scale free
and multi-view environment (which makes knowledge networks notably differ from the
“knowledge plane” approach [Cla03] and alike, which also charge the knowledge level with the
duty of understanding knowledge and taking actions to ensure the proper functioning of the
application levels).

The structural requirements for such a vehicle can be broken down into two main building
blocks. Firstly, an autonomous knowledge entity is required capable to encapsulate and
transport knowledge independent of the environment. Secondly, designated and dynamically
maintainable relations have to be overlaid upon those entities connecting them to a purpose-
built network based structure. While the former component is practically provided through the
concept of ACE’s as envisioned by the CASCADAS project, the latter concept requires the
provision of advanced network based ontologies and flexible overlay structures that allow for ad
hoc reconfiguration of the overall knowledge network and for the construction of purpose-built
views of any sub-part(s) thereof.

An ontology is generally defined as an “explicit specification of a conceptualization” [Gruber,
Usc96, BreO04], and as such is capable of representing relevant objects, concepts or other
entities of interest and all their relation in an explicit and formal manner [GeNi87]. Within this
definition, ontologies are not simply a way of representing concepts, but are indeed a way to put
concepts related to contextual information in relation with each other and facilitate access to
them. That is, ontologies can be considered, to most extents, knowledge networks (with
reference to the reference architecture of Figure 1, ontologies provide for organizing knowledge
around the semantic dimension). Clearly, ontologies should (and do) provide a general
independent of programming language, underlying operating system or middleware. Other
knowledge ‘consumers’ in the network must be able to access and use the ontological
formalisms developed. Accessing information stored in a network of distributed contextual
knowledge requires the specification of information locators, e.g., in the form of an addressing
scheme as well as request routing procedures. In the literature, a very large amount of ontology
proposals can be found. These include CoOL [Str03a, Str03b], CONON [Wan04], CoBrA
[Che03], each of which is specialized to a specific area of applications. Of great interest are
proposals such as CYC [LeGu90], OWL [OWL], ConceptNet [LiuS06], which also have the
advantage of being extensible. Thus, new concepts and new relations can be defined by sub-
classing from existing ones and to make the ontology better suit specific application areas. In
CASCADAS, we have started our research in knowledge networks by assuming the presence of
a basic shared ontology for knowledge network concepts, i.e., we start by simply assuming that

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 12 of 72

specific terms have a well assessed meaning. While this is sufficient to identify the basic
knowledge network specifications, later on in the project it will be necessary to extend the
approach towards the exploitation of full-fledged, flexible, and extensible ontologies.

Overlay networks, within a general networked infrastructure such as the internet, provide an
abstract view on such networked environment, tailored to specific needs, and without the
necessity to know or care about underlying real network infrastructures [Cast02, BBM+02,
CSW+00, GaSt04, GFC00, CMK+99, LCH+05, BCA01, Keah02, Korp01, Ratn02]. In overlay
architectures, a set of nodes (servers, services, end-user equipment etc.) and virtual links, not
directly related to an underlying topology, are involved in specific applications. The overlay traffic
traverses through the overlay nodes and virtual links. Therefore an overlay network can be seen
to act as a specialized middle layer between an application and an underlying topology of
entities. The general advantage of overlays is that they can be customized for a single service or
a group of services, thus creating a variety of overlays that allow for hierarchical structures. This
is perfectly in line with our view (as sketched in the reference architecture) of building on a
variety of different knowledge networks that, starting from raw contextual-information, can
provide different views to applications/services. Among several studies in the area of overlays,
peer-to-peer overlay networks for content-sharing, such as CAN [ABA+03], Chord [Stoic01],
Freenet [CSW+00], Gnutella [Gnut01, LRS02, KlMa02, Stoke03], Pastry [RoDr01], SkipNet
[GFC00], SWAN [BH02], which have received a great attention in the past few years [MTT03],
are particularly interesting because they are capable of self-organizing their structures and of
self-healing. These features are highly relevant to our efforts of making knowledge networks
self-organizing and self-adaptive, and this document indeed reports early experiences in that
directions. Additional inspirations might come from recent work on self-adaptive peer-to-peer
structures [HalA06, CKG04], semantic peer-to-peer overlay networks [LWS+03, GaCr03], and
from general frameworks for the creation of overlays (such as Opus [BKR+02] and JXTA
[SUN05].

The two concepts of ontologies and overlays as outlined above provide the two main building
blocks of knowledge networks in a way that: (a) individual knowledge components are linked
together through high-level ontologies, thus providing structured knowledge at different levels of
granularity; and (b) the concept of overlay networks is exploited to provide highly dynamic,
purpose-built and ad hoc constructed views of any (sub-)part thereof, independent of the
circumstances of where the knowledge resides or through whatever means it has to be
accessed. In tandem, both concepts provide a vehicle to represent, maintain and provide
knowledge yet neither provide mechanisms that are capable to efficiently identify or track
knowledge components in a global, highly-distributed environment.

3.3 Models and Mechanisms for Component Coordination
In CASCADAS, the idea of a knowledge repository to store contextual and situational
information is provided through the concept of knowledge networks. However, considering the
fact that knowledge seldom resides where it is consumed and that knowledge is normally too
complex to be represented as a single structural element, the effective collection of distinct parts
of individual knowledge (i.e., knowledge atoms) and provision thereof to services is an important
aspect. The mechanisms for relating knowledge atoms via ontologies and overlay network have
been identified. Still, proper models and mechanism for rapid correlation and distribution of
knowledge components in a network environment and upon which to rely for the actual
construction of ontological relations and overlay structures have to be identified. In this context,
biologically-inspired and socially-inspired approaches may be – and indeed have been – of use.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 13 of 72

First, coordination among individual knowledge entities of a more globally structured knowledge
network could occur e.g., via stigmergic mechanisms [Holl96, Par97, PBS04]. As already
outlined in Section 2, the presence of a distributed network of knowledge, to be accessed for
sensing and effecting by both network and application level components, can act as the
computational environment to enforce stigmergic self-organization by ACE’s via knowledge
networks. However stigmergy can also be considered and exploited as a mechanism to actually
build and maintain knowledge networks: knowledge atoms themselves could sense and act on
knowledge and self-organize in a robust and adaptive way. In contrast to overlay networks in
peer-to-peer environments, knowledge networks should not simply transport data and messages
but also support their own nodes to adapt. Not by means of heavy-weight autonomous agents
(as in the knowledge plan approach [Cla03]) but rather via mechanisms of simple knowledge-
mediated reactive adaptation.

Clearly, stigmergy can be considered as an instance of the more general perspective of swarm
intelligence [BoTh00], i.e., the property of a system whereby the collective behaviors of
(unsophisticated) agents interacting locally with their environment cause coherent functional
global patterns to emerge. We feel that several examples of swarm intelligence can provide
useful inspiration for identifying mechanisms for building and maintaining knowledge networks.
An example of swarm intelligent ant-based behavior of interest for the building of knowledge
network is that of collective sorting, which can be used as in [PWC+05] to cluster large amount
of documents (i.e., in our case, large amounts of distributed knowledge atoms. As another
example, the concept of a pulse monitor, explore in [SGMH04] to reproduce the fault tolerant
heartbeat monitor mechanism could be exploited to realize a “heartbeat” mechanism into any
knowledge atoms, such that at given intervals relevant health based information are sent to all
other entities and / or to a central monitoring facility. The specific example of swarm intelligence
that we have already actually experienced to aggregate distributed sensors (each abstracted as
a knowledge atom) will be described in the following.

Finally, the area of game theory also offers a number of concepts that promise to be potentially
useful in knowledge networks [PlatoGT, Gint00], in particular for the adaptive and robust
coordination between knowledge components. However, we still have not investigated this issue
in detail.

3.4 Predictive Knowledge Networks
Predictive knowledge networks may be seen as the next step in the evolution of the knowledge
network approach envisioned by CASCADAS. The ultimate goal can be summarized as the
provision of accurate, real-time predictions of any kind about individual objects, entities, relations
or higher concepts that are embraced by the knowledge system.

In general terms, predicting situations may take place by analyzing existing knowledge,
extracting relevant patterns of knowledge, reasoning about it, and learn from it. In CASCADAS,
mechanisms for the extraction of relevant data patterns from available knowledge data (i.e.,
knowledge atoms) are of particular interest, in that such patterns can be used as the basic
ground upon which to rely for the prediction of short-term as well as long-term behavioral
patterns. Types of patterns that can be identified include: (a) associative-patterns, i.e.,
associations which are capable of representing relationships among objects of a set-orientated
structure, where the order of objects is irrelevant. [AIS93, AgSi94, BMU+97, PCY97, Toi96,
Zaki00, HPY00, HaZa03]; (b) sequential patterns, which are similar to associative patterns but
incorporate the additional dimension of time [EO98], where the order of items is relevant and
cannot be ignored. In sequential patterns, the discovery of sequences can be thought of as the
discovery of associations’ over temporal data [Zaki01, AgSi95] and which can therefore be

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 14 of 72

useful to predict future events based on past events, as in [AgSi95, MCP98, HPM+00, HPY00,
PHM+01, Zaki01]. As from the abstract reference architecture of Figure 1, the identification of
such patterns among knowledge components implies building a knowledge networks along the
temporal aspect.

Once knowledge has been discovered it needs to be represented in a flexible and efficient way
in order to utilize it for other purposes. Accordingly to our choice of adopting XML for the
representation of knowledge, we consider it very promising to investigate the adoption of PMML
(Predictive Modelling Mark-up Language) an XML-based standard for the representation of
predictive data mining models. PMML provides a machine-understandable standardized
representation that is adhered to by all the major data mining vendors, comprising different
standards that maintain high semantic integrity and coherence for the data and knowledge that
is derived through designated knowledge discovery algorithms [GBR+99]. The current
knowledge networks specifications, presented in the following, have also been conceived to
easily support the future integration of predictive technologies.

4 Building Knowledge Networks: Specifications
In this section, we present a more operational architecture for knowledge networks, and detail
the early structural specifications we have defined for knowledge network components, that is:
knowledge atoms, knowledge containers, and their possible network organization. The building
blocks required to construct a knowledge network can be broken down into two main
components. Firstly an autonomous knowledge component is required capable to encapsulate
and transport knowledge independent of the environment. Some aspects of this component will
be designed and implemented within WP5, whereas others such as the transport of knowledge
or a dedicated communication interface are more relevant to the concept of ACE’s as envisioned
through WP1 of the project. Secondly, designated and dynamically maintainable relations have
to be overlaid upon those entities connecting them to a purpose built network based structure.
This requires the provision of advanced network based ontologies and flexible overlay structures
that allow for ad-hoc reconfiguration of the overall knowledge network and for the construction of
purpose build views of any sub-part(s) thereof.

4.1 A Note on the Process of Identifying Specifications
Before going into the details of the operational architecture and of the specifications, it is worth
spending a few words about the process by which we arrived at them. In fact, the description of
this process may tell a lot about the rationale of the outcome and its generality.

We started our activities in WP5 with a shared perspective on the abstract reference architecture
(Figure 1). Then, we analyzed the possibility of (i) using as a building block a single class of
atomic elements (i.e., knowledge atoms) to structure knowledge networks and then (ii)
identifying a simple set of basic mechanisms and algorithms (e.g., by exploiting the various
models and mechanisms analyzed in the previous section) via which to build any type of
knowledge networks (i.e., along any of the semantic, spatial, and temporal dimension, and
suited for any class of application scenarios), with proper behavioural intelligence (i.e.,
autonomic capabilities)..

With regard to the former point, what we found out is that the need to flexibly consider a large
amount of diverse models around which to network knowledge atoms together (there included
the need to aggregate knowledge atoms into high-level structures and produce new atoms to
compactly represent the aggregated knowledge of multiple atoms) could hardly be

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 15 of 72

accommodated by exploiting a single class of element. From the viewpoint of ACE’s, nothing
prevents at perceiving and accessing a knowledge network as if it were composed of a single
class of elements. However, as far as designing and developing knowledge components is
concerned, it is much more useful to clearly distinguish between knowledge components that
are indeed atomic (i.e., contain a single logical unity of knowledge) and components that,
instead, provide for networking components with each other and for containing aggregated
knowledge items. Indeed, the specifications we report here reflects this perspective and
consider two classes of knowledge components, namely knowledge atoms and knowledge
containers, both of which exposing the same interface but internally structured in a different way.

With regard to the latter point, identifying a limited number of mechanisms turned out to be
impossible, due to the vast amount of diverse needs that users and services in different
scenarios exhibit when having to become “situation-aware”. Accordingly, we decided to adopt a
radically different approach, based on a “hand-on” analysis of the actual needs of applications.
In particular, we focused on developing (either with “pencil and papers” or with some simulation
experiment) a set of application examples with extensive needs of situation-awareness, and at
devising for them the more appropriate mechanisms for knowledge provisioning and, therefore,
for the building of application-specific knowledge networks. Such an exercise, without having the
ambition of being exhaustive, has definitely provided us with good insights on several typical
mechanisms that might be used in knowledge networks and also resulted in useful feedbacks for
refining knowledge network specifications.

Overall, the process resulted in a sort of “co-evolution” of structural knowledge network
specification and identification of behavioural mechanisms for knowledge networks. The
structural knowledge network specifications here reported have been conceived to
accommodate the needs of several diverse application scenarios and, vice versa, mechanisms
and application needs have been used to verified the suitability of knowledge network
specification as they were being developed.

4.2 Operational Architecture for Knowledge Networks
The abstract reference architecture of Figure 1 considers the presence of some sorts of
knowledge atoms (i.e., abstract sensors) and the possibility of operating on these to produce
specific knowledge organizations around several possible dimensions.

From a more operational perspective, knowledge networks can be organized around a
knowledge provisioning pyramid, as depicted in Figure 3: A knowledge network has to connect
to some sort of data layer that exist, from a knowledge provisioning point of view, below a
knowledge network. On the other hand a dedicated knowledge request layer is required to
create temporal views of individual parts of knowledge without changing any parts of the
knowledge network itself. This is necessary to provide request based and ad-hoc created
knowledge structures to knowledge “requesters” which are at the top of the knowledge
provisioning pyramid. While the former concept requires the implementation of intelligent
methods capable to access a multitude of factual and virtual based data sources e.g. sensors,
repositories, smart environments, etc., the latter requires advanced knowledge search as well as
knowledge matching mechanism that, ideally, are embedded within the structure of the
knowledge network itself. Finally, an organisational layer is required that actually represents the
core of a knowledge network in which “all” knowledge registered through the data layer is pre-
processed and organised to be served, via the request layer, to individual services and
applications. For this layer dedicated and sophisticated knowledge management facilities have

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

to be developed that allow flexible aggregation of knowledge, advanced quality management as
well as sophisticated access control.

Figure 3: Knowledge Provisioning Pyramid.
The design and development of individual components of knowledge networks and their
interactions with each other will be based on the knowledge provisioning pyramid depicted
below where the three layers relevant for knowledge networks can be summarized as follows:

• Data Provisioning Layer
The data provisioning layer represents the actual data layer where information resides or
is collected from. For instance, this layer could include all the information produced by
the sensor of a sensor network devoted to measure information. However, it could also
include data coming form network monitoring tools, from users profiling tools, knowledge
repositories or other kind of data sources. In order to access such information sources
and to introduce the knowledge they provide to the next layer a dedicated component will
be developed which provides a generic interface that can be extended to accommodate
for different types of information sources. This component is referred to as a knowledge
atom and is discussed and specified in Section 4.4.

• Knowledge Organization Layer
The organisation layer could be seen as a central yet distributed information sink which
contains all the knowledge generated by the lower data level in a properly represented
form. Note that at this level we speak of knowledge rather than data. That is because of
the fact that the information from the data layer is, at this level, properly represented and
generically accessible and as such has a higher value. Once data are introduced, via the
concept of knowledge atoms, into the “space” of the knowledge network, the goal is to
organise them based on different characteristics, such as time, space, purpose, semantic
etc. For that another dedicated component will be developed, namely a knowledge
container as discussed in Section 4.4. Simplified, the rational of a knowledge container
or KC is to enable specialised aggregation of knowledge sources stemming from either
knowledge atoms and / or knowledge containers themselves.

• Knowledge Request Layer

Page 16 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

This layer implements a dedicated knowledge view concept and is devoted to host
temporal views of individual parts of the knowledge network. Basically this layer forms
the bridge between individual services and applications that may utilise the knowledge
provided by the network. The goal is to construct ad-hoc, request based sub-networks of
knowledge that serve application-specific requests without altering the structure of the
original network. This is necessary to provide virtually unlimited request-based and ad-
hoc created knowledge structures to knowledge “requesters” which are at the top of the
knowledge provisioning pyramid. For that the above container component may by utilised
and necessary features added.

The fourth (top) layer is the knowledge usage layer, where individual knowledge requesters (i.e.,
service ACE’s) are located in order to utilise the knowledge provided by knowledge networks or
individual parts thereof.

Clearly, making the above operational architecture an implemented concepts must account for
the need of any component and method to effectively operate in a distributed environment and
for the fact that the results will eventually be a global knowledge network that should have no
theoretical boundaries with respect to the amount of knowledge they may embrace or the type of
knowledge to be handled. Also, it must consider that individual components should have the
capacity to retain and maintain a memory that comprises the data and knowledge sources they
embrace as well as relevant information of neighbouring components in order to maintain the
distributed structures of the network. This ‘memory’ needs to be a machine-understandable
syntax, comprising different standards in order to maintain semantic integrity and coherence of
the knowledge embraced.

Overall, this perspective implies threefold high-level requirements for the implementation of
knowledge networks. Firstly, structural requirements that provide necessary components
capable of holding knowledge at different levels of granularity including the implementation of a
highly flexible framework capable of linking individual knowledge components or any group
thereof into distinct purpose-build sub-networks. Secondly, behavioural requirements which deal
with more dynamic aspects of knowledge networks such as self-organization, self-optimisation,
self-adaptation and self-configuration activities. Thirdly, predictive requirements enabling
detailed analytics of individual knowledge components in order to derive new, useful and
understandable knowledge.

Structural Components

Behavioural Intelligence

Predictive Capabilities

S
er

vi
ce

s
&

A
pp

lic
at

io
n

S
ce

na
rio

s

Structural Components

Behavioural Intelligence

Predictive Capabilities

S
er

vi
ce

s
&

A
pp

lic
at

io
n

S
ce

na
rio

s

Figure 4: Conceptual Components of Knowledge Networks.
Based on the above a three stage design and implementation process is envisioned that will
allow knowledge networks to evolve from the provision of basic factual information into a highly

Page 17 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

dynamic and intelligent vehicle exhibiting not only a high degree of autonomic behaviour but also
predictive capabilities. This process is depicted in Figure 4, where the conceptual components
identified above are organised into individual layers representing distinct aspects of knowledge
networks, while the fourth layer, services & application scenarios, represents a validation and
demonstration facility that will be used throughout the project in order to evaluate the
correctness and the performance of the methods and structures proposed.

The specifications detailed in the following of this section mostly concern the structural aspect of
knowledge networks. Some mechanisms to deal with behavioural intelligence are detailed in
Section 5, while predictive capabilities are left for studying in later stages of the project.

4.3 Knowledge Networks Specifications
Let us now go in details about the specific components that we have identified can be used as
building blocks for making the above operational perspective pratical.

4.3.1 Knowledge Component
Two main components make up the Knowledge Network. These are Knowledge Atoms (KA’s)
and Knowledge Containers (KC’s). These components are sub-classes of Knowledge
Component. The representation of both components will be facilitated entirely through the use of
XML. This not only allows for the dynamic extensions of individual contextual aspects of both
KA’s and KC’s, it also provides a standardised machine readable format which is widely used in
current applications and standards. Furthermore it allows for different out of memory storage
such as flat files and databases. Figure 5 shows the relationship between these elements.

The contextual information also follows this structure. Both atoms and containers will store the
component’s metadata as exemplified in Figure 6.

Knowledge Component

Knowledge Atom Knowledge Container«uses»

«uses»

Service«uses»

Figure 5: Knowledge Component Relationships.

Page 18 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Figure 6: Knowledge Component Contextual Information.
Simplified, each knowledge component has to provide a range of information that: uniquely
identify it within the knowledge space; reveal its current location; semantics describing the
knowledge referenced; services provided and of course information that describes the
knowledge source itself. It has to be stressed that the set of elements shown are by no means
complete. For specific implementations, other more specific elements may be added as desired.
However, the elements shown are compulsory to enable access to the underlying data source
and to facilitate knowledge aggregation within the organisational layer of the knowledge network.
The atoms and containers will then also store their own component specific information as
defined in the following sections.

The knowledge component also provides a set of abstract methods that are required to be
implemented by all of its sub-classes. These methods allow the user to store and retrieve
contextual or service information and are depicted below.

+setModel(in model : XML Element) : XML Element
+getModel(in name : string(idl)) : XML Element
+removeModel(in name : string(idl))
+addService(in model : XML Element) : XML Element
+removeService(in name : string(idl))
+getServiceList() : XML Element

«interface»
Component

Figure 7: Component Interface.
An abstract model has to be implemented that allows for specific extensions in order to
accommodate for individual data sources as e.g. listed in Table 2:. The rational of this model is
to enable individual knowledge users to access data, stemming from various sources, through a

Page 19 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 20 of 72

generic interface. The knowledge component provides an abstract interface that must be
implemented by its sub-components – namely the knowledge atom or container. This interface
provides methods to add or retrieve contextual information or service information. The user can
retrieve the whole context or context relating to just a particular element through the getModel
methods. A service can be added, which will also add metadata to the component. This
metadata will be added in a service section but some may also be added to the context
information. Context or a service can also be removed. The service will then provide its own
interface to allow another component to use it. This interface is illustrated in Figure 7.

4.3.2 Add-Ons
One of the objectives is to keep the components as lightweight as possible. Because of this, the
main components will only have a limited functionality which is only relevant to the construction
of networks itself. To make the knowledge network completely generic however, there will be
times when extra functionality will need to be added to satisfy the user requirements. One such
instance would be when an atom is required to keep a history of its values. In this case, it may
be required to periodically write its values to a database.

Table 1: List of Elements and possible Add-ons to Knowledge Network Components.
Name Status Description

Tree Proposed Semantic tree representation of keywords.

Map Proposed Semantic map representation of keywords

Location Proposed A concept representing the location of a knowledge source (e.g. physical
location of a sensor). This concept should be synchronised with WP1.

Owner Proposed Owner information

Access Proposed Access information

Lifetime Proposed Knowledge lifetime information

QoX Proposed Individual Quality Measures

Trust proposed Quality of Trust, Trust Management

Security Proposed Security and Encryption Mechanism (to be specified)

Log Proposed Element to provide relevant usage, access and error events

Statistics proposed Element to provide relevant statistical information about the use, access
of components, hosts, etc.

This sort of functionality is not compulsory for the general operation of the knowledge network
and so add-on components will provide the extra functionality. This type of functionality is of
particular importance to other work packages as it provides a mechanism to dynamically load
dedicated services. Thus each WP may develop specific extensions to KN components that deal
exclusively with the aspects addressed by a particular WP.

This Section provides details about the structure, the purpose and the scope of XML elements
that have been identified to be useful for the representation, handling and supervision of
knowledge as well as the context the knowledge occurs in. Unless stated otherwise, none of the
elements are exclusive to a single component such that they may be added, removed or
modified to the contextual part of a KA or KC as desired. Furthermore, not all of the elements

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 21 of 72

listed are exclusively relevant to WP5, the rationale of some elements is to provide an XML
“interface” to implement specifics of other WP’s. For instance, the elements “Trust” and “QoC”
represent elements that are reserved spaces to be used (and specified) by other WP’s. In this
case WP4 and WP6, respectively. Table 1 lists these elements and may serve as a basis for
future discussions with other WP’s.

Add-on components will include services to be executed by the component. These components
will be passed as serialised Java classes to a service handler, which will re-construct and invoke
them. Each service added will run on a separate thread to allow for independent operation from
other services. Metadata will be required to describe the add-on component to allow the system
to operate it. The metadata stored in any component is dynamic and can be altered depending
on circumstances. The user of the component can also retrieve parts of the metadata depending
on what service he requires. The interface used to add a service component is also defined by
XML publishing relevant information to load, invoke and access a service. The specification
thereof is shown in Figure 8.
<Services>
 <!--Extra services the component can provided as added components-->
 <Service>
 <Name>The name of a service this component provides as an add-on</Name>
 <Description>Sementic description of the service</Description>
 <URI>The address of the service, can be null for a local service</URI>
 <ClassName>The Java class name of the service object</ClassName>
 <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
 <Parameters>
 <!--Intitialisation parameters of the service-->
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 <Methods>
 <!--A list of methods for the service-->
 <Method>
 <!--A single method specification-->
 <Name>The methods name</Name>
 <Description>Sementic description of the method</Description>
 <Return>The return type of the method </Return>
 <Parameters>
 <!--A list of parameters for the method-->
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 </Method>
 </Methods>
 </Service>
</Services>

Figure 8: Service Method Description.
When an add-on registers itself at an atom, it also registers its metadata. This metadata may be
stored completely in the service section, or it may add to the component description in general,
adding to its knowledge. The user then has the option of retrieving knowledge (semantics),
service descriptions, or parts of the semantics based on the keywords they enter. To provide this
functionality, the component will realise a ‘ComponentHandler’ interface that will have a set of

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 22 of 72

methods to allow the user to retrieve context. The appropriate component (a Knowledge Atom)
will also implement other methods to retrieve the service information. The methods are shown in
the Component section 4.6.1 of the Interface section.

4.3.3 History Component
Part of the philosophy of the knowledge network is to provide a kind of who, what, when, where
functionality. A history component is useful for writing values of a source at periodic intervals to
a database to be later retrieved and analysed. As we are allowing add-on components to be
completely generic, we can implement a standard history component with a known functionality.
This is the default component that users can add-on to write a history of a source. This does not
prevent a user from writing their own history component if they want to provide different
functionality.
<Service>
 <Name>History Component</Name>
 <Description>Generic history component</Description>
 <URI>The address of the service</URI>
 <ClassName>The Java class name of the component object</ClassName>
 <Parameters>
 <!--Intitialisation parameters of the service-->
 <Parameter>
 <!--milliseconds-->
 <Name>fetchValueInterval</Name>
 <Type>java.lang.Integer</Type>
 <Name>host</Name>
 <Type>java.lang.String</Type>
 <Name>port</Name>
 <Type>java.lang.String</Type>
 <Name>username</Name>
 <Type>java.lang.String</Type>ing
 <Name>password</Name>
 <Type>java.lang.Str</Type>
 </Parameter>
 </Parameters>
 <Methods>
 <!--A list of methods for the service-->
 <Method>
 <!--A single method specification-->
 <Description>Retrieve a list of elements</Description>
 <Name>getValue</Name>
 <Return>Element</Return>
 <Parameters>
 <!--A list of parameters for the method-->
 <Parameter>
 <Name>startTime</Name>
 <Type>java.util.Date</Type>
 </Parameter>
 <Parameter>
 <Name>stopTime</Name>
 <Type>java.util.Date</Type>
 </Parameter>
 </Parameters>
 </Method>
 </Methods>
</Service>

Figure 9: Service Interface.
The main goal of knowledge networks is to access and organize data coming from a very
heterogeneous set of knowledge sources. However, one of the most valuable applications of

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

knowledge networks should be storing the history of values coming from sensors. By this way, a
better and more accurate perception of the environment is achievable. Due to the availability of
past data, it should for example be possible to infer something that is unknown about the
present or even about the future. In our opinion knowledge networks should in fact deal with the
problem of accessing data from a distributed and heterogeneous set of sensors but also with the
problem of organizing and consolidate sensor data in a sort of knowledge.

Due to the fact that the storage is probably not the main goal of knowledge networks but has lots
of implications we propose specifications of a standard history component. It has to be
implemented not inside a knowledge atom but as a separate component. To realize its purposes
it has to register itself to a KA (exposing values to be saved) using the addService() method
(inherithed from KNComponent). Internally it simply fetches every fetchValueInterval
milliseconds a value from the KA and stores it in a database. It also provides the method
getValue(startTime, stopTime) to the KA needed to fetch data from the backend instead of the
live sensor. By this way registering the history component to a KA simply produces a KA
capable of storing and retrieving historical data.

The following XML piece is an example on how to register the default history component to a
knowledge atom. Note that this not only provides the functionality to specify the specific
component to be loaded but also publishes its configuration as well as its public interface.

4.3.4 Knowledge Atom, KA
Representing the most basic component of a knowledge network, the rough structure of a
knowledge atom is depicted in Figure 10. It contains a knowledge source object and relevant
descriptions that provide the context of the object contained. Within the scope of WP5, the sole
purpose of a knowledge atom is to introduce a specific data source into the scope of a
knowledge network and to provide generic access to the underlying data source; it is not
concerned about any organisational aspects within or outside the knowledge network nor is it
responsible for the configuration, maintenance or (de-) registration thereof.

Figure 10: Knowledge Atom.

Page 23 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 24 of 72

Definition 1: Knowledge Atom – is a data object containing a single piece of knowledge and
relevant semantics.

Simplified, a knowledge atom encapsulates two objects: firstly it contains a knowledge object
which reflects a single knowledge entity independent of its type, size or context; secondly it has
relevant semantics of the knowledge object attached providing relevant descriptive context,
system and usage based information that are relevant for the creation, maintenance and
observation of the knowledge object. For instance, a knowledge atom could encapsulate the
reading of a single sensor (e.g. temperature reading @ location GPS_COORDINATES[X]),
where attached semantics could include the GPS location of the sensor, the purpose of the
sensor, the required update frequency, etc. On the other hand the knowledge object could
reflect a more complex structure such as e.g. the human DNA code.

Within the context of a global knowledge network, knowledge atoms may be seen as “protected”
objects, that is that they are not devisable, which is based on the simple fact that, independent
of its complexity, they only embrace a single “piece” of knowledge. Nonetheless, the semantics
of a knowledge atom may be extended if necessary. It is also envisioned that knowledge atoms
and the knowledge they embrace exist locally rather than in a distributed environment. However,
as a whole knowledge atoms may be shared, cloned, referenced or transported globally
throughout the network. In the sequel knowledge atoms are denoted by k = (o, S), where o
represents the knowledge object and S its semantics, both are subject to further specification.

Figure 11 shows the full xml description of the knowledge atom concept as available to date.
<KNComponent>
 <Ident>
 <UUID>Unique ID for the component</UUID>
 <Type>Atom</Type>
 <AccessInfo>
 <URI>Uniform Resource Identifier to locate the component</URI>
 <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
 </AccessInfo>
 </Ident>
 <MetaInf>
 <Description>
 <Name>Description of the component</Name>
 </Description>
 <Keywords>
 <Key>Arbitrary key word or structure</Key>
 </Keywords>
 </MetaInf>
 <Atom>
 <Service>
 <Name>The name of the service this atom provides by default</Name>
 <Description>Sementic description of the service</Description>
 <URI>The address of the service, can be null for a local service</URI>
 <ClassName>The Java class name of the service object</ClassName>
 <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
 <Parameters>
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 <Methods>

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 25 of 72

 <Method>
 <Name>isAlive</Name>
 <Return>Boolean -->True if atom is accessible</Return>
 </Method>
 <Method>
 <Name>getValue</Name>
 <Return>Element --> The atom value</Return>
 </Method>
 <Method>
 <Name>getType</Name>
 <Return>Element --> The atom type</Return>
 </Method>
 <Method>
 <Name>getConfig</Name>
 <Return>Element --> The atom access configuration</Return>
 </Method>
 </Methods>
 </Service>
 <Data>
 <Value>Atom value</Value>
 <Type>Data type of the atom value</Type>
 <Config>Configuration of the atom source</Config>
 </Data>
 </Atom>
 <Services>
 <Service>
 <Name>The name of a service this component provides as an add-on</Name>
 <Description>Sementic description of the service</Description>
 <URI>The address of the service, can be null for a local service</URI>
 <ClassName>The Java class name of the service object</ClassName>
 <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
 <Parameters>
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 <Methods>
 <Method>
 <Name>The methods name</Name>
 <Description>Sementic description of the method</Description>
 <Return>The return type of the method </Return>
 <Parameters>
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 </Method>
 </Methods>
 </Service>
 </Services>
</KNComponent>

Figure 11: Current XML Specification of Knowledge Atoms.
As described previously, the rationale of knowledge atoms is to introduce new data stemming
from various data sources into the scope of the knowledge network. To be properly registered,
organized and used two types of generic interfaces have to be established. The component
interface needs to be extended to allow for source values and services to be accessed. Figure
12 describes the Knowledge Atom interface, whereas a preliminary specification of the
knowledge atom component is shown in Figure 11, where the data access interface is realized

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

by the getValue, getType and getConfig methods. The second aspect, the exchange of
contextual information, is realized through the Component interface, which is also implemented by
the knowledge container component. The third aspect is the service access. This is done
through the addService and removeService methods. AddService will add an add-on component
to the atom that will run a service. This can be of any type and is described by the
serviceDescription.

+setModel(in model : XML Element) : XML Element
+getModel(in name : string(idl)) : XML Element
+removeModel(in name : string(idl))
+addService(in model : XML Element) : XML Element
+removeService(in name : string(idl))
+getServiceList() : XML Element

«interface»
Component

+isAlive() : boolean(idl)
+getValue() : XML Element
+getType() : XML Element
+getConfig() : XML Element

-atomElement : XML Element
KnowledgeAtom

Figure 12: Knowledge Atom Interface.
Let us now briefly outline some possible data sources that are of particular interest to the
concept of knowledge networks. The type and number of knowledge sources presented in the
table below is by no means complete with respect to the type of sources available in the “real”
world. Nevertheless it is envisioned that a multitude of different knowledge sources will be
incorporated through the concepts of knowledge atoms through the course of the project and
beyond.

Table 2: Example Data Sources for Knowledge Atoms.
Type Description

Embedded Small pieces of data to be embedded into the atom structure itself. Particular
relevant for non-volatile data.

Web Service Data made available through a web service.

Sensor Data available through the concept of sensors. Possible sub-types may
include hardware based sensors, software based sensors and sensor arrays
of either of the above.

Knowledge Broker Data made available through a brokerage system. Specific implementation
will depend on the type of system to be used

ACE Data made available though the generic or specific interface of an ACE (this
type will depend on the realisation of ACE’s)

Knowledge Container Atoms that require data from within the KN require access to KC’s

Page 26 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

4.3.5 Knowledge Container, KC
The Knowledge Container is the aggregating component of the knowledge network. It will group
elements to define the structure of the network, while the values are retrieved from atoms. The
containers can hold other containers or other atoms or both. A container may also act as an
aggregated source and store aggregated information in an atom, while also storing other
containers to navigate to lower levels in the network. Figure 13 is a diagram describing the basic
concepts of a Knowledge Container.

Figure 13: Knowledge Container.
Definition 2: Autonomous Knowledge Component– is a purpose built, loosely coupled
collection of knowledge atoms / knowledge container.

The algorithms used for aggregation can be of any type and are yet to be decided upon. The
hierarchical structure we provide is slightly different to an ad-hoc peer-to-peer system. It does
not allow any element to link to any other, as some restrictions are provided by the hierarchical
structure. To this extent, we do not want an atom to be allowed to also be a container that may
aggregate other elements in a random manner. This is more chaotic than the structure we
envisage. We have decided to keep the knowledge container and the knowledge atom concepts
separate. The atoms will be aggregated by algorithms producing a largely static structure that
will change only gradually through time. We then propose to generate overlay networks defined
by temporary links between atoms to produce a more dynamic structure. This structure however
is secondary compared to the static hierarchy and will not actually change the hierarchical
structure. Similar to knowledge atoms, additional semantic information may be attached to a KC,
thus providing relevant information about the type, scope, purpose, usage, etc. of the knowledge
they embrace, the purpose they were created for and the way they are used. Unlike knowledge
atoms, KC’s are freely extendable, dividable and modifiable, that is that new knowledge atoms
can be added, older ones may be removed or hierarchical links between them may be modified,
created or removed at any time. Figure 14 describes the additional metadata that may be used
to describe a knowledge container. This stores the location of components aggregated by the
container.

Page 27 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 28 of 72

<KNComponent>
 <Ident>
 <UUID>Unique ID for the component</UUID>
 <Type>Container</Type>
 <AccessInfo>
 <URI>Uniform Resource Identifier to locate the component</URI>
 <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
 </AccessInfo>
 </Ident>
 <MetaInf>
 <Description>
 <Name>Description of the component</Name>
 </Description>
 <Keywords>
 <Key>Arbitrary key word or structure</Key>
 </Keywords>
 </MetaInf>
 <Container>
 <Ident>
 <UUID>Unique ID for the component</UUID>
 <Type>Atom | Container</Type>
 <AccessInfo>
 <URI>Uniform Resource Identifier to locate the component</URI>
 <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
 </AccessInfo>
 </Ident>
 <Ident>
 <UUID>Unique ID for the component</UUID>
 <Type>Atom | Container</Type>
 <AccessInfo>
 <URI>Uniform Resource Identifier to locate the component</URI>
 <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
 </AccessInfo>
 </Ident>
 </Container>
 <Services>
 <Service>
 <Name>The name of a service this component provides as an add-on</Name>
 <Description>Sementic description of the service</Description>
 <URI>The address of the service, can be null for a local service</URI>
 <ClassName>The Java class name of the service object</ClassName>
 <Login>
 <User>The username to access if required</User>
 <Password>The password to access if required</Password>
 </Login>
 <Parameters>
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 <Methods>
 <Method>
 <Name>The methods name</Name>
 <Description>Sementic description of the method</Description>
 <Return>The return type of the method </Return>
 <Parameters>

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 29 of 72

 <!--A list of parameters for the method-->
 <Parameter>A single parameter for the method<Name>The parameter name</Name>
 <Type>The parameter type</Type>
 <Value>The parameter value</Value>
 </Parameter>
 </Parameters>
 </Method>
 </Methods>
 </Service>
 </Services>
</KNComponent>

Figure 14: Current XML Specifications of Knowledge Containers.
As has been depicted in Figure 13 the underlying concept of a knowledge container is similar to
the concept of a knowledge atom. That is, it encapsulates knowledge. However, unlike
knowledge atoms the purpose of a knowledge container is to organize knowledge in a semantic
or spatial fashion rather than providing access to the underlying information. Basically a
knowledge container or KC may embrace (or reference) any number of knowledge atoms or
knowledge containers independent of their location (locally or remotely). In order to enable the
construction of larger highly distributed knowledge network structures and to support the
concept of self-similarity, individual knowledge containers may contain other containers or any
number of knowledge atoms. This allows the construction of knowledge networks utilising the
concept of KC’s only, whereas the knowledge sources only exist as leaves of a constructed
network. In other words, knowledge atoms store the knowledge (or provide access to it) whereas
KC’s are used to organise it. This concept also enables the construction of networks of networks
where each node (KC) of a network-like structure may contain a network itself which in turn
could contain networks and so on. Within a P2P environment this concept is known as the
construction of super networks which is depicted in Figure 16.

Similar to the knowledge atom, a preliminary specification of the knowledge container
component is shown in Figure 14. As shown the KC concept also implements the Component
interface which realizes generic access to context related information stemming from KA’s as
well as KC’s. Utilizing this interface abstracts the access of contextual information from both
KA’s and KC’s into a single concept. Other methods specified deal with the registration, access
and removal of elements as required in order to construct a network like structure. Note that
unlike the knowledge atom implementation, the knowledge container component is not abstract.
On the contrary it is intended to be final and as such not to be sub-classed. The reason for this
is based on the fact that no specific implementations are envisioned for this component. Instead,
required functionality for the organization of knowledge has to be available in all containers.

Organizing containers based on various semantic, hierarchical, geographical or logical concepts
the rationale of a KC is to provide purpose-built, structured knowledge on higher levels of
granularity. Similar to knowledge atoms, additional descriptive information are attached to a KC
via a context object, thus providing relevant information about the type, scope, purpose, usage,
etc. of the knowledge they embrace, the purpose they were created for or the way they are
used. Unlike knowledge atoms, KC’s are freely extendable, divisible and modifiable, that is, that
new KA’s or KC’s may be added whereas others may be removed. Furthermore, any conceptual
links implemented to organize individual components may be modified, created or removed at
any time. Please note that although some concepts represented through the context part of a
KC and a KA respectively may be shared or inherited, they are not the same and therefore not
necessarily equivalent.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

+setModel(in model : XML Element) : XML Element
+getModel(in name : string(idl)) : XML Element
+removeModel(in name : string(idl))
+addService(in model : XML Element) : XML Element
+removeService(in name : string(idl))
+getServiceList() : XML Element

«interface»
Component

+getAtoms() : XML Element
+getConatiners() : XML Element
+getInventory() : XML Element
+remove(in uuid : string(idl))
+add(in component : XML Element, in register : boolean(idl), in drillDown : boolean(idl))
+queryContainer(in query : XML Element) : XML Element

-atomElement : XML Element
KnowledgeContainer

Figure 15: Knowledge Container Interface.

Sub-Network

Figure 16: Super Networks
A KC could embrace a number of sensor readings (knowledge atoms) that together reflect a
higher concept. For instance, in a weather sensor example, a number of temperature readings
can be aggregated into a singe KC to define average or sampled field temperatures in a zone.
Alternative, a mix of sensor readings (e.g., humidity, pressure, wind, other than temperature) in
a region, could be used to provide weather information at a specific location. Using a weather
example, the purpose of a KC could be the provision of weather information of all major cities in
e.g. United Kingdom. Assuming that there exist relevant sensors in all cities concerned and that
their also exists a dedicated KC for each city (preferably individual KC’s reside on a
computational resource that is somehow connected to the city they belong too) then another KC
(e.g. WEATHER(United Kingdom)[KC[0], KC[1], KC[2], …]) could be created that embrace all
other KC’s concerned thus providing a central dedicated knowledge resource where individual
KC’s can be added or removed automatically and which can be used by other services.

Page 30 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Alternatively, the KC’s embraced by the WEATHER(United Kingdom) KC may be sub-grouped
even further taking additional information into account such as discrete geographical regions.
The notion of the original KC could then be extended as follows:

WEATHER(United Kingdom)[
WEATHER(England) [KC[0], KC[1], KC[2], …],
WEATHER(Scotland) [KC[0], KC[1], KC[2], …],
WEATHER(Wales) [KC[0], KC[1], KC[2], …],
WEATHER(Northern Ireland) [KC[0], KC[1], KC[2], …]
]

Although simplistic, the above weather example validates the suitability of the KC approach and
shows its flexibility and the extendability towards more complex scenarios. It also shows that
KC’s can be expressed formally through a dedicated mark-up language, which fosters
interoperability among different physical and virtual resources.

4.4 Interfaces, Summary
This section provides a summary of all available interfaces for each component of the
knowledge network as depicted below.

+setModel(in model : XML Element) : XML Element
+getModel(in name : string(idl)) : XML Element
+removeModel(in name : string(idl))
+addService(in model : XML Element) : XML Element
+removeService(in name : string(idl))
+getServiceList() : XML Element

«interface»
Component

+isAlive() : boolean(idl)
+getValue() : XML Element
+getType() : XML Element
+getConfig() : XML Element

-atomElement : XML Element
KnowledgeAtom

+getAtoms() : XML Element
+getConatiners() : XML Element
+getInventory() : XML Element
+remove(in uuid : string(idl))
+add(in component : XML Element, in register : boolean(idl), in drillDown : boolean(idl))
+queryContainer(in query : XML Element) : XML Element

-atomElement : XML Element
KnowledgeContainer

«uses»

«uses»

«uses» Services

Figure 17: Summary, Interfaces.

4.5 Knowledge Execution
Within the knowledge network component layer as outlined above distributed knowledge
resources may be linked together through a reference mechanism indicating the location of
individual KC’s that are part of another KC. However, for knowledge execution purposes,
knowledge components have to be accessed directly, that is a communication link has to be
established that allows efficient bi-directional data transfer between relevant components of one
or more KC’s, thus creating a virtual view of a distinct set of knowledge. Such functionality may
be implemented through P2P overlay networks that can be constructed in an ad-hoc manner to
be used by a service or application requesting a discrete set of knowledge.

Page 31 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 32 of 72

To enable the efficient construction of such virtual views without altering the knowledge network
itself the concept of a virtual KC is introduced next. Basically, a virtual KC is, in structure and
functionality, equivalent to a real KC. The difference is that it only links to other KC’s that already
exist on the network, it never links to knowledge resources directly, which allows for complete
separation of the knowledge provisioning layer and the knowledge view layer as illustrated
through the knowledge provisioning pyramid depicted earlier on. Furthermore, virtual KC’s may
also be used by services to construct knowledge requests and if populated will provide
necessary information to construct the overlay network itself.

One of the advantages of virtual views is that highly specific collections of knowledge can be
created in an ad-hoc manner without changing the underlying data structures. Thus, if a service
expires its corresponding KC may be destroyed without changing the underlying knowledge
network. Utilising KC’s to specify and create such views has another advantage, that is that
services can specify the type of knowledge they desire directly on the object which will deliver
the knowledge once it has been located and necessary overlays have been built. This again
fosters self-similarity of knowledge components and interoperability of computational resources.

To retrieve knowledge we will provide a query system that is XML based. This system will
navigate the knowledge network to identify the appropriate sources to query. When these have
been identified they can be queried and the relevant information retrieved. There will be a query
mediator that interfaces with the different XML-based query engines that are to be used. RDF
would be a suitable format for navigating the network or querying simple sources such as
sensors. However, with complex XML data at the sources we may require something like the
declarative XML query language XQuery or the deductive XML query language Xcerpt to query
it. The sources will store a query engine suitable to their data and the mediator will then interface
with them and control the query process. We also recognise that it may be possible to use the
results of the query execution to update the knowledge in the network by strengthening links
between sources that are consistently used together to answer a query. These links will produce
overlay networks that can be used to help to optimise query executions.

4.6 Knowledge Organization

4.6.1 Batch vs. On-line Organisation
We recognise two different situations when knowledge will be organised. When the network is
initially being constructed, it will need to retrieve information from its sensors and organise this in
an on-line manner. Once this knowledge is generated, it may be stored at one location (or
replicated across multiple one) and then, if the network is re-started, this knowledge can be used
to re-configure the network in a batch manner based on the stored knowledge. The organisation
will primarily be done using the on-line information as this will dynamically change through time
and only be available in an on-line format. Batch organisation can then be used for re-
construction. However, with something like a history component, the batch organisation could be
run periodically to retrieve historical data to also update the network. In the scope of knowledge
networks, both batch and on-line organizations have advantages and can be used separately or
in a combined way.

Batch organisation enables a fast access to information because related data is stored at a
given location and is already available. There is no need to access different KCs in different
locations by following external links. This fast access comes at the cost of possible
inconsistencies which may exist between a data source (i.e. a sensor that produces data) and

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 33 of 72

the KC where this data is copied to. Therefore, batch organisation of knowledge is usually used
when fast access is necessary and the desired information is valid for a long time. Also, batch
organization facilitates storing of heavy-weight information which could have problems in being
highly distributed and build on-the-fly.

Online organisation can be used in environments with limited storage space and when it is not
possible to organize a priori great amounts of information. Because of the fact that in the online
case, data is not replicated to store it in various KCs, only a small amount of additional memory
is necessary to save links to the original data. A second advantage is the consistency and
freshness of online organised knowledge, in that organized data is built on-the-fly, on the basis
of the fresher available information. One drawback of online organisation of knowledge is the
fact that requesting data may take some time because desired information can only be obtained
indirectly by following at least one link. This, in addition, usually leads to consumption of network
resources because the links which have to be followed may point to physically distant locations.
Hence, online organisation of knowledge is used in situations where storage capacity is limited
or consistency of data plays an important role, whereas the time necessary to obtain information
is of minor priority.

The following short examples illustrate the described organisation methods. An array of motion
detectors, monitoring a building and supporting an alarm system, would be aggregated in a KC
in an online way. The network in this building is most probably capable to handle a number of
frequent requests to each sensor relatively fast. Batch organisation would not be suitable
because state changes of the sensors have to be recognised as fast as possible. Copying data
to a KC and updating it rarely would delay the reaction time of the alarm system. In contrast, a
KC that aggregates stated facts which will most probably not change often, would be organised
in a batch way. If those facts are for example mathematical theorems like trigonometric functions
and these theorems are accessed very frequently for different calculations, an online
organisation would result in a lot of unnecessary network traffic. Replicating the concerned
theorems once and copying them to an appropriate KC would minimise network resource
consumption. In this example, inconsistency is no problem because mathematical theorems are
unlikely to change.

4.6.2 Vertical vs. Horizontal Organization
Naturally, the structure and relations of a knowledge network is highly dynamic and mainly
depends on the scope the network is used for. Being capable of self-adapting itself to better
serve future requests as well as reacting on the dynamics of volatile knowledge values as well
as sources a knowledge network will evolve over time. However, internally two different
concepts of organisation are used to shape different levels of knowledge granularity, namely
vertical and horizontal structures.

At the bottom of both organisational concepts are always knowledge atoms, which is due to the
fact that KA’s are seen as active knowledge sources that feed information into the network
rather than organising them. Considering a tree like organisational structure for either concept,
that is when avoiding cyclic references of components within the same branch, atoms are
always found as a leaf node. Containers on the other hand are solely designed to organise
knowledge, such that they are never leaves but build up the remainder of the tree or to be more
precise knowledge network. Note the distinction between a tree and a network is important for
the organisation but not for the representation. That is that when organising or querying a
knowledge network cyclic references are detected and serve as endpoints in order to avoid
processing the same branch of knowledge over and over again. Nevertheless, within the global
structure of a knowledge network cyclic references can not be avoided and are in fact desired to

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

allow for multiple entry points into a network for dedicated maintenance, organisation and
querying tasks.

Simplified, vertical structures are those relationships that involve multiple knowledge containers
at different levels, where the level of knowledge granularity is equal to the position of the
container the knowledge is referenced from. The rationale of a vertical organisation is that high
level concepts of sources that exist at a lower level can be grouped together thus providing a
conceptual view at different levels of granularity. This concept is visualised in Fig. 17, where
several KC’s are organised at different levels to provide different views of the atoms that are
located at the bottom of the tree. The main advantage of such an organisation is that individual
knowledge can be accessed directly by querying for the concept used to organise the
knowledge rather than iterating over all available atoms independently to determine if they are
relevant to a current query or not.

Figure 18: Vertical Organisation.
For example, in a sensor network scenario, a number of different readings, such as temperature,
wind force, wind direction etc. may be available for a number of different locations, e.g. each city
in Europe (Figure 18). Assuming that each sensor exposes the Atom concept and registers itself
into the scope of a knowledge network, then these atoms can be organised automatically based
on the concepts they reflect.

Page 34 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Figure 19: Example – Vertical Knowledge Organisation.
As depicted in Figure 19, all sensors are grouped based on their type, e.g. temperature.
Furthermore some sensors are then grouped to higher concepts such as wind, clouds or
weather as the top level container in this example. Horizontal structures, as depicted in Figure
19, are those relationships that enable to organise knowledge that is conceptually located at the
same level of abstraction.

Figure 20: Horizontal Organisation.
Such structures can be used to choose and select an area in the knowledge space on the basis
of given attributes. For instance, each sensor in the sensor network scenario above, may exhibit
the concept of its location, e.g the sensor is located in London. Then all atoms that are also
located in London may be organised into a single container independent of their type, reading
etc. Horizontal structures are likely to be (conceptually) distributed on a wider area than vertical
ones and as such are not so fine-grained. Therefore such structures may be faster to query that
vertical ones.

Page 35 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

4.7 Knowledge Network Components and ACE’s
In this section we are going to sketch some ideas about how the relationship between
knowledge networks and ACE’s. These kind of relations are fundamental since:

1. The components of the knowledge network will be implemented by means of ACE’s
2. Application-level ACE’s will access the knowledge network to acquire context

information.
Before describing the above two relations let us briefly recap the ACE architecture as currently
proposed in WP1 (see Figure 21).

Figure 21: Currently proposed ACE architecture (the specific interface has made more
explicit than in the ACE architecture discussed in D1.1).

The ACE architecture is composed of six main parts:

1. The specific part is where the specific services of an ACE are located. For example, an
ACE offering some kind of message delivering service will have in the specific part all the
code dealing with the actual delivering of messages.

2. The self-model is a Finite State Automaton (FSA) describing the behaviour of an ACE.
Specific transition in the FSA triggers the methods in the specific part. For example,
depending on its self-model, the ACE decides whether to fulfil a request or not, and
which specific service to employ.

3. The reasoning engine runs the self-model triggering state transitions on the basis of
received events

4. The communication between the ACE and the external world takes place either with a
discovery protocol called GA-GN (this discovery is carried on by the common interface),
or by specific messages to access the ACE specific functionalities (these messages are
handled in the specific Interface1).

1 The ACE architecture we present here is the same that has been defined in WP1, and that is actually described in
D1.1. However, in order to better clarify how KN components can be implemented via ACEs, we have made more
explicit than in D1.1 the presence of a specific interface.

Page 36 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

5. The facilitator is the component in charge of enforcing autonomic behaviours by
changing dynamically the self-model’s FSA. For example, the facilitator can add new
states to the FSA or rewire its links to change the ACE behaviour.

This ACE architecture provides a good separation of concerns between the various parts of an
ACE, and enforces flexibility and autonomic behaviour.

4.7.1 Implementing Knowledge Network Components with ACEs
Now, by recalling that Knowledge Atoms (KA) and Knowledge Containers (KC) are the two main
components of the knowledge network, Let us know show how noth these two components can
be readily mapped in the ACE architecture.

For a Knowledge Atom (see Figure 22):

• The specific part comprises the methods to access underlying information sources as
well as individual reasoning and knowledge processing capabilities. Which capabilities
are to be implemented differs from KA to KA.

• The self-model maintains the state of the aggregation process. It may be a finite state
automaton indicating what the KA is doing. For example, it can simply be an automaton
with 2 states: “collect data” and “sleep”. The KA cycles between these two states.

• The facilitator changes the self-model to enact autonomic algorithms, possibly changing
the way in which aggregated values are computed.

• With the GN-GA protocol the KA can describe to enquiring ACE’s which knowledge it is
able to produce. For example, it can express semantically in its GA message that it
“provides the average temperature over a specific area”.

• Finally, a message handler in the specific interface could be in charge of delivering
the proper knowledge, provided by the KA, to a requester (e.g., actually get the proper
average value).

Figure 22: Knowledge atom implemented in the ACE architecture

Page 37 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

For a Knowledge Container (see Figure 23):

• The specific part comprises the methods to link (i.e., hold a reference) to the various KA
• The self-model maintains the state of which KA are contained (i.e. linked) by the KC and

decides whether to link to new ACE or to remove previously existing links.
• The facilitator can change the self model to deal with unexpected situations. For

example, if a network link to a KA breaks down, the facilitator can change the self model
to reflect the fact that KA is no longer available.

• With the GN-GA protocol the KC can describe both that it can offer a reference to a
collection of KA (this is the GA message), and that it is looking for KA to aggregate (this
is the GN message).

• Finally, a message handler in the specific interface could be in charge of providing an
access to specific KA in the KC collection.

Figure 23: knowledge container implemented in the ACE architecture.

4.7.2 How application ACE accesses the Knowledge Network?
Given that the knowledge atoms are implements as ACE, the access to the knowledge network
is similar to invoking services to an ACE:

• An application ACE will express its need for knowledge by means of a GN message.
• Suitable knowledge atoms will answer with their GA message.
• The knowledge atom will also provide a reference in its specific interface to a specific

message handler (e.g., get average)
• The application ACE sends a “getValue” message to the handler

Page 38 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 39 of 72

• The knowledge atom responds with the value.
Naturally, ACE discovery services will be applied also to knowledge atoms to let “application”
ACE retrieve suitable knowledge information. Similar consideration applies for an ACE trying to
access a knowledge container.

In addition, in each ACE, its self-model can be considered as a knowledge atom, which
represents its internal self-model. Such self-model, can become part of a knowledge network
simply by having it registered into a KC (typically, the ACE will also act as a KC for itself, to
enable its internal model to become part of a larger knowledge network). We emphasize that in
our view, knowledge atoms are not static, but can contain dynamically varying information,
which is in line with the ACE idea of having an internal facilitator in ACE’s that continuously
updates the self-model.

4.8 Checking Knowledge Network Specifications Against WP6
Requirements

During the specifications identification work, we have always kept into account the requirements
identified in WP6. The result is that the above described specifications either already meet such
requirement or have been conceived so as to make it possible to meet such requirements in
next developments. Below, we copy the WP5 requirement table that can be found in D6.1, with
an additional column shortly discussing how each of the requirements have been (or is to be)
met.

WP Functional
/ Non
Funct.

Scenario Requirement Answer

R_5_1 F * Knowledge networks must support for a
virtual view of environment to facilitate the
concept of interest to adapt to changing
conditions

Knowledge Atoms are sorts of virtual sensors
that can provide a virtual view of the
environment

R_5_2 F * There must be support for distribution of
knowledge across a dynamic network

Knowledge networks can be distributed, and
mechanisms for distributed knowledge
management are being studied

R_5_3 F * There must be support for self-similar Knowledge containers can promote self-
similar aggregation of knowledge and
perception at different granularity levels

knowledge aggregation and for access to
knowledge at different granularity levels

R_5_4 F SH/UM There must be support to represent and
manage knowledge related to the user and
the social level (user and social context
profiling).

Knowledge atoms, as virtual sensor, can
embody any kind of knowledge, there
included user and social context.

R_5_5 F * There must be support to represent and
manage knowledge related to the ACE level
(profiling of ACEs and of their dynamic and
aggregated status)

ACEs can expose their self-model as a
knowledge atoms, to that knowledge network
can include knowledge about ACEs.

R_5_6 F * There must be support to manage in an
integrated (cross-layer) way user-level, ACE-
level, and network-level, knowledge.

With the concept of knowledge atom as
virtual sensors, various knowledge atoms
managing different type of knowledge can be
integrated with each other.

R_5_7 F * There must be support for construction and
management of aggregated distributed
knowledge.

Knowledge atoms and knowledge container
can be use to build, via proper algorithms,
aggregation of distributed knowledge.

R_5_8 F * To reach a high level of integration,
knowledge networks should provide standard
semantic mechanisms to organize and
compose heterogeneous information and
heterogeneous services.

Although ontology does not enter the
specifications defined so far, knowledge
atoms and knowledge containers can be
represented according to specific ontologies
to enable semantic knowledge management.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 40 of 72

WP Functional
/ Non
Funct.

Scenario Requirement Answer

R_5_9 NF * To achieve a proper reconfiguration
meaningful context information are to
collected with high time granularity.

Knowledge atoms are connected with data
sources and can always provide up-to-date
information.

R_5_10 NF * Knowledge networks should provide also for
producing and organizing new knowledge,
inferred from existing one (e.g., for the sake
of prediction).

Proper algorithms for knowledge
management can be used to have new
knowledge containers that represents
somewhat new knowledge inferred from the
information of contained knowledge atoms.

R_5_11 F * It may be necessary to protect selected
sensible parts of knowledge networks from
attacks (or, which is the same, knowledge
networks must be able to exploit the security
services of WP4).

Being possible to implement knowledge
network components in terms of ACEs,
whatever security solutions will be envisioned
for ACEs this will be also immediately
applicable to knowledge network
components.

R_5_12 F SH/UM There must be support for spatial knowledge
and spatial representation of situations.

 The concept of location is explicitly part of
knowledge network components.

R_5_13 F WA There must be support for semantic
knowledge and shared ontologies to facilitate
interoperability

See answer to R_5_8.

5 Mechanisms and Applications of Knowledge Networks

In this section, we report on experiments being performed to test two specific mechanisms that
promise to be of general use for the building of self-organized knowledge networks (namely,
field-based overlays and self-organized region aggregation), and then sketches several use
cases in which knowledge networks can be fruitfully applied both as a support to situation-
awareness and autonomicity.

5.1 Self-Maintaining Overlay Data Structures as Knowledge
Networks

A general mechanism we studied and experimented with to support the activities of knowledge
networks is based on overlay field-based data structures. These overlays are distributed data
structures encoding specific aspects of the ACEs’ operational environment. They can be
propagated across a network as a sort of virtual force field, in order to represent and
“communicate” context information.

From a modeling perspective an overlay data structure can be modeled as a knowledge
container (KC) collecting a number of knowledge atoms (KA) that constitute the distributed
elements of the overly.

The strength of these overlay data structures is that they can be accessed piecewise as the
ACEs visit different places of the distributed environment. This lets the ACEs access the right
information at the right location. ACEs interacting and perceiving their operational environment
by means of these knowledge networks can disregard the underlying physical network and its
dynamics (see Figure 24).

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

KAX

KAX

KAX KAX

(Knowledge Atom) KAX

KAX
KAX

KAX

KAX

Knowledge
Network

ACE

 ACE

ACE

Physical
Network

Overlay Data Structure

Figure 24: ACEs perceive a number of overlay data structures describing their

environment. Each overlay is composed by a number of knowledge atoms.

In addition, overlay data structures enable sorts of “stigmergic” interactions [BonDT99] in that
ACEs' interactions can be mediated by these kinds of overlay “markers” distributed across the
environment. From another perspective, overlay data structures generalize the idea of overlay
networks. Overlay networks are basically routing distributed data structures providing ACEs with
a suitable application-specific view of the network (i.e. they allow ACEs to perceive a specific
overlay topology of the network) [Rat01]. Overlay data structures do not focus on network
topology only. They are general-purpose and can encode any kind of context information, thus
they are a perfect match for knowledge networks.

To clarify this idea let us focus on the problem of coordinating the movements of some
application ACEs in a distributed environment [MamZ06]. In particular, we focus on the simple
application of having two persons, provided with a PDA, moving across an environment
instrumented with an ad-hoc network infrastructure. The goal of the application is to allow one
person to be guided by the PDA, to follow the other person. A simple solution based on overlay
data structures is to let the person to-be-followed to spread in the environment (i.e., ad-hoc
network) a data structure that increases an integer value by one at every hop as it gets farther
from the source. This creates a sort of gradient that can be followed downhill by the other person
to complete the application (see Figure 25(a)). If the person to-be-followed moves, it is important
that the overlay data structure adjust its shape accordingly, so that the gradient leads to that
person anyway (see Figure 25(b)). The power of this approach is that the knowledge network
provides expressive contextual information tailored for that specific task. The ACE running on
the PDA does not need to have any map of the environment, nor does it have to execute
complex algorithms to decide where to go. It just blindly follows the overlay data structure.

Page 41 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

(a) (b)

Figure 25: (a) gradient overlay data structure enables an ACE to follow another one.

(b) The data structure is updated to reflect the new ACE position.

Beside this exemplary application, overlay data structures can be applied in a wide range of
application scenarios, ranging from robotics to network routing:

Motion Coordination. As already stated in the previous example, overlay data structures, spread
across a properly networked environment, have been used in [MamZ06] for the sake of enabling
ACEs (e.g. users carrying a PDA, robots, cars) to coordinate their respective movements. The
goals of ACEs' coordinated movements can be various: letting them to meet somewhere,
distribute themselves accordingly to specific spatial patterns, or simply move in the environment
without interfering with each other and avoiding the emergence of traffic jams. As previously
stated, overlay data structures provide suitable tools for this task, in fact, they can be accessed
piecewise to guide ACEs motion step-by-step.

Routing in a Mobile Ad-Hoc Network. Routing can be easily modeled as a coordination problem:
ACEs (i.e. network nodes) need to cooperate forwarding each other messages to enable long-
range, multi-hop communication. The main principle underlying many routing algorithms is to
build several overlay data structures (implemented by means of a set of distributed routing
tables) suitable to provide route information. Specifically, these data structures create paths in
the network enabling ACEs to forward messages in the right direction. These paths (i.e. data
structures) are maintained to take into account changes in the network topology [Poo01]. The
idea at the basis of distributed routing data structure is the same as motion coordination: provide
ACEs with a ready-to-use representation of the context (i.e. where the message should go next).

Swarm Intelligence. From a general perspective, overlay data structures are at the core of a
number of swarm-intelligent (e.g. ant-inspired) systems [BonDT99]. These approaches mimic
the way in which social insects, like ants, coordinate their activities to achieve complex tasks
(e.g. the mechanism used by ants to find food can be used in the context of computer networks
to route packets or find relevant resources). The key to these approaches is in emulating the
way in which ants interact with one another. They do so by means of pheromone signals they
spread in the environment that will be perceived by other ants later on. These pheromone
signals can be used to find food sources, or to coordinate efforts in moving some heavy objects,
etc. Pheromone signals can be easily modeled by means of overlay data structures. Overlay
data structures implementing the concept of pheromone could be distributed by the ACEs
themselves as they move across the network. These data structures can then be used as trails
driving ACEs' activities. For example, the research projects Anthill [BabM02] and SwarmLinda
[MenT03] share the idea of applying ant-inspired algorithms to Internet-scale Peer-to-Peer
systems. Here, overlay data structures - modeling ants' pheromones - create paths connecting
peers that share similar files, thus enabling, for example, an effective content-based navigation

Page 42 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 43 of 72

in the network of peers.

Amorphous computer. Overlay data structures are at the core of the amorphous computer
[Nag02] research. An amorphous computer consists of massive numbers of identically-
programmed and locally-interacting computing nodes, embedded in space. Overlay data
structures can be spread and deployed in the amorphous computer to let various patterns and
shapes emerge among the computational particles. Just to mention few trivial examples, if a
leader particle spreads a hop-increasing overlay data structure (as defined above), it is possible
to create approximately circular regions of controlled size: particles sensing the overlay are able
to determine if they are in or out a specific circular region of radius R (i.e. they are in if they
sense the data structure with a value lower than R). Similarly, if a line of particles propagate the
above data structure, stripes instead of circles can be identified in the amorphous computer.

Modular Robotics. A modular or self-reconfigurable robot is a collection of simple autonomous
actuators with few degrees of freedom connected with each other. A distributed control algorithm
is executed by all the actuators to let the robot assume a global coherent shape or a global
coherent motion pattern (i.e. gait). Some proposed approaches adopt overlay data structures to
control such a robot [SheS02]. A distributed shape or motion gait is encoded by means of
overlay data structures spread across the robot specifying how the robot's actuators should
bend. Robots are programmed to bend their actuators depending on the sensed data, thus
realizing the prescribed motion gait.

The fact that overly data structures have been successfully employed in all these scenarios
motivate their adoption in knowledge networks to serve as a general mechanisms to encode
context information and make it available to ACEs.

5.1.1 Modeling Overlay Knowledge Networks and Their Self-
Maintenance Algorithm

From a modeling perspective an overlay data structure can be modeled as a knowledge
container (KC) collecting a number of knowledge atoms (KA) that constitute the distributed
elements of the overlay. In particular, the KC expressing overlay data structures can be defined
by means of a couple (C,P). The content C can be an arbitrary data structure representing the
information carried on by the knowledge atom. The propagation rule P determines how the
overlay data structure should be distributed and propagated across the network. This includes
determining the ``scope'' of the overlay (i.e. the distance at which it should be propagated and
possibly the spatial direction of propagation) and how such propagation can be affected by the
presence or the absence of other data structures in the system.

The conceptual links between the knowledge atoms (expressed by the propagation rule)
represent an example of horizontal knowledge organization.

In addition, the propagation rules can determine how the content C should change while it is
propagated. Overlay data structure are not necessarily distributed replicas: by assuming
different values in different nodes, they can be effectively used to shape a structure expressing
some kind of contextual and spatial information. In addition, a maintenance mechanism should
be enforced to let the overlay data structure preserve its intended distribution (C,P) despite
network contingencies.

The idea of overlay data structures can potentially be implemented on any distributed
infrastructure providing basic support for data storing (to store data values), communication
mechanisms (to propagate overlay data structures) and event-notification mechanisms (to
update overlay data structures and notify ACEs about changes in overlay data structures'

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 44 of 72

values).

In most of the application scenarios described in the previous section, the main context
information to be stored by an overlay is the hop-distance form the source. Hop-based overlay
data structures are those having a content (C) and a propagation-rule (P) that depend only on
the hop-distance from the source. Hop-based overlay data structures enable to express and
diffuse across the network (possibly within a bounded scope) contextual information related to
the network distance from the source. These kind of data structures have been widely used in
motion coordination, routing and location-based-information-access applications. We designed
the Hop data structure as a basic template to build this kind of overlays. In particular, the Hop
data structure has a integer hop-counter (hop) as a content. Once one of these data structures
is injected in the network, it propagates breadth-first maintaining the hop-distance from the
source. These overlay data structures have to be maintained despite network topology changes
either due nodes mobility or failures. The self-maintaining algorithm that will be described next
performs exactly this task. The strength of these data structures, from a software engineering
point of view, is that ACEs have simply to inject these data structures without further taking care
of their update. All the burden in maintaining data structures is moved away form the ACEs.

Other than the modeling phase, we designed an algorithm to enable hop-based data structures
to self-maintain their distribution despite network dynamism. To describe this algorithm, we will
use the term knowledge container KC to refer to the whole distributed overlay. We will use the
term knowledge atom KA to indicate a single piece of the overlay stored in a single node. For
example a Hop KC is made of a number of KA each stored in a node of the network. Recall
that a Hop KCs propagates increasing its integer content by one at every hop. Given a local KA
of such a KC called ‘X’, we will call another KA ‘Y’ a supporting KA of ‘X’ if: ‘Y’ belongs to the
same KC as ‘X’, ‘Y’ is one-hop distant from ‘X’, the value of ‘Y’ is equal to the value of ‘X’ minus
one. With such a definition, a supporting KA of ‘X’ is a KA that could have created ‘X’ during its
propagation. Moreover, we will say that ‘X’ is in a safe-state if it has at least a supporting KA, or
if it is in the node that first injected the KC (i.e. hop value = 0). We will say that a KA is not in a
safe-state if the above condition does not apply (i.e. it has not any supporting KA and it has a
hop value greater that 0).

The basic idea is that a KA that is not in a safe-state should not be there, since no neighbor data
could have created it.

Each local KA can subscribe to the arrival or the removal of other KA of its type (i.e., belonging
to the same KC) in its one-hop neighborhood. Upon a removal, each KA reacts by checking if it
is still in a safe-state. In the case a KA is not in a safe state, it erases itself from the local node.
This eventually causes a cascading deletion of KA until a safe-state KA can be found, or the
source is eventually reached, or all the KA in that connected sub-network are deleted.

In the case a KA is in a safe-state, the removal of neighbor KA triggers a reaction in which the
KA propagates to that node. It is worth noticing that this mechanism is the same as when a new
node is connected to the network. Similar considerations apply with regard to KA arrival: when a
KA senses the arrival of a KA having a value higher than its own plus one, it means that,
because of topology changes, a short-cut leading to the source has been created. In such a
situation the KA can propagate to the new node to overwrite the previous KA, fixing the KC
shape. This set of mechanisms is enough to make Hop KC self-maintain.

5.1.2 Experiments
The effectiveness of our approach is of course related to costs and performance in managing
overlay distributed data structures.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

The cost of propagating a data structure, relying on a multi-hop mechanism, is something
inherently scalable. Each node will have to propagate the data structure only to its immediate
neighbors. The size of the network does not matter since the global effort to spread the data
structure is fairly partitioned between the constituting nodes.

The scalability of data structures maintenance is less clear. The main requirement for our
algorithms is to be independent of the network size. This implies maintenance operations must
be confined within a locality from where events that altered the data structure (e.g., a network
topology change) happened. If it is so, concurrent events at distant points of the network do not
accumulate locally. If, on the contrary, maintenance operations always spread across the whole
network, distant concurrent events do accumulate and the system does not scale.

With regard to Hop data structures, establishing if maintenance operations are confined to an
area neighboring the place in which the network topology had actually changed is rather
complicated. The size of this neighborhood is not fixed and cannot be predicted a-priori, since it
depends on the network topology.

(a)

(b)
Figure 26: The number of maintenance operation decreases sharply with the hop

distance from topology reconfigurations caused by: (a) random node movements for 1
wireless radius. (b) random node movements for 1/4 wireless radius.

Thus, trying to answer, we exploited a knowledge network simulator developed within our group
over Repast (see also Section 6), and performed a large number of experiments to measure the
scope of maintenance operations. To perform the experiments, we run several simulations
varying the node density and their initial position. In particular, we run six sets of experiments
where we randomly deployed 200, 250, 300, 350, 400, 450 nodes in the same area; thus
obtaining an increasing node density and a shrinking network diameter. All the experiments

Page 45 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 46 of 72

were repeated a large number (over 100) of times with different initial network topologies and
the results were averaged together. The experiment consisted in a randomly chosen node
injecting a Hop data structure in the network. After that, randomly chosen nodes start moving
independently (following a random waypoint motion pattern) perturbing the network. In
particular, a randomly picked node moves randomly for a distance equals to 1 wireless radius.
This movement changes the network topology by creating and disrupting links. The number of
messages sent between nodes to adjust the data structure, according to the new topology, is
recorded. Specifically, we evaluate the average number of messages exchanged by nodes
located at x-hop away from the moving node. Then, we average these numbers over a large set
of topology changes. The results of this experiment are in Figure 26(a).

The experiments reported in Figure 26(b) have been conducted in the same manner. This time,
however, nodes move for a distance of 1/4 wireless radius. This second set of experiments is
intended to show what happens for very little topology reconfigurations (wider reconfigurations
can be depicted as a chain of these smaller ones).

The most important consideration we can make looking at the figure is that, when a node moves
and the network topology changes consequently, a lot of update operations will be required near
the area where the topology changes, while only few operations will be required far away from it.
This implies that, even if the network and the data structures being propagated have no artificial
boundaries, the operations to keep their shape consistent are strictly confined within a locality
scope. This result is even more significant if compared to the average network diameter
(averaged over the various experiments). It is easy, in fact, to see that the number of operations
required to maintain a data structure falls close to zero well before the average diameter of the
network, thus confirming the quality of our results. This fact supports the idea that the operations
to fix distant concurrent topology changes do not add up, making the system scalable.

In conclusion of this section, we foster the idea that overlay data structures are a powerful
mechanism to support knowledge networks. In fact, they both enable the expression and
retrieval of context information in a flexible and distributed way, and they can scale to large
scenarios with a lot of ACEs being supported by knowledge networks.

5.2 Self-organized Region-based Knowledge Aggregation
An additional mechanism for knowledge networks concern distributed knowledge aggregation in
large scale ad-hoc networks, i.e., sensor networks.

In the next few years, we will assist to an increasing presence of sensors in our environments.
There will be sensors deployed in our cities, in the countryside and possibly even in open waters
for monitoring marine life. Probably, such mass deployment of sensor network systems will
induce a radical change in their usage. Rather than being closed special-purpose systems
devote to specific phenomena, as they are today, they will form the basis of truly pervasive
shared sensing infrastructure, publicly available for general-purpose sensing activities by a
variety of users [MulA06, Cur05]. In general, such pervasive sensing infrastructure can be of
help to human, mechanical, or digital “users” to achieve higher degrees of perception and
context-awareness. The need to effectively gather environmental information in a compact and
energy efficient way, also by mobile users other than by fixed sinks, calls for algorithms enabling
in-network aggregation of data and identification of relevant patterns. Knowledge networks aim
to fill the gap between the physical world and user level services providing an efficient way to
collect and provide contextual knowledge. To reach the goal they need mechanism and
algorithms to collect, organize and infer existing and new knowledge.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

One of the most basic primitives needed to organize data is aggregation. Using it we can select
an item or a group of items from a set belonging to a common property. Aggregation is a very
general primitive and can be used to aggregate sensor with similar readings but also persons,
services, devices showing a common pattern. We can select for example all the persons
dressing a red hat in the university campus or all the routers deployed in the second floor which
are not busy since two hours ago. In general we can consider everything in the physical world as
a sort of sensor exposing a particular set of values. Starting from these considerations, we have
developed and simulated an aggregation algorithm suitable for building and maintaining
knowledge networks. In particular it can successfully realize a form of either horizontal and
vertical aggregation. Over an existing environment fulfilled of sensing ACE’s exposing the KA
interface we can inject this algorithm to build links between logically correlated KAs. Moreover
we can exploit the formation of such logically correlated regions to compute, at no additional
costs and on a per-region basis, other aggregated data.

 (a) (b)

©
(d)

Figure 27: Individual Stages of Region Self-Organisation.

It is interesting to note the subtle difference between the different ways by which horizontal and
vertical aggregation store knowledge. The first one just establishes relationships between
different KAs, building a sort of knowledge overlay in which related concepts or values are
linked. The second one uses data coming from different KCs to compute and obtain a more
structured vision of the environment. Figure 27 clearly highlights the differences between the two
approaches. In Figure 27(a-b) different ACE’s exposing KA interface are represented with their
physical channels used to communicate each other. Horizontal aggregation build a virtual

Page 47 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 48 of 72

overlay of links between related concepts, every ACE continues to expose only the KA interface
but can make available to the outside data related not strictly to its values but also to the whole
region in which it is included. Now, we can imagine ACE’s belonging to the same region to be
linked to a common KC. In Figure 27(c-d), the algorithm is used at the KC level. After the vertical
aggregation process has been executed, different KC are organized in a more structured way.
For example regions A and B are recognized to be related. In this example we show a very
distributed application of knowledge networks concepts, but it is important to have in mind that
the described mechanisms should be suitable also for a simple and centralized implementation
based, for example, on relational databases.

5.2.1 The Region Aggregation Noise Algorithm
As described before, our algorithm is divided into two different blocks, one performing horizontal
aggregation and the other the vertical one:

• A distributed algorithm is continuously running in the knowledge network as a sort of
“background noise” with the goal of partitioning the network into regions characterized by
similar patterns for sensed data;

• The formation of such regions is then used to compute on a per-region basis,
aggregations of sensed data, so that users and services accessing the network through
the appropriate interface can be provided with such pre-computed aggregated data.

Basically, our algorithm work as follows. Consider a network composed by different devices that
are able to communicate each other. Each device is executing an ACE and expose values
through the KA interface. Let si and sj be two ACE’s exposing a KA. They can be considered
neighbors if they able to communicate. Define the values into by si and sj as v(si) and v(sj), and
let us assume that a generic distance function D can be defined for couples of v values (thus
defining v as a metric space), i.e., D(v(si), v(sj)). Region formation is then based on interatively
computing the value of the logical link l(si,sj) for each and every ACE of the system, as in the
following “Update_link” procedure:

Update_link:

if D(v(si), v(sj)) < T {

 l(si,sj) = min(l(si,sj) + delta, 1)

} else {

 l(si,sj) = max(l(si,sj) - delta, 0)

}

Where: T is a threshold that determines whether the measured values are close enough for
l(si,sj) to be re-enforced or, otherwise, weakened, and delta is a value affecting the reactiveness
of the algorithm in updating link. What is already clear, though, is that after some iterations, if
the D(v(si), v(sj)) is lower than threshold T, l(si,sj) will converge to 1 otherwise to 0. In the
simplest case, one could consider two nodes si and sj to be in the same region when l(si,sj) is
over a threshold Th, However, to improve stability, we introduced a hysteretic cycle with two
threshold Tl and Th.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 49 of 72

Concerning T, a challenging issue in our approach consists in tackling the difference between
the strictly local nature of “Update_link” interactions and the inherently global meaning of the
threshold T. How can two nodes evaluate which is the right threshold to establish if they are
similar enough to be in same region or not if they don't know anything about the rest of the
network ? For instance, a difference of 10°C in a wood can be considered relevant during
normal days but irrelevant for the sake of fire detection. To deal with this problem avoiding the
need for a priori information, we opted to define T by exploiting dynamically collected global
values of the property v. In particular we define T as a portion of the whole range of values seen
over the network. Using scalar values, we defined T as:

T = (globalMax – globalMin) * p

where p is a real number between 0 an 1. By this way, one can parameterize the sensibility of
the algorithm by using a relative value p rather than some absolute value requiring a priori
knowledge on the whole range of v values. If one wants to obtain very large regions to organize
the network based on macroscopic difference one can select p close to 1. If one is interested in
more fine-grained region organizations one can select p close to 0. It is worth emphasizing that
globalMax and globalMin are just two possible global values to be used to partition the
environment into regions.

The distributed execution of the algorithm is based on a sort of gossip scheme [Bab05]: each
ACE periodically wakes up, randomly selects a specific number (or a specific percentage) of its
neighbors, exchange with them the needed data (i.e., the v values, plus other data that will be
detailed in the following), and then execute the “Update_link” procedure for each of the selected
neighbors:

Do_forerever:

 Wait(t);

 neigh[] = Select_neighbor(num_neigh);

 Foreach(neigh[])

 Data = Exchange_data();

 Update_link(data);

Done

By considering the situation in which regions are already formed, computing aggregation
function in a region reduces to executing a gossip-based aggregation algorithm only between
those couples of neighbor ACE’s that are in the same region (i.e., for which the l is over the Th
threshold). Again, computing per-region aggregation function does not introduce significant
additional burden to the network. The exchange of data between nodes can occur by
piggybacking over the existing messages, and the computation of local aggregation algorithms
reduces to adding a simple “Local_aggregation” function in the main body of our basic scheme,
as follows:

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Do_forerever:

 Wait(t);

 neigh[] = Select_neighbor(num_neigh);

 Foreach(neigh[])

 Data = Exchange_data();

 Update_link(data);

 Global_aggregation();

 If(connected) Local_aggregation();
Done

a) b)

c) d)

Figure 28: Examples of region self-partitioning. a) a sample scalar field with 4 regions
with different values of a property v; b) a 500-nodes sensor network immersed in the
above scalar field, with links representing the actual physical layer or, which is the same,
the self-organization into a single global region (as it happens when p=1); c) example of
the overlay region organization with p=0,4 leading to a partitioning into 2 “large” regions
(we show only the logical links between the nodes that are logically connected); d)
example of the overlay region organization with p=0,05 leading to a partitioning into 4
smaller regions,

Page 50 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 51 of 72

5.2.2 Experiments
We have performed numerous experiments based on simulations using the adapted Repast
framework (see Section 6). Our goal was twofold. First, we wanted to evaluate the effectiveness
of the region detection algorithm. Second, we wanted to evaluate the convergence and accuracy
level of the aggregation algorithms, and the trade-off between accuracy and energy
consumption.

The results of the simulations were obtained by simulating scalar fields in which the sensor
network is immersed similar to that of Figure 28-a. Though we have conducted several
experiments on fields with different shapes and values, we have always obtained comparable
results from both qualitative and quantitative viewpoint. Therefore, we report here on an
environment filled with 500 wireless sensors disposed over a random graph such that the mean
number of neighbors for each node is 15 (i.e., qualitatively assimilable to the sensor network of
Figure 28-b). The simulated scalar field exhibits values v such that four different quadrants are
recognizable (as in Figure 1-a). Each quadrant has a fixed mean m and variance s. Starting from
the top left quadrant and proceeding clockwise, they could be identified as q1, q2, q3, q4. Mean
values m1..m4 of f in q1..q4 are respectively 120, 80, 20, -20. Variances s1..s4 are arranged such
that in each quadrant are allowed values v in range [m – 2, m + 2].

Network behaviour can be described from both a static and dynamic point of view. From the
former we can analyze, independently from the speed of convergence, which are stable states
reached by the network and evaluate the effects of related parameter p. From the latter we show
the dynamic behavior of the network, the speed of convergence and the accuracy level
depending on num_neigh and t.

Let us first focus on region detection.

From a static viewpoint, as described in Subsection 2.1 and as shown in Figure 1, variations on
the parameter p induce the network in self-partition into regions of different sizes. The same
behavior has been verified to apply for networks immersed in fields with different shapes and
with different sizes, as in Figure 28(b-d)).

Let us now switch to the dynamic viewpoint and show how variations of the gossip percent
num_neigh and the sleep cycle t affect the speed of convergence and the accuracy of the region
detection algorithm. Let’s consider a simulated a 500-nodes sensor network and a scalar field
similar to that of Figure 28. Initially all nodes are not connected with any neighbor. We collect
data over the first 255 cycles. Within cycles from 0 to 128 p is set to 0.4. During this interval the
network converge to a status similar to that of Figure 1-c, i.e., splitting the network into regions.
At cycle 129, we changed p from 0.4 to 1.0 , making the network re-compact into a single region
(as in Figure 1-b).

In Figure 29-a we show the evolution in the average number of nodes per region as time
passes, by varying the gossip percentage. Figure 3-b shows the same kind of evolution but by
varying the sleep period t of sensor nodes. Values are collected at the completion of each
simulation cycle. Both the graph show that the number of nodes of the region start from 0, grow
to 250 during the first phase [0 – 128 cycles] and than reaches 500 during the second phase
[129 – 255 cycles]. Clearly, reducing the gossip percentage or increasing the sleep period t
make the network slower in the region detection process.

From Figure 29, it also emerges that the speed of the network is less influenced by variations of
num_neigh than by variations of t.

The strange “stairs-like” trend of data lines obtained by setting t=4 and t=8 (Figure 29-b) clearly
show the non-linear nature of the algorithm. These are mostly due to the fact that, when a region

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

is forming, lots of sub regions are growing within it connecting the most similar neighbors. Only
when the new actual minimum ID of the new region reaches a node, such node recognize it is
becoming part of a new region.

a)
0

50

100

150

200

250

300

350

400

450

500

0 25 50 75 100 125 150 175 200 225 250

Cycle

N
um

be
r o

f n
od

es

num_neigh 100%

num_neigh 50%

num_neigh 25%

b)
0

50

100

150

200

250

300

350

400

450

500

0 25 50 75 100 125 150 175 200 225 250

Cycle
N

um
be

r o
f n

od
es

t = 1 t = 4

t = 8

Figure 29: Evolution of region detection. a) t = 1. num_neigh = 1, num_neigh = 0.5,
num_neigh = 0.25; b) num_neigh = 1. t = 1, t = 4, t = 8.
Let us know focus on the behavior of the region aggregation noise approach in evaluating
aggregated values.

From the static viewpoint, all local aggregation algorithms experiences correctly reach
convergence towards the corrent (real) value.

From the dynamic viewpoint, Figure 30 shows the trend of several values aggregated on a per
region basis. Curves in each graph represent the minimum (worst case) estimate of the region
maximum, the maximum (worst case) estimate of the region minimum, the minimum and the
maximum (the two worst cases) estimates of the average, and the real actual value of the
average computed over all nodes within the growing region. Figure 30-a show results obtained
with num_neigh=1.0 and t = 1. Figure 30-b and 30-c show results obtained reducing num_neigh
to 0.5 and increasing t to 4, respectively, Clearly, reducing the gossip percentage or increasing
the sleep period t make the network slower not only in region detection but also in correctly
evaluating locally aggregated values.

All the graphs in Figure 30 show the same trend. During the first cycles while links are being
reinforced, all the aggregated values don’t change. At the beginning (cycle 0), when the region
starts forming is clearly visible a fast convergence of the local maximum and minimum to their
new values respectively of 120 and 80. Average related values have a relatively small transitory
and eventually reach the value of 100 as expected. At cycle 128, p is changed to p = 1.0 and the
region starts growing another time. The local maximum does not have to change its value. The
local minimum reaches quickly its new value (-20) in a few iterations. Average values instead
have a longer transitory but eventually slowly converge to the expected value of 50. Observing
Figure 30 it is clear that different aggregate values behave differently varying num_neigh and t.
In particular accuracy of average related values are really more sensible to variations of
num_neigh and t than the local minimum and maximum have.

To summarize this, there is a clear trade-off between energy consumption and accuracy: higher
num_neigh and the lower t clearly provides for more accuracy over time, but overall increase
the energy consumed. Due to the high convergence speed of Max e Min showed under all
conditions tested and to the fact that regions are expected to have relatively limited size,

Page 52 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

scalability of the region aggregation noise approach should not be a major issue. We tested it
with sensor networks up to 10000 nodes obtaining similar results.

a)
-20

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250

Cycle

Va
lu

e

Real Average
Max Average
Min Average
Max
Min

b)
-20

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250

Cycle

Va
lu

e

Real Average
Max Average
Min Average
Max
Min

c)
-20

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250

Cycle

Va
lu

e

Real Average
Max Average
Min Average
Max
Min

Figure 30: Per region aggregated values. Minimum estimate of the maximum, maximum
estimate of the minimum, minimum and maximum estimates of the average and real value
of the average. a) num_neigh = 1.0, t = 1; b) num_neigh = 0.5, t = 1; c) num_neigh = 1.0, t
= 4.

5.3 Application Use Cases
Other than having performed the above described studies, we have carefully evaluated via
pencil and paper design exercise various possible usages of knowledge networks. We shortly
overview here some of this performed studied.

5.3.1 Living Diaries and Social Serendipity
The living diary is a knowledge-network centric application, which aims at exploiting the
pervasive devices embedded in an environment to produce a sort of digital self-composing diary
in the form of a knowledge network. When a user moves in an environment (as in an exhibition)
with a PDA and enriched with peripherals to access embedded devices (e.g., sensors and RFID
tags) and to produce situational information (e.g., a GPS), this can generate a lot of elementary
information about the context (i.e., knowledge atoms). On this base, a specific service (i.e., an
ACE or a knowledge container devoted to manage such atoms), can be in charge of collecting
all contextual information that is gathered from the environment, and organize such information
into a knowledge network that reports in an organized way all the facts, and events (e.g., people
met and objects encountered) having occurred (see Figure 31). The collection of knowledge

Page 53 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

atoms describing the situations a user is in and has been – stored in PDAs or portable devices
and possibly downloaded to some knowledge network repository on need – acts as an historical
memory for the user. A user, on need, can then exploit a specific ACE to browse his living diary.
As another example, in an exhibition center, it is possible to envisage some exhibition-specific
ACE that, by browsing in the past the living diary of a user to detect detailed preferences and
habit, can act as a personalized guide to the exhibition.

As simple as it can be, the living diary shows very clearly how it may be useful to link pieces of
knowledge together so that they can eventually represent a complex situation (in this case a
complex history) and so as to make it possible to “navigate” the resulting knowledge network to
make services become aware of situations.

Figure 31: Example of Gabriella’s living diary in the form of a knowledge network.

To put the living diary example forward, imagine an exhibition scenario where there is a sort of
open place for people to meet or simply to rest (a cafeteria for example). We assume that such
cafeteria is enriched with pervasive and wireless devices as the rest of the exhibition. When a
user enters the cafeteria, some devices (e.g, an RFID reader) can recognize that such user has
entered, so that the cafeteria is always aware of who’s in it. At this point, a user can decide to
share with other users (either directly in an ad-hoc way or by mediation of some server of the
cafeteria) his own personal profile, or even his living diary.

By sharing (portions of) the knowledge networks representing the living diaries of the persons in
the cafeteria, and by allowing group of ACEs to navigate such diaries, one can think of
discovering relations between persons, common interests, or common past events (see Figure
32). As a trivial example, ACEs can identify that two persons have just attended the same show
in the exhibition, and can decide to signal this fact to them so as to promote socialization and
exchange of experiences. More generally, ACEs can cooperatively explore the past life of users
to discover facts and social affinities that users’ could have never discovered otherwise. In the

Page 54 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

example of Figure 32, ACEs could discover that Gabriella and Franco already met in the past
during a meeting. This can be classified an a service supporting people-to-people coordination.

Eventually, ACEs devoted to analyse, merge, and synthezise multiple living diaries, can extract
useful synthetic information about the classes of persons that are currently in the cafeteria and,
say, exploit such information for commercial (i.e., advertisement) reasons.

Figure 32: Social serendipity at the Blogcafé by navigating and merging the knowledge
networks (i.e., the living Diary) of different people.

5.3.2 Overlay Field-based Knowledge Networks for Supporting
Independent Living

Consider a person, suffering from mild dementia, who has a problem in orienting himself even at
home. Let us suppose such person lives in a smart house, with an embedded pervasive
computing infrastructure made up of several sensing nodes and computational capabilities. On
this base, such person can be supported via a simple mobile device (e.g., a PDA) to improve his
spatial sense of the environment, i.e., by having the PDA giving him directions or suggesting him
where objects and or persons can be found (see Figure 33). In other word, the idea is to exploit
a pervasive computing infrastructure to improve the spatial-awareness of this person, which
necessarily implies the associated software services to be spatial-aware.

With this regard, knowledge networks have to provide a virtual view of the environment they are
operating in to allow the concept of interest to be properly represented from a spatial
perspective. The concept of overlay field-based knowledge networks discussed in Section 5.1
perfectly fits this situation. In fact, we can assume that, in the distributed environment, an
overlay knowledge network can be built such that:

• the presence of an object or of a person of interest in an environment is translated into
an overlay field-based knowledge network that propagates in the environment (whether a
house or a larger environment such as an exhibition center);

• self-maintenance algorithms provides for automatically updating the knowledge network
as the person of interest moves or some object is moved;

Page 55 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

The result is a sort of live knowledge network that, when queried by a user (better: when queried
by some service component on the users’ PDA), can give directions on where the object or the
person is (i.e., how far it is and in which direction).

Again, this example shows that situational (spatial in this case) information cannot be simply
considered as a set of independent knowledge pieces available somewhere. Rather, for a
satisfactory adaptive orchestration of distributed activities (whether this is intended to be the
orchestrated configuration of individual components or the coordination of distributed service
components), the exploitation of local knowledge only may not be enough. Nor can one think of
concentrating in a single site or of replicating anywhere all available knowledge, especially when
this knowledge represents dynamically evolving situations, i.e., it is subject to obsolescence.
The compromise is to enable components which need more than simply local knowledge to
organize and correlate distributed knowledge into sorts of networks that enable distributed
components to “navigate” through the available knowledge to attain, on demand, the required
degree of contextual awareness.

Figure 33: Supporting independent living in a smart home.

5.3.3 Examples of Batch vs. On-line organization of Knowledge
Networks

The KN architecture developed so far provides two possibilities how to organise the location of
knowledge within the knowledge network: batch and online (see also Section 4.6.1). Batch
organisation means that data that is aggregated in a KC, is directly copied to this KC and it is
typically stored at one place. Online organisation, in contrast, means that data in a KC is not
necessarily stored in one and the same location. What is stored in an online organised KC are
links to data sources, not the data itself.

Let us now sketch some simple examples we have developed to clarify the usages of batch vs.
on-line organization.

Page 56 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Figure 34: Combined KC, aggregating knowledge about a network.
A KC describing a local area network and its parameters is an example where a combined
knowledge organisation structure is most suitable (Figure 34). Information concerning design
parameters of the described network may be copied to the KC, i.e. batch organised, because
they will rarely change. This information can be e.g. the addresses of routers and servers, the
link capacity between network elements, DNS entries, and so on. Parameters whose values rely
on sensors are preferably stored online, i.e. the network describing KC just contains links to the
original data sources instead of the values themselves. So, current bandwidth consumption,
usage rate of routers or the current usage of services, available in the monitored network, can
be obtained in real-time.

Let us now consider an example in the area of traffic monitoring and regulation. In the scenario
depicted below, the traffic situation in the city is monitored by road intersection counters installed
at traffic lights. The traffic management system includes dynamic message signs, which informs
car drivers about the current road situation and alternative routes. It can dynamically control the
traffic lights as well as change the maximum allowed speed. As depicted above, intersection
counters (car counters) are installed at the traffic lights which are controlling the traffic at the
major road intersection points in the city. From the ACE model perspective, each counter can be
seen as a knowledge atom (KA) which provides information (knowledge) about the amount of
cars located at a particular road intersection point at a given time. In order to calculate the
amount of cars located in a certain area at a particular time, the intersection counters need to
exchange their knowledge about the number of cars at all involved traffic lights. The intersection
counters 1, 2 and 3 exchange their traffic information among each other and build up horizontal
knowledge organisation structures (Figure 35). In order to generate higher level knowledge and

Page 57 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

recognise or predict certain traffic situations in our scenario (i.e. traffic jam recognition or
prediction), it is required to combine the knowledge about the number of cars from the
intersection counters with other types of knowledge like for example the weather forecast, day of
the week and the current time. In this scenario the system combines different types of low level
knowledge in order to generate high level knowledge and builds up therefore a vertical
knowledge organisation structure. By combining the high level knowledge with other types of
knowledge (both low and high level) knowledge containers (KCs) containing more complex
knowledge structures could be built. In the example depicted in Figure 35, the knowledge about
traffic jams is combined with the city map in order to generate the recommendations for
alternative routes.

Intersection
Counter 1

Intersection
Counter 2

Intersection
Counter 3

jam prediction /
jam recognition Day / Time

Weather

City map

alternative route
recommendation

Vertical know
ledge organisation

V2

V1

Horizontal knowledge organisation

Figure 35: Traffic situation monitoring scenario.

5.3.4 Knowledge Networks for ACEs Discovery and Interaction
The idea of Knowledge Networks can be successfully exploited to drive ACEs’ aggregation, i.e.
by supporting ACEs in discovering other ACEs and interacting with them.

Page 58 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 59 of 72

Clearly, it is possible to conceive that an ACE requesting the services of other ACEs manages
on its own all the details about discovering other ACEs by comparing its GNs (“goal needed”,
see also D1.1) with the published GA (“goal achievable”) and handling the interaction with all of
them by invoking the right operations and passing well-formatted parameters to such operations

However, it is also possible to consider that some intelligence substrate in the system (realized
by a knowledge network) can support ACEs in this activity. In this case, one can think of ACEs
depositing their GNs in the knowledge network, and have this action induce “aggregation
reactions” to occur in the knowledge network. In particular, some kind of “enzyme ACEs”
embedded in the knowledge network and having the form of a knowledge container, can be
made capable of reasoning about (maybe) little pieces of the knowledge network, and can in
charge of manipulating the deposited GN in trying to fulfill the service request. Analyzing the GN
(expressed semantically with knowledge networks atoms), they find and put together other
ACEs, that can participate in achieving that GN. If the mentioned concepts are unknown to the
enzyme ACEs, no reaction will occur and the request will decay.

TO exemplify this idea, let us briefly sketch a simple communication service, called Urgent
Message Delivery (UMD). Let’s imagine a user application that needs to deliver text messages
(e.g. urgent communications) to persons within an organization. The self-aggregation reaction
process starts with the user ACE injecting into the environment a service request, expressed as
a GN message. An “enzyme ACE” catches the request and exploits its known concepts to find,
for instance, a device where the person may be logged-in (PDA, GSM phone, laptop). If this is
the case, it then attempts to deliver (possibly interacting with other sibling enzyme ACEs into the
system) the message to that device. Therefore, the service aggregation will comprise, for
instance, the “log-in manager service” and the “SMS phone service” (if a GSM phone is used).

If no “loggable device” can be exploited, it then seeks other ways to reach the person: for
instance, using a location service (with RFID tags and wireless sensors), it detects that the
person is currently in a certain room and that in such room there is a fax machine installed. The
next possible aggregation strategy will likely put together the “localization service”, the “fax
sender” service and others.

The key principle of this knowledge-network-based service aggregation is that:

• services are dynamically found and linked together to fulfill a GN;

• such aggregation is performed by dedicated enzyme ACEs belonging to the knowledge
network;

• self-adaptation and autonomic behaviours can be enforced into enzyme ACEs and not
necessarily into every single ACE;

• services are aggregated in a situation-aware manner: if the situation changes (e.g. the
GSM is no longer available), this is handled by reconfiguring the aggregation structure,
replacing useless ACEs and finding new ones.

For better developing the above idea, which is a sort of “embryonic” example of cognitive
stigmergy, we expect strict interactions with WP1.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 60 of 72

6 Alpha Software for Testing Knowledge Networks Concepts

We shortly describe here the software modules we have developed so far to put knowledge
networks to work and to test and evaluate knowledge network mechanisms. In-progress
software development work and future development work are also discussed.

6.1 Knowledge Network Components and KN Repository
We have a number of components implemented to construct and test the knowledge network
with. In short, these components are the knowledge atoms, the knowledge containers, with the
respective interfaces for accessing to knowledge. The overall software architecture which has
been developed so far enables building simple repositories of distributed knowledge (currently
generated by simulated sources) and accessing them via the Web.

In the absence of an ACE toolkit available (and of the corresponding communication protocols)
at this stage of the project, a simplified XML-RPC mechanism has been chosen as the protocol
to provide a distributed Web-based test environment. An existing library, helma.xmlrpc, which is
part of the Apache XML-RPC project (http://ws.apache.org/xmlrpc/), has been used to
implement this functionality which advantages can be summarised as follows:

- XML-RPC is far more lightweight than Java's built in RMI support due to the fact that it
only passes parameters rather than objects.

- Java programs can use XML-RPC to connect directly to any other system supporting
XML-RPC, rather than limiting connections to fellow RMI systems or having to use
complex (and expensive) CORBA object request brokers. This also allows for direct P2P
connections.

- The use of HTTP as a transport substrate makes it relatively easy to integrate XML-RPC
with web-enabled applications that spread across a heterogeneous computing
landscape.

- XML-RPC uses only a tiny subset of HTTP so that Java applications can easily avoid the
overhead of full-scale HTTP processing. The core processing of XML-RPC takes
advantage of Java's built-in understanding of TCP/IP.

- XML-RPC allows a client to specify which method it wants to use and then looks for a
handler. Because the reference is done by name, there aren't any stubs to manage or
include, and changes can be made much more easily at runtime.

In a nutshell, the XML-RPC approach provides a flexible mechanism to access individual
components of the knowledge network and their methods directly via the RPC interface. Thus,
each knowledge network component can be seen as a distinct resource that is accessible via a
unique URI. This promotes one of the key objectives of the Cascadas project. That is to realise
knowledge networks with independent and light weight components that can be linked together
in a distributed environment. Furthermore, it allows for the dynamic extension of individual
components in a way that specific services are added / removed at runtime.

Individual client applications may use Java Remote Procedure Calls (RMI) to communicate with
individual network components. The network itself may be composed of a number of distributed
networks that also communicate with each other using RPC. On each computational resource,
the network is made up of a number of containers and atoms with references to each other. For
the simulation environment individual knowledge sources are also modelled by dedicated RPC
handlers which can again be remote.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

The basic architecture for the developed components hosted in this environment is shown in
Figure 36.

RPC

RPC

RPC RPC

Client

Knowledge Network Knowledge Network

Container

Container Container

Atom Atom Atom

Container

Container Container

Atom Atom

Server1

Service1 Service2

Server2

Service3 Service4

Figure 36: Architecture of the Test Environment.
Currently, the core of both types of components, atom and container, and specific handlers for
the unique identification thereof, the provision of context related information and the dynamic
registration of services were implemented. This allows the registration of atoms into the virtual
space of a knowledge network which is identified by a web server that exposes the XML-RPC
service. Furthermore client access to those components and their underlying (simulated)
knowledge sources has been realised. As visualised in Figure 37, it is possible to register
simulated knowledge sources to virtual knowledge network spaces as simulated by individual
RPC services and to generically access those sources via the atom interface. Also, it is possible
for clients (e.g., services and ACE – when the latter will be available) to access to knowledge via
RPC.

Page 61 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Figure 37: Simulating Knowledge Networks

Weather

Temperature Wind

Force Direction

A
to

m
s

Knowledge Container

Figure 38: Weather example network.
To evaluate the developed components and concepts we exploited the above software to create
a dedicated demonstrator that simulates the hierarchical relations of a simplified yet distributed
network for the provision of weather related data. The hierarchical relations of this data are
depicted in Figure 38.

Within this example three types of knowledge sources are available, though that number may be
extended as desired. These measure temperature, wind force and wind direction, which are
conceptually organised as shown. We have generated individual services for each concept in
order to serve (simulated) sensed values for each type of sensor. These are made available
through an RPC based service also registered to the web server that publishes the components
of the knowledge network. Knowledge atoms representing each individual sensor are also
generated and added to the web server, where we have around 1500 atoms representing the
three different types of sensor for host of selected European cities. Each atom provides a
standard interface allowing it to be accessed by any other component in the knowledge space,
thus it is uniquely identifiable. Each atom is also self-descriptive in a way that it is equipped with
a full set of metadata describing individual concepts of interests, including e.g. its type, its

Page 62 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

location, its geographical region etc. each of these meta-data may be used inside the network
for individual organisational purposes.

This aggregation should produce the network hierarchy shown above, which is not known
beforehand but may be derived based on the descriptive data of the atoms registered within the
scope of the network.

Other than the above components and mechanisms for hierarchical organization of knowledge
components, additional software components to allow for individual knowledge organisation,
there included a container component for managing the references inside the network and some
distributed algorithms suitable to (self-)organize knowledge (as discussed in the following
Subsection) also been implemented and tested. However, these components/algorithms have
been not yet fully integrated with the main software. This implies that, so far, no automated
organisation can be facilitated ‘inside’ the network, although this forms the cornerstone for the
next development stage.

Figure 39: The simulation environment. On the top there is a bar to control the simulation
flow. The window on the right is to set the main parameters and in the centre is visible
the main simulation window.

6.2 A Simulator for Knowledge Network Mechanisms
To demonstrate the organisational concepts related to knowledge networks in distributed
settings, i.e., to test and evaluate the algorithms for overlay field-based data structures and the
region aggregation noise algorithm, we have developed a simulation environment by extending
upon the Repast simulator.

The Repast simulator (http://repast.sourceforge.net/) is fully based on Java, and provides a set
of basic classes to build simulation of distributed computational scenarios, in which a set of
“nodes” are immersed in a spatial environment and there can move and interact with each other.
This makes Repast very useful to simulate spatially-situated distributed computational systems

Page 63 of 72

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 64 of 72

such as swarms, ad-hoc networks, sensor networks, by extending the basic classes as needed
to simulate specific behaviours for simulated nodes.

We build upon Repast to simulate a number of computer-based nodes capable of interacting
with each other in an ad-hoc way, capable of “sensing” properties in the environment, and thus
acting as simulated KA. In particular, we used it to simulate and evaluate overlay-based
approach and to test the region aggregation noise algorithms, via the development of
appropriate KA classes to implement and run these algorithms in the simulation environment.

A snapshot of the simulation environment is in Figure 39.

6.3 Future Extensions
At the time of writing, we are in the (quite advanced) process of integrating the above two
software tools (see Figure 40). This integration will make the Repast simulation environment
generate data, possibly pre-aggregated and pre-organized by proper distributed mechanisms
such as the region aggregation noise simulated over a sensor network. Then, it will interface
with the knowledge network repository to dynamically feed with data the knowledge atoms in
there. The resulting software package, for which we do not exclude the possibility of integrating
other sources of knowledge, will be of great use to demonstrate the possibility of exploiting both
distributed and centralized mechanisms for building knowledge networks.

Following this integration and the verifications of its functionalities, we plan add functionalities for
coordination of distributed knowledge repositories and to integrate the knowledge network
repository with some real data source (i.e., a real sensor network gathering real data from the
environment and some PDAs gathering user data such as profiles and GPS position) and of
developing some distributed knowledge network mechanisms over a real ad-hoc network of
sensors and/or PDAs. The result will be a framework for both centralized and distributed
knowledge network management, for which we will make available a proper interface for user to
access and manage knowledge. Overall, this will form the so called “beta release” of knowledge
network software (Figure 41).

Later on, and in coordination with the other WPs, the beta release will be gradually transformed
into a sort of knowledge service layer for the use of ACEs and possibly implemented by ACEs.
In other words, we will transform the knowledge access interface into an ACE interface, and will
gradually re-engineer the software so as to make it implemented in terms of ACE ensembles.

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

KN repository

Page 65 of 72

Figure 40: In-progress integration of the two alpha software modules.

Figure 41: Possible scheme for beta release of knowledge network software.

7 Conclusions and Roadmap

The reported activities on knowledge network testify the achievement of a series of notable
research results. In summary:

• We identified and agreed on a general reference architecture for knowledge networks;

Simulated Sensor Networks

Other Knowledge
Sources

KN repository

Real Sensor Network or PDA network

KN repository

Knowledge

Distribution/Coordination

Feed with real data

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 66 of 72

• We managed to work out a sound set of structural specifications for knowledge network
components and their organization:

• We deeply studied and successfully experienced several distributed mechanisms and
algorithms for managing knowledge;

• We made a thorough analysis of the possible applications of knowledge networks for
autonomic communication

• We developed a set of alpha modules for testing with knowledge network concepts.

In addition, within the workpackage, we have also well-defined ideas on how to proceed with our
activities, to make the knowledge network idea a practical and usable tool for the support of
autonomic communication services.

Next steps will focused on two main threads of inter-related activities: (i) studying more
advanced mechanisms for knowledge networks and (ii) advancing the study the issue of
managing knowledge network ensembles and the development of the associated software
infrastructure and tools.

7.1 Knowledge Network Mechanisms
The study of knowledge network mechanisms will concern algorithms by which it is possible to
have a set of distributed “sensors” (i.e., knowledge atoms) self-organize with each other so as to
autonomically and adaptively produce newly aggregated knowledge about a situation, with a
particular attention to aggregation along the spatial dimension (which is particularly useful in
pervasive computing scenarios). Self-organization and knowledge management along the
temporal dimension will be explored too, as a possible mechanism to integrate advanced
inference mechanisms in knowledge networks, and eventually being able to produce “prediction”
about likely-to-occur situations.

Also, we will study mechanisms which enable knowledge components (i.e., knowledge atoms) to
self-aggregate along a general semantic dimension, other than along the spatial dimension. This
implies having knowledge atoms (i.e., the knowledge within them) represented according to a
specific ontology, and studying algorithms that makes it possible to self-identify semantic
relationships between knowledge atoms, build in an adaptive way the corresponding semantic
networks, and exploit these semantic networks to infer in expressive and powerful ways
information about situations occurring in a context.

At a later stage, we will eventually study how the overall framework identified for knowledge
network can be fruitfully exploited as an infrastructure to enforce forms of knowledge-mediated
interactions between ACEs. These would somewhat resemble forms of pheromone-mediated
interactions in ant colonies, and would capture similar properties of self-organization and self-
adaptation, with the add-on of the possibility of being based on meaningful knowledge and of
exploiting higher cognitive capabilities than that available by simple reactive ants.

7.2 Knowledge Network Ensembles and Knowledge Network
Software

As a second thread of activities, we will explore the research issues involved in the management
of situated knowledge network ensembles and in the exploitation of such knowledge by ACEs.
Following the achieved identification of the structural requirements and of some basic
mechanisms for knowledge management (which already reflects in the alpha software release),

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 67 of 72

we will continue researching how situated knowledge networks can be put to use, and how
knowledge may be combined/split in differing scales of use by ACEs and ACE aggregates.
A specific attention will be put on studying and experimenting how ensembles of knowledge
components can be made available to components in a network (which implies identifying
strategies for knowledge propagation) and how such knowledge can be made available at
different levels of granularity, so as to enforce a self-similar perspective on knowledge
management and access.
Another related aspect that will be deeply studied concerns the requirements for knowledge
networks to be scalable and light weight. While such properties can be achieved via various
means, the nature of knowledge networks – which is overall a form of distributed data structure
– suggests exploring methods and strategies for properly partitioning the ACEs forming the
knowledge network across the network, as well as methods and strategies for self-adaptation of
such distribution. The study of these strategies will be investigated also from a semantic and
knowledge driven approach, and will possibly involve formulation of regression based models
and self-growing cell structures (as found in the domain of unsupervised learning).
Strictly related to the above, the task will focus on developing proper tools, metrics, and
algorithms, for the evaluation and monitoring of knowledge networks. A particular attention will
be posed on algorithms for increasing the reliability and the degree of trust in the knowledge
provided by knowledge networks, that is, algorithms to enable a knowledge network to self-verify
whether the interpreted/aggregated context is correct and consistent and, in the case of
inconsistencies, making being able to determine the source of the failure try to resolve the
inconsistencies.
All these activities will also directly result in the continuous advance of the knowledge network
software (along the lines identified in Section 6 and with the continuous integration in it of new
mechanisms and tools), to become eventually part of the CASCADAS Open Source Toolkit.

8 References

[ABA+03] Ittai Abraham, Baruch Awerbuch, Yossi Azar, Yair Bartal, Dahlia Malkhi, Elan Pavlov, (2003).
“A Generic Scheme for Building Overlay Networks in Adversarial Scenarios”, Proceedings of
the 17th International Symposium on Parallel and Distributed Processing, 22-26 April 2003,
Nice, France.

[AgSi94] R. Agrawal, S. Srikant: Fast Algorithms for Mining Association Rules, Proc. Of the 20th VLDB
Conference, Santiago, Chile, 1994

[AgSi95] R. Agrawal, R. Srikant; Mining Sequential Patterns; Proc. Of the Int’l Conference on Data
Engineering (ICDE); Taipei, Taiwan, March 1995. Expanded version available as IBM
Research Report RJ9910, October 1994

[AIS93] R. Agrawal, T. Imielinski, A. Swami; Mining Associations between Sets of Items in Massive
Databases; Int’l Conference on Management of Data; Proc. Of the ACM-SIGMOD;
Washington D.C., May 1993, 207-216.

[AlbB02] R. Albert, A. Barabasi, “Statistical Mechanics of Complex Networks”, Reviews of. Modern.
Physics, 74(47), 2002.

[AndS04] S. Androutsellis-Theotokis, D. Spinellis, “A Survey of P2P Content Distribution Techniques”,
ACM Computing Surveys, 36(4):335-371, Dec. 2004.

[Bab05] O. Babaoglu, G. Canright, A. Deutsch, G. Di Caro, F. Ducatelle, L. Gambardella, N. Ganguly,
M. Jelasity, R. Montemanni, A. Montresor, “Design Patterns from Biology for Distributed

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 68 of 72

Computing”, in Proceedings of the European Conference on Complex Systems, Paris (F),
November 2005.

[BabMM02] O. Babaoglu, H. Meling, A. Montresor, “Anthill: A Framework for the Development of Agent-
Based Peer-to-Peer Systems”, IEEE International Conference on Distributed Computing
Systems, Vienna, Austria, 2002.

[BaDR04] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg: A Survey on context-Aware
systems. 2004

[BBM+02] Alessandro Bassi, Micah Beck, Terry Moore, James S. Plank, (2002). “The Logistical
Backbone: Scalable Infrastructure for Global Data Grids”, Proceedings of Asian Computing
Science Conference, Hanoi, Vietnam, Lecture Notes in Computer Science, Vol. 2550/2002,
pp. 1-12, Springer, December 4-6, 2002.

[BCA01] Blair, G.S., Coulson, G., Andersen, A. (2001). The design and implementation of OpenORB
version 2, IEEE Distributed Systems Online Journal 2 (6), pp: 45-52

[BeRH94] Frazer Bennett, Tristan Richardson, and Andy Harter: Teleporting - Making Applications
Mobile. In Proceedings of 1994 Workshop on Mobile Computing Systems and Applications,
Santa Cruz, December 1994.

[BH02] Erwin Bonsma, Cefn Hoile (2002) "A distributed implementation of the SWAN peer-to-peer
look-up system using mobile agents", 1st International Workshop on Agents and Peer-to-Peer
Computing (AP2PC 2002), AAMAS2002, Bologna, Italy, July 2002.

[BKR+02] Rebecca Braynard, Dejan Kostic, Adolfo Rodriguez, Jeffrey Chase, and Amin Vahdat, (2002)
"Opus: an Overlay Peer Utility Service", Proceedings of the 5th International Conference on
Open Architectures and Network Programming (OPENARCH), June 2002.

[BMU+97] S. Brin, R. Motwani, J.D. Ullman, S. Trur; Dynamic Itemset Counting and Implication Rules for
Market Basket Data. Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 255-264, Tuscon, Arizona, May 13-15 1997

[BonDT99] E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence. From Natural to Artificial
Systems”. Oxford University Press, 1999.

[BoTh00] Bonabeau, E. and Theraulaz, G. (2000). Swarm smarts. Scientific American, pp. 72-79,
March

[BreO04] C. Brewster, K. O’Hara, “Knowledge Representation with Ontologies: Present and Future”,
IEEE Intelligent Systems, Vol. 20, No.1, pp. 71-81, Jan. 2004.

[BrLe04] Ronald J. Brachman, and Hector J. Levesque: Knowledge Representation and Reasoning.
Morgan Kaufmann Publishers, San Francisco, California, USA, 2004

[Cab03] G. Cabri, L. Leonardi, M. Mamei, F. Zambonelli, "Location-dependent Services for Mobile
Users", IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems And Humans,
Vol. 33, No. 6, pp. 667-681, November 2003

[Cast02] Castro, M.;, “One Ring to Rule Them All: Service Discovery and Binding in Structured Peer-
to-Peer Overlay Networks,” SIGOPS, France, September 2002.

[Chen04] Harry Lik Chen: An Intelligent Broker Architecture for Pervasive Context-Aware Systems. PhD
thesis, University of Maryland, Baltimore Country, USA, 2004

[CKG04] Condie, Tyson; Kamvar, Sepandar; Garcia-Molina, Hector; Adaptive P2P Topologies;
Technical Report, 2004

[Cla03] Clark, D., Partridge, C., Ramming, C., Wroclawski, J. (2003). A Knowledge Plane for the
Internet, Proceedings of the 2003 ACM SIGCOMM Conference, Karlsruhe (D), ACM Press,
pp: 3-10

[CMK+99] Campbell, A. T., De Meer H. G., Kounavis M. E., Miki K., Vicente J. and Villela, D. A., (1999
“The Genesis Kernel: A Virtual Network Operating System for Spawning Network
Architectures”, Proc. IEEE OPENARCH’99, New York, March

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 69 of 72

[CMN+06] K. Curran, M. Mulvenna, C. Nugent, A. Galis; “Challenges and Research Directions in
Autonomic Communications”; International Journal of Internet Protocol Technology , Vol. 2,
No. 1, 2006, ISSN: 1743-8209, InderScience Publishers

[CSW+00] I. Clarke, O. Sandberg, B.Wiley, and T.W. Hong, (2000) “Freenet: A Distributed Anonymous
Information Storage and Retrieval System”, Workshop on Design Issues in Anonymity and
Unobservability, pages 311–320, July 2000.

[Cur05] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, and G.P. Picco, TinyLime: Bridging
Mobile and Sensor Networks through Middleware, In Proceedings of the 3rd IEEE
International Conference on Pervasive Computing and Communications (PerCom’05), IEEE
CC Press, pp. 61-72, March 2005.

[DeAb01] Anind K. Dey, and Gregory D. Abowd: A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction (HCI)
Journal, Volume 16, No. 2, 3 and 4, 2001

[Dey00] Anind K. Dey: Providing Architectural Support for Building Context-Aware Applications. PhD
thesis, Georgia Institute of Technology, 2000

[Doy05] J. Doyle, et al., “The Robust Yet Fragile Nature of the Internet“, Proceedings of the National
Academy of Science, Vol.102, No. 41, Nov. 2005.

[EO98] Association and Sequencing, Exclusive Ore Inc., 1998 – 2000
[Est02] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the Physical World with Pervasive

Networks”, IEEE Pervasive Computing, 1(1):59-69, Jan. 2002.
[GaCr03] Garcia-Molina, Hector; Crespo, Arturo; Semantic Overlay Networks for P2P Systems,

Technical Report Stanford University, 2003
[GaSt04] Jun Gao, P. Steenkiste (2004). “Design and evaluation of a distributed scalable content

discovery system”, IEEE Journal on Selected Areas in Communications, Vol. 22, No. 1, pp.
54-56, Jan. 2004.

[GBR+99] Grossman, R., Bailey, S., Ramu, A., Malhi, B., Cornelison, M., Hallstrom, P., and Qin, X.. The
Management and Mining of Multiple Predictive Models Using the Predictive Modeling Markup
Language (PMML). AFCEA 1999 Conference.

[GeNi87] Genesereth, M. R., Nilsson, N. J.; “Logical Foundations of Artificial Intelligence”, Morgan-
Kaufman; ISBN 0934613311, 1987.

[GFC00] Ghosh, A., Fry, M., and Crowcroft, J., “An Architecture for Application Layer Routing,” Active
Networks, May 2000.

[Gint00] Ginits, H.; “Game Theory Evolving”; Princeton: Princeton University Press; ISBN:
0691009430, 2000

[Gnut01] Gnutella: http://www.gnutelliums.com/ (2001)
[Gruber] http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
[HalA06] D. Hales, S. Arteconi, “SLACER: A Self-Organizing Protocol for Coordination in P2P

Networks”, IEEE Intelligent Systems, Vol. 22, No. 2, April 2006.
[HaZa03] M. El-Hajj, O. R. Zaïane, COFI-tree Mining: A New Approach to Pattern Growth with Reduced

Candidacy Generation, in Workshop on Frequent Itemset Mining Implementations (FIMI'03) in
conjunction with IEEE-ICDM 2003, Melbourne, Florida, USA, 19 November, 2003

[HeIR03] K. Hendricksen, J. Indulska, and A. Rakotonirainy: Generating context management
infrastructure from high-level context models. In the Proc. of the 4th Internation conference on
Mobile Data Management, 2003

[HoLa01] Jason I. Hong, and James A. Landay: An infrastructure approach to context-aware computing.
Human-Computer Interaction, Vol. 16, 2001

[Holl96] Holland O.E. (1996), Multi-agent systems: lessons from social insects and collective robotics,
AAAI Spring

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 70 of 72

[HPM+00] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. Hsu; FreeSpan: Frequent Pattern-
Projected Sequential Pattern Mining. Int. Conf. Knowledge Discovery and Data Mining
(KDD2000), Boston, 2000, pp 355 - 259

[HPSH00] Ken Hinckley, Jeffrey S. Pierce, Mike Sinclair, and Eric Horvitz: Sensing techniques for mobile
interaction. In UIST, pages 91–100, 2000

[HPY00] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns without Candidate Generation, Proc. 2000
ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'00), Dallas, TX, May 2000

[HSPL02] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, and J. Altmann: Context-awareness
on mobile devices – the hydrogen approach. In the Proc. of the 36th Annual Hawaii
International Conference on System Sciences, 2002

[HuhS05] M. N. Huhns, M. P. Singh, “Service-Oriented Computing: Key Concepts and Principles”, IEEE
Internet Computing 9(1):75-81, 2005.

[HWBM02] C. Hoile, F. Wang, E. Bonsma and P. Marrow, "Core Specification and Experiments in DIET:
A Decentralised Ecosystem-inspired Mobile Agent System", Proc. 1st Int. Conf. on
Autonomous Agents and Multi-Agent Systems (AAMAS2002), pp. 623-630, Bologna, Italy,
July 2002,.

[Keah02] Keahey, K., (2002). “Computational Grids in Action: The National Fusion Collaboratory,”
Future Generation Computer Systems, Vol. 18, No. 8, October 2002, pp. 1005-1015.

[KlMa02] Klingberg, T., and Manfredi, R.; The Gnutella Protocol Version 0.6 Draft, Gnutella Developer
Forum, 2002, http://groups.yahoo.com/group/the_gdf/files/Development/.

[Korp01] Korpela, E.; “SETI@home: Massively Distributed Computing for SETI,” Computing in Science
and Engineering, Vol. 3, No. 1, January 2001.

[LaFl94] Mik Lamming and Mike Flynn: Forget-me-not: intimate computing in support of human
memory. In Proceedings FRIEND21 Symposium on Next Generation Human Interfaces, 1994

[LCH+05] B.T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, I. Stoica; Implementing
Declarative Overlays;20th ACM Symposium on Operating Systems Principles (SOSP),
Brighton, UK, 2005.

[LeGu90] Douglas B. Lenat, and Ramanathan V. Guha: Building Large Knowledge-Based Systems:
Representation and Inference in the CYC Project. Addison-Wesley, Reading, Maryland, USA,
1990

[LiuS06] H. Liu, P. Singh, “ConceptNet: a Practical Commonsense Reasoning Toolkit”, BT Technology
Journal, 2006, to appear.

[LRS02] Lv, Q., Ratnasamy, S., and Shenker, S., (2002) “Can Heterogeneity Make Gnutella
Scalable?” Proc. of the 1st International Workshop on Peer-to-Peer Systems (IPTPS '02),
Cambridge, MA, March 2002

[LWS+03] Alexander Löser, Martin Wolpers, Wolf Siberski, Wolfgang Nejdl. Semantic Overlay Clusters
within Super-Peer Networks .International Workshop on Databases, Information Systems, and
P2P Computing, colocated with 29th International Conference on Very Large Databases
(VLDB2003), Berlin, Germany, 2003.

[MamZ06] M. Mamei, F. Zambonelli, Field-based Coordination for Pervasive Multiagent Systems,
Springer-Verlag (Berlin, D), 2006.

[MamZL04] M. Mamei, F. Zambonelli, L. Leonardi, “Co-Fields: a Physically Inspired Approach to
Distributed Motion Coordination”, IEEE Pervasive Computing, 3(2):52-60, April 2004.

[ManZ06] A. Manzalini, F. Zambonelli, “Towards Autonomic and Situation-Aware Communication
Services”, 1st IEEE Workshop on Distributed Intelligent Systems, Prague (CZ), June 2006.

[MCP98] F. Masseglia, F. Cathala, P.Poncelet; The PSP Approach for Mining Sequential Patterns. 2nd
European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD98),
France, 1998, pp 176 – 184

[MenT03] R. Menezes, R. Tolksdorf, “A New Approach to Scalable Linda-systems based on Swarms”,
ACM Symposium on Applied Computer, Orlando, FL, USA, 2003

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 71 of 72

[MTT03] De Meer, H., Tutschku, K., and Tran-Gia, P. (2003) “Dynamic Operation in Peer-to-Peer
Overlay Networks,” Praxis der Informationsverarbeitung und Kommunikation, (PIK Journal),
Special Issue on Peer-to-Peer Systems, June 2003.

[MulA06] R. Müller, G. Alonso, “Shared Queries in Sensor Networks for Multi-User Support”, Technical
Report 508, ETH Zürich, Institute of Pervasive Computing, Feb. 2006. 23(3):219-252, Aug.
2005.

[MulZ06] M. Mulvenna, F. Zambonelli, K. Curran, C. Nugent, “Knowledge Networks”, 2nd IFIP
Workshop on Autonomic Communication, LNCS No. 3947, January 2006.

[Nag02] R. Nagpal, “Programmable self-assembly using biologically-inspired multiagent control”, ACM
Conference on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002

[NSNT97] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn,
and Kevin R. Walker: Agile application-aware adaptation for mobility. In Sixteen ACM
Symposium on Operating Systems Principles, pages 276–287, Saint Malo, France, 1997

[OWL] OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/
[Par97] V. Parunak, “Go to the Ant: Engineering Principles from Natural Agent Systems”, Annals of

Operations Research, 75:69-101, 1997.
[PBS04] Parunak, V., Brueckner, S., Sauter, J.; Digital Pheromones for Coordination of Unmanned

Vehicles. Workshop on Environments for Multi-agent Systems (E4MAS), LNAI 3374, Springer
Verlag, 2004

[PCY97] J.-S. Park, M.-S. Chen, P. S. Yu, Using a Hash-Based Method with Transaction Trimming for
Mining Association Rules, IEEE Trans. On Knowledge and Data Engineering, Vol. 9, No. 5,
October 1997, pp. 813-825.

[Peri02] Filip Perich: A service for aggregating and interpreting contextual information. Technical
report, Hewlett Packard Labs, 2002

[Phi04] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, D. Fox, H. Kautz, D. Hahnel, “Inferring
Activities from Interactions with Objects”, IEEE Pervasive Computing, 3(4):50-57, 2004.

[PHM+01] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In Proceedings of
the 2001 International Conference on Data Engineering (ICDE'01), Heidelberg, Germany,
April 2001.

[PlatoGT] http://plato.stanford.edu/entries/game-theory/
[Poo01] R. Poor, “Embedded Networks: Pervasive, Low-Power, Wireless Connectivity”, PhD Thesis,

MIT, 2001.

[PWC+05] Parunak, H. Van, Peter Weinstein, Paul Chiusano, Sven Brueckner. 2005. Sift and Sort:
Climbing the Semantic Pyramid. Proceedings of ESOA'05, LNCS, 2005.

[Rat01] S. Ratsanamy, P. Francis, M. Handley, R. Karp, “A scalable content-addressable network”.
ACM SIGCOMM Conference, San Diego, CA, USA, 2001

[Ratn02] Ratnasamy, S., (2002) “A Scalable Content-Addressable Network,” Ph.D. Thesis, U.C.
Berkeley, October 2002.

[RoDr01] Rowstron, A., and P. Druschel, (2001) “Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems”, International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Heidelberg, Germany, Nov. 2001.

[SGMH04] Sterritt R, Gunning D, Meban A, Henning P, (May 2004) "Exploring Autonomic Options in an
Unified Fault Management Architecture through Reflex Reactions via Pulse Monitoring",
Proceedings of IEEE Workshop on the Engineering of Autonomic Systems (EASe 2004) at
the 11th Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 2004), Brno, Czech Republic, 24-27 May, Pages 449-455

[ShBe05] Q. Z. Sheng, and B. Benatallah: ContextUML: A UML-Based Modeling Language for Model-
Driven Development of Context-Aware Web Services. Society, Proc. of the 4th International
Conference on Mobile Business, 2005

IST IP CASCADAS

“Bringing Autonomic Services to Life”

WP5: Knowledge Networks

Knowledge Networks
Specifications, and Description of

Alpha Software

Page 72 of 72

[SheS02] W. Shen, B. Salemi, P. Will. Hormone-inspired adaptive communication and distributed
control for conro self-reconfigurable robots. IEEE Transactions on Robotics and Automation,
18(5):1-12, 2002.

[Stoic01] I. Stoica, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,” ACM
SIGCOMM ’01, San Diego, CA, September 2001.

[Stoke03] Stokes, M.;“Gnutella2 specification document – first draft,” Gnutella2 Web site
(http://www.gnutella2.com/gnutella2_draft.htm), 2003.

[StoN04] K. Stoy, R. Nagpal, “Self-Reconfiguration Using Directed Growth”, 7th International
Symposium on Distributed Autonomous Robotic Systems, Toulouse (F), 2004.

[StPo04] T. Strang, and C. Linnhoff-Popien: A context modelling survey. In the Proc. of the First
Internation Workshop on Advanced Context Modelling, Reasoning And Management, 2004

[Str03a]. Strang, T. Service Interoperability in Ubiquitous Computing Environments, PhD thesis, Ludwig
Maximilians University Munich, Oct. 2003.

[Str03b]. Strang, T., Linnhoff-Popien, C., Frank,K. CoOL: A Context Ontology Language to enable
Contextual Interoperability. In LNCS 2893: Proceedings of 4th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems (DAIS2003), J.-B. Stefani,
I. Dameure, and D. Hagimont, Eds., vol. 2893 of Lecture Notes in Computer Science (LNCS),
Springer Verlag, pp. 236–247, 2003.

[SUN05] SUN Microsystems, (2005) “JXTA Technology”, http://www.sun.com/software/jxta/, March,
2005.

[Toi96] H. Toivonen; Sampling large databases for association rules; 22th International Conference
on Very Large Databases (VLDB’96), 134 – 145, Mumbay, India, September 1996. Morgan
Kaufmann.

[Tum05] L. Tummolini, C. Castelfranchi, A. Ricci, M. Viroli, A. Omicini, “Exhibitionists and Voyeurs do it
better: A Shared Environment Approach for Flexible Coordination with Tacit Messages",
Environments for MultiAgent Systems. LNAI 3374, Springer-Verlag, January 2005.

[Usc96] Uschold, M. and M. Grueninger, Ontologies: Principles, methods, and applications.
Knowledge Engineering Review, 1996. 11(2): p. 93–155.

[Wan04] Wang, X. H., Zhang, D.Q., Gu, T., Pung, H.K., Ontology Based Context Modeling and
Reasoning using OWL. In Workshop Proceedings of the 2nd IEEE Conference on Pervasive
Computing and Communications (PerCom2004), (Orlando, Fl.,USA, March 2004), pp. 18–22.

[Wat98] Watts, D., J., Strogatz, S.H., Collective Dynamics of 'Small-World' Networks. Nature, 1998.
393: p. 440-442.

[WHFG92] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons: The active badge location
system. Technical Report 92.1, Olivetti Research Ltd., ORL, 24a Trumpington Street,
Cambridge CB2 1QA, 1992

[Wino01] Terry Winograd: Architectures for Context. Human-Computer-Interaction, vol.16, no. 2, 3 and
4, 2001

[Zaki00] M. J. Zaki; Scalable Algorithms for Association Mining; IEEE Transactions on Knowledge and
Data Engineering, Vol. 12, No. 3, May/June 2000, pp 372-390.

[Zaki01] M. J. Zaki, SPADE: An Efficient Algorithm for Mining Frequent Sequences; in Machine
Learning Journal, special issue on Unsupervised Learning (Doug Fisher, ed.), Vol. 42 Nos.
1/2, Jan/Feb 2001, pp 31-60.

[Zam06] F. Zambonelli, “Self-Management and the Many Facets of Non-Self”, IEEE Intelligent
Systems, Vol. 22, No. 2, April 2006.

	1 Introduction
	1.1 Purpose and Scope
	1.2 Document History
	1.3 Document overview
	2 General Vision and Basic Knowledge Networks Concepts
	2.1 Basic Definitions
	2.2 An Abstract Architectural Perspective
	2.3 Knowledge Networks and Autonomic ComponentWare
	2.4 Self-similarity and Semantic Self-organization

	3 Grounding Related Work
	3.1 Gathering and Representing Knowledge
	3.2 Mechanisms for Networking Knowledge
	3.3 Models and Mechanisms for Component Coordination
	3.4 Predictive Knowledge Networks

	4 Building Knowledge Networks: Specifications
	4.1 A Note on the Process of Identifying Specifications
	4.2 Operational Architecture for Knowledge Networks
	4.3 Knowledge Networks Specifications
	4.3.1 Knowledge Component
	4.3.2 Add-Ons
	4.3.3 History Component
	4.3.4 Knowledge Atom, KA
	4.3.5 Knowledge Container, KC

	4.4 Interfaces, Summary
	4.5 Knowledge Execution
	4.6 Knowledge Organization
	4.6.1 Batch vs. On-line Organisation
	4.6.2 Vertical vs. Horizontal Organization

	4.7 Knowledge Network Components and ACE’s
	4.7.1 Implementing Knowledge Network Components with ACEs
	4.7.2 How application ACE accesses the Knowledge Network?

	4.8 Checking Knowledge Network Specifications Against WP6 Requirements

	5 Mechanisms and Applications of Knowledge Networks
	5.1 Self-Maintaining Overlay Data Structures as Knowledge Networks
	5.1.1 Modeling Overlay Knowledge Networks and Their Self-Maintenance Algorithm
	5.1.2 Experiments

	5.2 Self-organized Region-based Knowledge Aggregation
	5.2.1 The Region Aggregation Noise Algorithm
	5.2.2 Experiments

	5.3 Application Use Cases
	5.3.1 Living Diaries and Social Serendipity
	5.3.2 Overlay Field-based Knowledge Networks for Supporting Independent Living
	5.3.3 Examples of Batch vs. On-line organization of Knowledge Networks
	5.3.4 Knowledge Networks for ACEs Discovery and Interaction

	6 Alpha Software for Testing Knowledge Networks Concepts
	6.1 Knowledge Network Components and KN Repository
	6.2 A Simulator for Knowledge Network Mechanisms
	6.3 Future Extensions

	7 Conclusions and Roadmap
	7.1 Knowledge Network Mechanisms
	7.2 Knowledge Network Ensembles and Knowledge Network Software

	8 References

