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1 Introduction 

1.1 Purpose and Scope 
This document represents the M12 deliverable for the CASCADAS WP5 “Knowledge Networks”. 
It includes a general introduction to knowledge networks concepts and to related work in the 
area, the description of the first specifications for knowledge networks, and the description of the 
preliminary software developed to test knowledge networks concepts and functionalities.  

1.2 Document History 
 

Version Date Authors Comment 

0.2 19/11/2006 Franco Zambonelli Structure and 
Introductory parts 

0.4 4/12/2006 Matthias Baumgarten 
& Nicola Bicocchi 

Finalized KN 
specifications & 
software description 

1 11/12/2006 Franco Zambonelli Added application 
parts & 
integrated/harmonized 
parts from TI and 
UNIK 

1.1 09/01/2006 Franco Zambonelli Integrated all revisions 
and comments form 
partners and from BT 

 

1.3 Document overview 
The document is structured as follows. Section 2 sketches the general vision of knowledge 
networks and introduces some basic knowledge network definitions and concepts. Section 3 
puts knowledge networks in context, by discussing relevant related works in the area. Section 4 
details the preliminary specifications of knowledge networks, in terms of the structure of 
knowledge networks components and their relations. Section 5 details several mechanisms and 
examples of use of knowledge network. Section 6 describes the characteristics of the first 
(alpha) release of a software system for testing and experiencing with knowledge networks. 
Eventually, Section 7 defines a roadmap for the future activities to be performed within WP5. 

2 General Vision and Basic Knowledge Networks Concepts 

The capability of services to autonomously adapt to the context from which they are requested 
and in which they execute is necessary to achieve effective autonomic behaviour to effectively 
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satisfy increasingly demanding users [ManZ06, CMN+06]. This however requires the 
technologies to capture contextual data and at the same time the ability of the system and of 
application services to effectively exploit this data at the best.  

Much of the technology to acquire contextual information is already becoming available, and it 
will soon become pervasive with the increasingly frequent deployment of sensors, location 
systems, users and organization profiles, and run-time systems for the monitoring of 
computational and network resources [Est02, Phi04]. What is still in its infancy and still needs to 
be properly resolved, however, is the investigation of the principles and the algorithms with 
which this growing amount of distributed information can be properly organized, aggregated, and 
made more meaningful, so as to facilitate their exploitation by services [MulZ06].  

In other words, we think there must be an evolution from a model of simple context-awareness, 
in which services are given access to isolated pieces of contextual data, to a model of “situation-
awareness”, in which services are given access to properly elaborated and organized 
information representing, in much more expressive yet still simple to be exploited ways, 
comprehensive knowledge related to a “situation” [DeAb01, Tum05]. 

This is where the idea of “knowledge networks” arises: providing models and tools to analyze 
and organize contextual information into sorts of structured collections of related knowledge 
items, so as to support application and services in reaching effective of adaptability and 
autonomicity.  

2.1 Basic Definitions 
To unambiguously frame all the concepts and ideas we will present, it is necessary to provide a 
few basic definitions for the key terms adopted. 

Context: In general terms, the context defines the “surrounding and interrelated conditions in 
which something exists” (Mirriam-Webster Dictionary). In CASCADAS, the context identifies the 
operational environment in which a service situates, which could include network, application, 
social, and physical context (Cfr. Knowledge). 

Contextual Information: Information related to some actual characteristics of the operational 
environment, i.e., to some facts occurring in it.  

Context-awareness: The capability of software (i.e., as far as CASCADAS is concerned, of 
services) of being aware of the context in which they are invoked and/or executed, and of 
adapting their behaviour accordingly. 

Concept of Interest. A computational model of any real world object or event (there included 
services and processes).   

Ontology: a formal specification detailing how to express concepts of interest in a specific area. 
In CASCADAS, a shared ontology is expected to be defined for ACE’s so as to enable them to 
properly represent in a semantic and inter-operable way all needed contextual information.  

Knowledge: Contextual information as it can be made available to some actors (i.e., ACE’s) to 
make them aware of some facts and reason about them. In CASCADAS, we account for: 
network knowledge, representing facts about the current configuration of the physical network 
and of the related devices; application (or ACE-level) knowledge, representing fact about the 
current status of (some) ACE’s; social knowledge, representing facts about the human actors 
currently exploiting the network and its ACE-based services, and the social context in which they 
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are doing so; physical knowledge, representing facts about the physical world. We emphasize 
that the difference between Contextual Information and Knowledge is really subtle, and mostly 
related to the observation viewpoint: the context generates contextual information which then 
becomes something that the agent knows, i.e., knowledge.  

Knowledge Atom: A knowledge atom is a record-based data structure, expressing a single 
specific concept of interest, and represented according to a specific ontology. For example, one 
can imagine the information related to the current physical location of a person can be a 
knowledge atom reporting the name of that person, its location in terms of latitude and longitude, 
and possibly some information related to the activities currently undertaken by that person. The 
specifications of the identified structure for knowledge atoms follows of this document. 

Situation. In general terms, a situation defines a “relative position or combination of 
circumstances at a certain moment” (Mirriam-Webster Dictionary). Accordingly, in CASCADAS, 
a situation is considered as “something that is happening in the context” and, for generalization, 
also something that “is likely to occur at a certain moment in the future”.  

Situation-awareness. In general terms, situation-awareness relates to the capability of being 
aware and of adapting behaviour to situations other than to context (Cfr. Context-awareness). 
While components and services (i.e., ACE’s) are situated in a context and can perceive 
contextual information in the form of knowledge atoms to become context-aware, perceiving 
situations (present and future) and becoming situation-aware implies a higher degree of 
understanding. In particular, it requires properly acquiring all the needed knowledge about 
“combinations of circumstances”.  

Knowledge Network: A network of knowledge is an ontology-based structured collection of 
knowledge atoms, describing specific situations, and built in order to facilitate ACE’s in acquiring 
high degrees of situation-awareness in an efficient way. This is not to be confused with “network 
knowledge”, intended as the information available about the status of a network. 

Knowledge Container: As it will appear clearer in the following of this document, the structuring 
of knowledge atoms in networks may also imply the need to create higher-level structures 
aggregating existing knowledge atoms into a component which, besides being a knowledge 
atom in itself, aggregate a set of related knowledge atoms into a composite. Besides the basic 
definitions, the question arises in CASCADAS of what actually implies structuring knowledge in 
networks, and what types of architecture can properly support knowledge networks. The next 
section will try to somewhat identify some preliminary directions. 

2.2 An Abstract Architectural Perspective 
Once we have absorbed the general idea of “knowledge networks”, the question then arises of 
how such networks could actually look, and what an abstract reference architecture for 
knowledge networks could be. 

Obviously, the construction of a single knowledge network capable of mirroring the universal 
situational knowledge is illusionary. On the one hand, when considering that even relatively 
small network scenarios can (due to the availability of several sensors and devices) generate 
enormous amount of knowledge, it is necessary that knowledge network can provide – other 
than for correlating knowledge – for properly pruning it and making it manageable. On the other 
hand, different kinds of services may have different needs in terms of type of knowledge 
required and in terms of the relations that must be outlined on this knowledge. 
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Accordingly, one should necessarily consider the possibility of a multiplicity of knowledge 
networks to co-exist within a globally accessible knowledge space where each network is limited 
by clearly defined knowledge boundaries in order to serve application-specific and/or service-
specific goals. Although the context is the same for all situations (and thus the basic contextual 
information is the same) the way this has to be perceived and elaborated by ACE’s in terms of 
properly organized knowledge may depend on the specific type of service one has to enforce. In 
other word, the context may be in need to be perceived by ACE’s as a variety of situations, and 
one should thus consider that several “dimensions” according to which knowledge atoms can be 
networked with each other exists. 

Although it is generally impossible to identify all possible dimensions around which one can think 
at organizing knowledge, a few of them are likely to be recurrent and exploited in several 
applications. 

First, we have a purely semantic dimension, in which knowledge atoms related to a situation 
network with each other according to the relations institutionalized in (or inferred from) some 
shared ontology.  This can be the case of knowledge facilitating and supporting spontaneous 
interoperability in pervasive computing and service-oriented computing [HuhS05].  

Second, we may have a spatial dimension, in which knowledge atoms related to a local fact 
network to knowledge atoms at different location (or distribute/replicate themselves in different 
locations). This can be of use to express some distributed situation (as in the case of 
computational fields or pheromones), in which spatiality actually refers to physical spatiality, and 
which can be of great use for pervasive computing applications. Also, we could conceive any 
class of spatially distributed P2P structures to distribute knowledge across a network and to 
facilitate access to knowledge (as in the case of networks of knowledge brokers) [Rat01, 
AndS04].  

Third, we may have a temporal dimension, in which knowledge atoms express facts occurred (or 
already to occur) at different times. This can be the case of elaborating knowledge for predictive 
purposes: starting from the knowledge available about the situation at current time, analyze and 
extract new knowledge in the form of a knowledge network expressing the most likely future 
situation.   

Figure 1 tries to somehow summarize these considerations into a sort of conceptual reference 
architecture. Figure 2 tries to exemplify the concept via an example in the area of pervasive 
computing, where a situation as simple as that related to the position (“location”) of a user can 
tolerate both a semantic (vertical) knowledge network and a spatial (horizontal) knowledge 
network.  

In addition to that, we may also have any number of application-specific dimensions on which to 
rely to network knowledge atoms in variously shaped knowledge networks serving different 
purposes, and possibly overlapping with each other. 



 

IST IP CASCADAS  

“Bringing Autonomic Services to Life”

 

WP5: Knowledge Networks

Knowledge Networks 
Specifications, and Description of 

Alpha Software

 

 

Knowledge Atoms

Spatial 
Knowledge Networks

prune and build

Semantic
Knowledge network
(relations in an ontology)

Temporal 
Knowledge Networks

semantic

space

time

Knowledge AtomsKnowledge Atoms

Spatial 
Knowledge Networks

Spatial 
Knowledge Networks

prune and build

Semantic
Knowledge network
(relations in an ontology)

Temporal 
Knowledge Networks

Temporal 
Knowledge Networks

semantic

space

time

 

Figure 1:  A Conceptual architecture for knowledge networks: knowledge atoms 
expressing contextual fact can be processed and elaborated to produce different 
knowledge networks according to different conceptual dimensions. Such a reference 
architecture can consider the presence of multiple knowledge networks for each 
conceptual dimensions, each serving application specific purposes. 

 

Figure 2: Vertical (semantic) vs. Horizontal (spatial dimension) in a simple example 
related to the “location” situation. On the left, we can see how an ontology for the 
concept and the mechanisms of location could be. On the right, we could see how the 
location per se can lead to a spatially distributed structure expressing where specific 
persons are (as a sort of overlay computational field – see also Section 5). 
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2.3 Knowledge Networks and Autonomic ComponentWare 
The above introduced abstract reference architecture does not say anything about how 
knowledge networks should actually be implemented. Indeed, the concepts can and should be 
as general and implementation-independent as possible. However, in the context of the 
CASCADAS project and in respect of the general CASCADAS principle of “autonomic 
componentware” [ManZ06], knowledge networks can and should be provided as sorts of 
services to be realized by means of ACE’s. 

One the one hand, one could have dedicated ACE’s in charge of storing knowledge and, by 
interacting and aggregating with each other, in charge of building knowledge networks in the 
form of networks of ACE’s. In other words, there will be special-purpose ACE’s acting as 
knowledge atoms and knowledge containers. These ACE’s will be part of a sort of “middle-level”, 
making available knowledge networks as if it were a “middleware” service make available to 
other (application-level) ACE’s. For the sake of simplicity, and to enforce a better separation of 
concern, activities have focused till now on such a perspective. 

On the other hand, one could also think at avoiding any distinction between ACE’s, and at 
enabling any kind of ACE’s to contribute to the forming of application-specific knowledge 
networks and at storing pieces of such knowledge networks, depending on specific attributed 
and roles (i.e., with reference to the ACE model, by having ACE’s expose their self models and 
states as knowledge). In later stages of the CASCADAS project we will account for this 
perspective. 

In any case, nothing prevents making the two perspective co-exists: special-purpose middle-
level ACE’s and application-level ACE’s could cooperate together for the building of application-
specific knowledge networks, each making available its own capability and knowledge. Possibly, 
such a perspective is the most flexible one, and also avoid introducing strict layerings in the 
overall architecture, with the consequent reduction in flexibility. In any case, the presence of 
primitive-level ACE’s to abstract the presence of information sources and to make available 
atomic items of contextual information (i.e., knowledge atoms), seems unavoidable. 

Whenever an ACE’s is devoted to store knowledge and to interact with other ACE’s for the 
forming of knowledge networks, such ACE will have to include the necessary capability to 
participate in knowledge management activities. Also, it will have to provide some standard 
interface to interact with other ACE’s and to provide access to knowledge and updating of 
knowledge. It is expected that relying on ACE’s to implement knowledge networks by ACE’s will 
facilitate a flexible and adaptive building of complex knowledge networks structure, and an ease 
composition of knowledge networks.   

We forward to the WP1 State of the Art report for a detailed analysis of component models, and 
to section 4 of this document for an analysis of how the current ACE model is suited for the 
implementation of knowledge atoms and knowledge containers. 

2.4 Self-similarity and Semantic Self-organization 
CASCADAS is centered around four key scientific principles: situation-awareness, autonomic 
componentware, self-similarity, and semantic self-organization. While the principle of situation-
awareness is at the very core of knowledge networks, the previous sub-section has also outlined 
the relations with the principle of autonomic componentware. 

As far as the principle of self-similarity is concerned, we consider that knowledge networks 
should be made accessible by services at different levels of observations. In other words, and 
depending on the application needs, services (i.e., ACE’s implementing them) should be allowed 
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to access both very detailed information about facts occurring in a context, as well as more 
coarse-grained aggregated information, as if they were “observing” the system from farther. 
Such possibility requires that whether a service accesses individual knowledge atoms directly 
connected with the information sources or, instead, aggregated knowledge contained in some 
“knowledge container”, they can adopt the same mechanisms.  

It is worth emphasizing that the term “self-similarity have been recently over-exploited in the 
context of social networks and technological networks (e.g., the Internet and the Web), and have 
been mostly related to the idea “scale-free” topological structures [AlbB02, Doy05], 
characterized by the small-world phenomenon [Wat98]. We consider that the above properties 
could be very important for representing evolving distributed knowledge in a robust way, and for 
enabling a scalable way with which to structure and compose knowledge. Thus, it will be 
interesting to explore how to structure knowledge networks into scale-free structures, so as to 
reflect the structure of the social and technological networks they support and to support robust 
adaptive evolution. Moreover, the study of such network structure could be of use to support 
scalability of network structure and, possibly even more important, to better support scale-free 
composability and self-similar multi-level perception of knowledge at different scales of 
observation. However, our concept of self-similarity does not reduce to the topological structure 
of knowledge network but is mostly concerned with the possibility of enforcing different level of 
observations, independently of whether this is enforced via scale-free topologies or via 
hierarchical aggregation of knowledge.   

As far as semantic self-organization is concerned, it has been observed that global self-
organizing and self-adapting behaviour can be made emerge in systems of a large number of 
lightweight agents that indirectly interact via the mediation of an environment [Par97, BonDT99, 
Bab05, HWBM02]. Agents, by depositing and by sensing “pheromones” [ParBS04] or fields 
[MamZL04] in an environment, and by having the environment properly diffuse pheromones 
according to specific laws, can – to most extent unconsciously – self-organize their global 
activities into robust and adaptive patterns.  

Knowledge networks could potentially act as a sort of computational environment via which 
indirect, stigmergic interactions, may take place to promote self-organization and self-adaptation 
of activities. Still, this requires leveraging the traditional concept of stigmergy into a concept of 
cognitive stigmergy. Self-organizing and self-adaptive coordinated activities at both the network 
and the application level should be enforced not simply by reacting to a local concentration of 
meaningless pheromones. Rather, they should be driven by the actual meaning of the 
knowledge represented within knowledge networks. Clearly, to preserve the advantages of 
swarm intelligence approaches, this should occur without requiring ants to become heavyweight 
agents, and a proper trade-off between the purely reactive behaviours promoted by traditional 
stigmergy and the purely cognitive behaviour promoted by artificial intelligence approaches have 
to be found. However, as far as we know, this is a largely unexplored research area, and only a 
few “position papers” exists claiming the need for such kinds of semantic self-organization 
models [Tum05, Zam06].  

All of this said, and beside the clear need to stay up-to-date with the continuous scientific 
advances in the area of complex networks [AlbB02] and self-organization [Bab05], researches in 
WP5 have firstly to pay a careful attention at the most pragmatic issues related to: gathering and 
representing knowledge, building knowledge networks via proper mechanisms, and identifying 
how to exploit knowledge networks in applications and services. These issues, which contribute 
to the definition of the knowledge network specifications, are analyzed in the following sections. 



 

IST IP CASCADAS  

“Bringing Autonomic Services to Life”

 

WP5: Knowledge Networks

Knowledge Networks 
Specifications, and Description of 

Alpha Software

 

 

Page 10 of 72 

3 Grounding Related Work 

We shortly report here an overview of the basic models and technologies that somehow relate to 
our concept of knowledge networks, which have already played some role in the earlier 
knowledge network specifications, and/or will play some role in future researches in knowledge 
networks. This is of relevance here to have the reader get a more general clue of our general 
vision on knowledge networks.  

A more extended overview of the state of the art in the area, detailing the characteristics of 
several systems that are here only mentioned, can be found in the “M4 State of the Art Report” 
of WP5. 

3.1 Gathering and Representing Knowledge 
A great amount of current researches in context-aware systems tend to focus on the context of 
users, based on contextual information such as temperature, humidity, light intensity, spatial and 
temporal location that can be provided by available sensors and algorithms, to adapt services to 
the current situations in which users exploit services. In CASCADAS, we require a much broader 
notion of context. In fact, the context required for autonomic and robust behaviour of services 
has also to strictly relate to the status of computer systems and of the exploited networks. Also, 
the context should include information related to the current status surrounding/interacting 
ACE’s. In addition, context may refer to the social context from which services are exploited by 
users. In any case, as far as the issues of gathering and representing such information are 
concerned, we argue that there is no big difference for algorithms regarding the different context 
information. In fact, provided that sources for contextual information exist (e.g., sensors, user 
profiles, etc.), it makes usually no difference if context information that is represented by a 
number describes the current temperature, or the current CPU load. Indeed, as described in 
[BaDR04], contextual information of any kind can always be thought of as being provided by 
“sensor abstractions”, which may include physical sensors (e.g., sensor networks), virtual 
sensors (e.g., producing information by browsing existing digital information) or logical sensors 
(capable of somewhat merging and synthesizing information from a variety of sensors). In our 
knowledge networks researches, the idea that all kind of contextual information can be 
represented as a “knowledge atom” is – in the end – a specific instantiation of the concept of 
sensor abstraction.  

The issue of how information is gathered from its actual source and made available to 
application/services is also deeply analyzed in the literature [Win01, Chen04]. One can consider 
that: applications access sensors directly without any mediation [HPSH00, LaFI94, WHFG92]; or 
by exploiting the APIs of a middleware infrastructure [NSNT96, Dey00, DeAb01]; or by 
accessing some sort of “context server” in the form of a network service [HoLa01, Chen04, 
Peri02] or context blackboard [Cab03]. Because CASCADAS adopts the unifying ACE model for 
implementing all types of tools, including services to access and organize contextual 
information, we think that a solution that provides direct access by application service ACE’s to 
knowledge in the form of direct access to a virtual sensor (as defined by the general concept of 
knowledge atom) is the one to be preferred as a starting point. In any case, this does not 
exclude the possibility of organizing sensor ACE’s into proper network structures, so as promote 
context brokering and enable them to act as a sort of network service for knowledge 
provisioning. Nor does it exclude the possibility of defining (when needed) specific ACE’s that 
can act as sorts of blackboard to mediate access to other sensor ACE’s. However, we think 
CASCADAS should not rely on pre-defined complex and heavy-weight middleware and network 
services to enable gathering of contextual information.  
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The issue of representing contextual information, i.e., identifying suitable models to facilitate the 
understanding of such information by software and services is also extensively analyzed 
[BaDR04, BrLe04]. Apart from graphical representations [HelR03, ShBe05] of limited interest for 
CASCADAS, context information can be represented in terms of simple key-value pairs, via a 
mark-up language such as XML [StPo04], in object-oriented terms or in logic one [HSPL02]. For 
the CASCADAS project, key-value models may appear too simplistic to represent significant 
contextual information (although these may be appropriate for resource-constrained devices and 
small sensors). Mark-up languages such as XML may be very effective to provide open and 
easy to process representations, and we indeed commit to such a representation. However, one 
has also to consider that some inspiration from object oriented models will be taken, which is in 
accord with the goal of representing and providing access to knowledge via ACE’s.  

3.2 Mechanisms for Networking Knowledge 
The high level goal of knowledge networks can be summarized as the provision of a vehicle 
capable of creating, storing, propagating and discovering information in a light-weight, scale free 
and multi-view environment (which makes knowledge networks notably differ from the 
“knowledge plane” approach [Cla03] and alike, which also charge the knowledge level with the 
duty of understanding knowledge and taking actions to ensure the proper functioning of the 
application levels).  

The structural requirements for such a vehicle can be broken down into two main building 
blocks. Firstly, an autonomous knowledge entity is required capable to encapsulate and 
transport knowledge independent of the environment. Secondly, designated and dynamically 
maintainable relations have to be overlaid upon those entities connecting them to a purpose-
built network based structure. While the former component is practically provided through the 
concept of ACE’s as envisioned by the CASCADAS project, the latter concept requires the 
provision of advanced network based ontologies and flexible overlay structures that allow for ad 
hoc reconfiguration of the overall knowledge network and for the construction of purpose-built 
views of any sub-part(s) thereof. 

An ontology is generally defined as an “explicit specification of a conceptualization” [Gruber, 
Usc96, BreO04], and as such is capable of representing relevant objects, concepts or other 
entities of interest and all their relation in an explicit and formal manner [GeNi87]. Within this 
definition, ontologies are not simply a way of representing concepts, but are indeed a way to put 
concepts related to contextual information in relation with each other and facilitate access to 
them. That is, ontologies can be considered, to most extents, knowledge networks (with 
reference to the reference architecture of Figure 1, ontologies provide for organizing knowledge 
around the semantic dimension). Clearly, ontologies should (and do) provide a general 
independent of programming language, underlying operating system or middleware. Other 
knowledge ‘consumers’ in the network must be able to access and use the ontological 
formalisms developed. Accessing information stored in a network of distributed contextual 
knowledge requires the specification of information locators, e.g., in the form of an addressing 
scheme as well as request routing procedures. In the literature, a very large amount of ontology 
proposals can be found. These include CoOL [Str03a, Str03b], CONON [Wan04], CoBrA 
[Che03], each of which is specialized to a specific area of applications. Of great interest are 
proposals such as CYC [LeGu90], OWL [OWL], ConceptNet [LiuS06], which also have the 
advantage of being extensible. Thus, new concepts and new relations can be defined by sub-
classing from existing ones and to make the ontology better suit specific application areas. In 
CASCADAS, we have started our research in knowledge networks by assuming the presence of 
a basic shared ontology for knowledge network concepts, i.e., we start by simply assuming that 
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specific terms have a well assessed meaning. While this is sufficient to identify the basic 
knowledge network specifications, later on in the project it will be necessary to extend the 
approach towards the exploitation of full-fledged, flexible, and extensible ontologies.  

Overlay networks, within a general networked infrastructure such as the internet, provide an 
abstract view on such networked environment, tailored to specific needs, and without the 
necessity to know or care about underlying real network infrastructures [Cast02, BBM+02, 
CSW+00, GaSt04, GFC00, CMK+99, LCH+05, BCA01, Keah02, Korp01, Ratn02]. In overlay 
architectures, a set of nodes (servers, services, end-user equipment etc.) and virtual links, not 
directly related to an underlying topology, are involved in specific applications. The overlay traffic 
traverses through the overlay nodes and virtual links. Therefore an overlay network can be seen 
to act as a specialized middle layer between an application and an underlying topology of 
entities. The general advantage of overlays is that they can be customized for a single service or 
a group of services, thus creating a variety of overlays that allow for hierarchical structures. This 
is perfectly in line with our view (as sketched in the reference architecture) of building on a 
variety of different knowledge networks that, starting from raw contextual-information, can 
provide different views to applications/services. Among several studies in the area of overlays, 
peer-to-peer overlay networks for content-sharing, such as CAN [ABA+03], Chord [Stoic01], 
Freenet [CSW+00], Gnutella [Gnut01, LRS02, KlMa02, Stoke03], Pastry [RoDr01], SkipNet 
[GFC00], SWAN [BH02], which have received a great attention in the past few years [MTT03], 
are particularly interesting because they are capable of self-organizing their structures and of 
self-healing. These features are highly relevant to our efforts of making knowledge networks 
self-organizing and self-adaptive, and this document indeed reports early experiences in that 
directions. Additional inspirations might come from recent work on self-adaptive peer-to-peer 
structures [HalA06, CKG04], semantic peer-to-peer overlay networks [LWS+03, GaCr03], and 
from general frameworks for the creation of overlays (such as Opus [BKR+02] and JXTA 
[SUN05].  

The two concepts of ontologies and overlays as outlined above provide the two main building 
blocks of knowledge networks in a way that: (a) individual knowledge components are linked 
together through high-level ontologies, thus providing structured knowledge at different levels of 
granularity; and (b) the concept of overlay networks is exploited to provide highly dynamic, 
purpose-built and ad hoc constructed views of any (sub-)part thereof, independent of the 
circumstances of where the knowledge resides or through whatever means it has to be 
accessed. In tandem, both concepts provide a vehicle to represent, maintain and provide 
knowledge yet neither provide mechanisms that are capable to efficiently identify or track 
knowledge components in a global, highly-distributed environment. 

3.3 Models and Mechanisms for Component Coordination 
In CASCADAS, the idea of a knowledge repository to store contextual and situational 
information is provided through the concept of knowledge networks. However, considering the 
fact that knowledge seldom resides where it is consumed and that knowledge is normally too 
complex to be represented as a single structural element, the effective collection of distinct parts 
of individual knowledge (i.e., knowledge atoms) and provision thereof to services is an important 
aspect. The mechanisms for relating knowledge atoms via ontologies and overlay network have 
been identified. Still, proper models and mechanism for rapid correlation and distribution of 
knowledge components in a network environment and upon which to rely for the actual 
construction of ontological relations and overlay structures have to be identified. In this context, 
biologically-inspired and socially-inspired approaches may be – and indeed have been – of use. 
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First, coordination among individual knowledge entities of a more globally structured knowledge 
network could occur e.g., via stigmergic mechanisms [Holl96, Par97, PBS04]. As already 
outlined in Section 2, the presence of a distributed network of knowledge, to be accessed for 
sensing and effecting by both network and application level components, can act as the 
computational environment to enforce stigmergic self-organization by ACE’s via knowledge 
networks. However stigmergy can also be considered and exploited as a mechanism to actually 
build and maintain knowledge networks: knowledge atoms themselves could sense and act on 
knowledge and self-organize in a robust and adaptive way. In contrast to overlay networks in 
peer-to-peer environments, knowledge networks should not simply transport data and messages 
but also support their own nodes to adapt. Not by means of heavy-weight autonomous agents 
(as in the knowledge plan approach [Cla03]) but rather via mechanisms of simple knowledge-
mediated reactive adaptation.  

Clearly, stigmergy can be considered as an instance of the more general perspective of swarm 
intelligence [BoTh00], i.e., the property of a system whereby the collective behaviors of 
(unsophisticated) agents interacting locally with their environment cause coherent functional 
global patterns to emerge. We feel that several examples of swarm intelligence can provide 
useful inspiration for identifying mechanisms for building and maintaining knowledge networks.  
An example of swarm intelligent ant-based behavior of interest for the building of knowledge 
network is that of collective sorting, which can be used as in [PWC+05] to cluster large amount 
of documents (i.e., in our case, large amounts of distributed knowledge atoms. As another 
example, the concept of a pulse monitor, explore in [SGMH04] to reproduce the fault tolerant 
heartbeat monitor mechanism could be exploited to realize a “heartbeat” mechanism into any 
knowledge atoms, such that at given intervals relevant health based information are sent to all 
other entities and / or to a central monitoring facility. The specific example of swarm intelligence 
that we have already actually experienced to aggregate distributed sensors (each abstracted as 
a knowledge atom) will be described in the following.  

Finally, the area of game theory also offers a number of concepts that promise to be potentially 
useful in knowledge networks [PlatoGT, Gint00], in particular for the adaptive and robust 
coordination between knowledge components. However, we still have not investigated this issue 
in detail. 

3.4 Predictive Knowledge Networks 
Predictive knowledge networks may be seen as the next step in the evolution of the knowledge 
network approach envisioned by CASCADAS. The ultimate goal can be summarized as the 
provision of accurate, real-time predictions of any kind about individual objects, entities, relations 
or higher concepts that are embraced by the knowledge system.   

In general terms, predicting situations may take place by analyzing existing knowledge, 
extracting relevant patterns of knowledge, reasoning about it, and learn from it. In CASCADAS, 
mechanisms for the extraction of relevant data patterns from available knowledge data (i.e., 
knowledge atoms) are of particular interest, in that such patterns can be used as the basic 
ground upon which to rely for the prediction of short-term as well as long-term behavioral 
patterns. Types of patterns that can be identified include:  (a) associative-patterns, i.e., 
associations which are capable of representing relationships among objects of a set-orientated 
structure, where the order of objects is irrelevant. [AIS93, AgSi94, BMU+97, PCY97, Toi96, 
Zaki00, HPY00, HaZa03]; (b) sequential patterns, which are similar to associative patterns but 
incorporate the additional dimension of time [EO98], where the order of items is relevant and 
cannot be ignored. In sequential patterns, the discovery of sequences can be thought of as the 
discovery of associations’ over temporal data [Zaki01, AgSi95] and which can therefore be 
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useful to predict future events based on past events, as in [AgSi95, MCP98, HPM+00, HPY00, 
PHM+01, Zaki01]. As from the abstract reference architecture of Figure 1, the identification of 
such patterns among knowledge components implies building a knowledge networks along the 
temporal aspect.  

Once knowledge has been discovered it needs to be represented in a flexible and efficient way 
in order to utilize it for other purposes. Accordingly to our choice of adopting XML for the 
representation of knowledge, we consider it very promising to investigate the adoption of PMML 
(Predictive Modelling Mark-up Language) an XML-based standard for the representation of 
predictive data mining models. PMML provides a machine-understandable standardized 
representation that is adhered to by all the major data mining vendors, comprising different 
standards that maintain high semantic integrity and coherence for the data and knowledge that 
is derived through designated knowledge discovery algorithms [GBR+99]. The current 
knowledge networks specifications, presented in the following, have also been conceived to 
easily support the future integration of predictive technologies. 

4 Building Knowledge Networks: Specifications 
In this section, we present a more operational architecture for knowledge networks, and detail 
the early structural specifications we have defined for knowledge network components, that is: 
knowledge atoms, knowledge containers, and their possible network organization. The building 
blocks required to construct a knowledge network can be broken down into two main 
components. Firstly an autonomous knowledge component is required capable to encapsulate 
and transport knowledge independent of the environment. Some aspects of this component will 
be designed and implemented within WP5, whereas others such as the transport of knowledge 
or a dedicated communication interface are more relevant to the concept of ACE’s as envisioned 
through WP1 of the project. Secondly, designated and dynamically maintainable relations have 
to be overlaid upon those entities connecting them to a purpose built network based structure. 
This requires the provision of advanced network based ontologies and flexible overlay structures 
that allow for ad-hoc reconfiguration of the overall knowledge network and for the construction of 
purpose build views of any sub-part(s) thereof. 

4.1 A Note on the Process of Identifying Specifications  
Before going into the details of the operational architecture and of the specifications, it is worth 
spending a few words about the process by which we arrived at them. In fact, the description of 
this process may tell a lot about the rationale of the outcome and its generality. 
 
We started our activities in WP5 with a shared perspective on the abstract reference architecture 
(Figure 1). Then, we analyzed the possibility of (i) using as a building block a single class of 
atomic elements (i.e., knowledge atoms) to structure knowledge networks and then (ii) 
identifying a simple set of basic mechanisms and algorithms (e.g., by exploiting the various 
models and mechanisms analyzed in the previous section) via which to build any type of 
knowledge networks (i.e., along any of the semantic, spatial, and temporal dimension, and 
suited for any class of application scenarios), with proper behavioural intelligence (i.e., 
autonomic capabilities)..  
 
With regard to the former point, what we found out is that the need to flexibly consider a large 
amount of diverse models around which to network knowledge atoms together (there included 
the need to aggregate knowledge atoms into high-level structures and produce new atoms to 
compactly represent the aggregated knowledge of multiple atoms) could hardly be 
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accommodated by exploiting a single class of element. From the viewpoint of ACE’s, nothing 
prevents at perceiving and accessing a knowledge network as if it were composed of a single 
class of elements. However, as far as designing and developing knowledge components is 
concerned, it is much more useful to clearly distinguish between knowledge components that 
are indeed atomic (i.e., contain a single logical unity of knowledge) and components that, 
instead, provide for networking components with each other and for containing aggregated 
knowledge items. Indeed, the specifications we report here reflects this perspective and 
consider two classes of knowledge components, namely knowledge atoms and knowledge 
containers, both of which exposing the same interface but internally structured in a different way.     
 
With regard to the latter point, identifying a limited number of mechanisms turned out to be 
impossible, due to the vast amount of diverse needs that users and services in different 
scenarios exhibit when having to become “situation-aware”. Accordingly, we decided to adopt a 
radically different approach, based on a “hand-on” analysis of the actual needs of applications. 
In particular, we focused on developing (either with “pencil and papers” or with some simulation 
experiment) a set of application examples with extensive needs of situation-awareness, and at 
devising for them the more appropriate mechanisms for knowledge provisioning and, therefore, 
for the building of application-specific knowledge networks. Such an exercise, without having the 
ambition of being exhaustive, has definitely provided us with good insights on several typical 
mechanisms that might be used in knowledge networks and also resulted in useful feedbacks for 
refining knowledge network specifications. 
 
Overall, the process resulted in a sort of “co-evolution” of structural knowledge network 
specification and identification of behavioural mechanisms for knowledge networks. The 
structural knowledge network specifications here reported have been conceived to 
accommodate the needs of several diverse application scenarios and, vice versa, mechanisms 
and application needs have been used to verified the suitability of knowledge network 
specification as they were being developed. 

4.2 Operational Architecture for Knowledge Networks  
The abstract reference architecture of Figure 1 considers the presence of some sorts of 
knowledge atoms (i.e., abstract sensors) and the possibility of operating on these to produce 
specific knowledge organizations around several possible dimensions.  
 
From a more operational perspective, knowledge networks can be organized around a 
knowledge provisioning pyramid, as depicted in Figure 3: A knowledge network has to connect 
to some sort of data layer that exist, from a knowledge provisioning point of view, below a 
knowledge network. On the other hand a dedicated knowledge request layer is required to 
create temporal views of individual parts of knowledge without changing any parts of the 
knowledge network itself. This is necessary to provide request based and ad-hoc created 
knowledge structures to knowledge “requesters” which are at the top of the knowledge 
provisioning pyramid. While the former concept requires the implementation of intelligent 
methods capable to access a multitude of factual and virtual based data sources e.g. sensors, 
repositories, smart environments, etc., the latter requires advanced knowledge search as well as 
knowledge matching mechanism that, ideally, are embedded within the structure of the 
knowledge network itself. Finally, an organisational layer is required that actually represents the 
core of a knowledge network in which “all” knowledge registered through the data layer is pre-
processed and organised to be served, via the request layer, to individual services and 
applications. For this layer dedicated and sophisticated knowledge management facilities have 
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to be developed that allow flexible aggregation of knowledge, advanced quality management as 
well as sophisticated access control. 

 

Figure 3: Knowledge Provisioning Pyramid. 
The design and development of individual components of knowledge networks and their 
interactions with each other will be based on the knowledge provisioning pyramid depicted 
below where the three layers relevant for knowledge networks can be summarized as follows: 

• Data Provisioning Layer 
The data provisioning layer represents the actual data layer where information resides or 
is collected from. For instance, this layer could include all the information produced by 
the sensor of a sensor network devoted to measure information. However, it could also 
include data coming form network monitoring tools, from users profiling tools, knowledge 
repositories or other kind of data sources. In order to access such information sources 
and to introduce the knowledge they provide to the next layer a dedicated component will 
be developed which provides a generic interface that can be extended to accommodate 
for different types of information sources. This component is referred to as a knowledge 
atom and is discussed and specified in Section 4.4. 

• Knowledge Organization Layer 
The organisation layer could be seen as a central yet distributed information sink which 
contains all the knowledge generated by the lower data level in a properly represented 
form. Note that at this level we speak of knowledge rather than data. That is because of 
the fact that the information from the data layer is, at this level, properly represented and 
generically accessible and as such has a higher value. Once data are introduced, via the 
concept of knowledge atoms, into the “space” of the knowledge network, the goal is to 
organise them based on different characteristics, such as time, space, purpose, semantic 
etc. For that another dedicated component will be developed, namely a knowledge 
container as discussed in Section 4.4. Simplified, the rational of a knowledge container 
or KC is to enable specialised aggregation of knowledge sources stemming from either 
knowledge atoms and / or knowledge containers themselves. 

• Knowledge Request Layer 
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This layer implements a dedicated knowledge view concept and is devoted to host 
temporal views of individual parts of the knowledge network. Basically this layer forms 
the bridge between individual services and applications that may utilise the knowledge 
provided by the network. The goal is to construct ad-hoc, request based sub-networks of 
knowledge that serve application-specific requests without altering the structure of the 
original network. This is necessary to provide virtually unlimited request-based and ad-
hoc created knowledge structures to knowledge “requesters” which are at the top of the 
knowledge provisioning pyramid. For that the above container component may by utilised 
and necessary features added. 

The fourth (top) layer is the knowledge usage layer, where individual knowledge requesters (i.e., 
service ACE’s) are located in order to utilise the knowledge provided by knowledge networks or 
individual parts thereof. 
 
Clearly, making the above operational architecture an implemented concepts must account for 
the need of any component and method to effectively operate in a distributed environment and 
for the fact that the results will eventually be a global knowledge network that should have no 
theoretical boundaries with respect to the amount of knowledge they may embrace or the type of 
knowledge to be handled. Also, it must consider that individual components should have the 
capacity to retain and maintain a memory that comprises the data and knowledge sources they 
embrace as well as relevant information of neighbouring components in order to maintain the 
distributed structures of the network.  This ‘memory’ needs to be a machine-understandable 
syntax, comprising different standards in order to maintain semantic integrity and coherence of 
the knowledge embraced.  
 
Overall, this perspective implies threefold high-level requirements for the implementation of 
knowledge networks. Firstly, structural requirements that provide necessary components 
capable of holding knowledge at different levels of granularity including the implementation of a 
highly flexible framework capable of linking individual knowledge components or any group 
thereof into distinct purpose-build sub-networks. Secondly, behavioural requirements which deal 
with more dynamic aspects of knowledge networks such as self-organization, self-optimisation, 
self-adaptation and self-configuration activities. Thirdly, predictive requirements enabling 
detailed analytics of individual knowledge components in order to derive new, useful and 
understandable knowledge. 
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Figure 4: Conceptual Components of Knowledge Networks. 
Based on the above a three stage design and implementation process is envisioned that will 
allow knowledge networks to evolve from the provision of basic factual information into a highly 
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dynamic and intelligent vehicle exhibiting not only a high degree of autonomic behaviour but also 
predictive capabilities. This process is depicted in Figure 4, where the conceptual components 
identified above are organised into individual layers representing distinct aspects of knowledge 
networks, while the fourth layer, services & application scenarios, represents a validation and 
demonstration facility that will be used throughout the project in order to evaluate the 
correctness and the performance of the methods and structures proposed. 
 
The specifications detailed in the following of this section mostly concern the structural aspect of 
knowledge networks. Some mechanisms to deal with behavioural intelligence are detailed in 
Section 5, while predictive capabilities are left for studying in later stages of the project.  

4.3 Knowledge Networks Specifications 
Let us now go in details about the specific components that we have identified can be used as 
building blocks for making the above operational perspective pratical. 

4.3.1 Knowledge Component 
Two main components make up the Knowledge Network. These are Knowledge Atoms (KA’s) 
and Knowledge Containers (KC’s). These components are sub-classes of Knowledge 
Component. The representation of both components will be facilitated entirely through the use of 
XML. This not only allows for the dynamic extensions of individual contextual aspects of both 
KA’s and KC’s, it also provides a standardised machine readable format which is widely used in 
current applications and standards. Furthermore it allows for different out of memory storage 
such as flat files and databases. Figure 5 shows the relationship between these elements. 
 
The contextual information also follows this structure. Both atoms and containers will store the 
component’s metadata as exemplified in Figure 6. 
 

Knowledge Component

Knowledge Atom Knowledge Container«uses»

«uses»

Service«uses»

 

Figure 5: Knowledge Component Relationships. 
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Figure 6: Knowledge Component Contextual Information. 
Simplified, each knowledge component has to provide a range of information that: uniquely 
identify it within the knowledge space; reveal its current location; semantics describing the 
knowledge referenced; services provided and of course information that describes the 
knowledge source itself. It has to be stressed that the set of elements shown are by no means 
complete. For specific implementations, other more specific elements may be added as desired. 
However, the elements shown are compulsory to enable access to the underlying data source 
and to facilitate knowledge aggregation within the organisational layer of the knowledge network. 
The atoms and containers will then also store their own component specific information as 
defined in the following sections.  

The knowledge component also provides a set of abstract methods that are required to be 
implemented by all of its sub-classes. These methods allow the user to store and retrieve 
contextual or service information and are depicted below. 

+setModel(in model : XML Element) : XML Element
+getModel(in name : string(idl)) : XML Element
+removeModel(in name : string(idl))
+addService(in model : XML Element) : XML Element
+removeService(in name : string(idl))
+getServiceList() : XML Element

«interface»
Component

 

Figure 7: Component Interface. 
An abstract model has to be implemented that allows for specific extensions in order to 
accommodate for individual data sources as e.g. listed in Table 2:. The rational of this model is 
to enable individual knowledge users to access data, stemming from various sources, through a 
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generic interface. The knowledge component provides an abstract interface that must be 
implemented by its sub-components – namely the knowledge atom or container. This interface 
provides methods to add or retrieve contextual information or service information. The user can 
retrieve the whole context or context relating to just a particular element through the getModel 
methods. A service can be added, which will also add metadata to the component. This 
metadata will be added in a service section but some may also be added to the context 
information. Context or a service can also be removed. The service will then provide its own 
interface to allow another component to use it. This interface is illustrated in Figure 7. 

4.3.2 Add-Ons 
One of the objectives is to keep the components as lightweight as possible. Because of this, the 
main components will only have a limited functionality which is only relevant to the construction 
of networks itself. To make the knowledge network completely generic however, there will be 
times when extra functionality will need to be added to satisfy the user requirements. One such 
instance would be when an atom is required to keep a history of its values. In this case, it may 
be required to periodically write its values to a database.  

Table 1: List of Elements and possible Add-ons to Knowledge Network Components. 
Name Status Description 

Tree Proposed Semantic tree representation of keywords. 

Map Proposed Semantic map representation of keywords 

Location Proposed A concept representing the location of a knowledge source (e.g. physical 
location of a sensor). This concept should be synchronised with WP1. 

Owner Proposed Owner information  

Access Proposed Access information  

Lifetime Proposed Knowledge lifetime information  

QoX Proposed Individual Quality Measures 

Trust proposed Quality of Trust, Trust Management  

Security Proposed Security and Encryption Mechanism (to be specified) 

Log Proposed Element to provide relevant usage, access and error events 

Statistics proposed Element to provide relevant statistical information about the use, access 
of components, hosts, etc. 

 
This sort of functionality is not compulsory for the general operation of the knowledge network 
and so add-on components will provide the extra functionality. This type of functionality is of 
particular importance to other work packages as it provides a mechanism to dynamically load 
dedicated services. Thus each WP may develop specific extensions to KN components that deal 
exclusively with the aspects addressed by a particular WP.  
 
This Section provides details about the structure, the purpose and the scope of XML elements 
that have been identified to be useful for the representation, handling and supervision of 
knowledge as well as the context the knowledge occurs in. Unless stated otherwise, none of the 
elements are exclusive to a single component such that they may be added, removed or 
modified to the contextual part of a KA or KC as desired. Furthermore, not all of the elements 
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listed are exclusively relevant to WP5, the rationale of some elements is to provide an XML 
“interface” to implement specifics of other WP’s. For instance, the elements “Trust” and “QoC” 
represent elements that are reserved spaces to be used (and specified) by other WP’s. In this 
case WP4 and WP6, respectively. Table 1 lists these elements and may serve as a basis for 
future discussions with other WP’s. 
 
Add-on components will include services to be executed by the component. These components 
will be passed as serialised Java classes to a service handler, which will re-construct and invoke 
them. Each service added will run on a separate thread to allow for independent operation from 
other services. Metadata will be required to describe the add-on component to allow the system 
to operate it. The metadata stored in any component is dynamic and can be altered depending 
on circumstances. The user of the component can also retrieve parts of the metadata depending 
on what service he requires. The interface used to add a service component is also defined by 
XML publishing relevant information to load, invoke and access a service. The specification 
thereof is shown in Figure 8. 
<Services> 
 <!--Extra services the component can provided as added components--> 
 <Service> 
  <Name>The name of a service this component provides as an add-on</Name> 
  <Description>Sementic description of the service</Description> 
  <URI>The address of the service, can be null for a local service</URI> 
  <ClassName>The Java class name of the service object</ClassName> 
  <Login> 
   <User>The username to access if required</User> 
   <Password>The password to access if required</Password> 
  </Login> 
  <Parameters> 
   <!--Intitialisation parameters of the service--> 
   <Parameter>A single parameter for the method<Name>The parameter name</Name> 
    <Type>The parameter type</Type> 
    <Value>The parameter value</Value> 
   </Parameter> 
  </Parameters> 
  <Methods> 
   <!--A list of methods for the service--> 
   <Method> 
    <!--A single method specification--> 
    <Name>The methods name</Name> 
    <Description>Sementic description of the method</Description> 
    <Return>The return type of the method </Return> 
    <Parameters> 
     <!--A list of parameters for the method--> 
     <Parameter>A single parameter for the method<Name>The parameter name</Name> 
      <Type>The parameter type</Type> 
      <Value>The parameter value</Value> 
     </Parameter> 
    </Parameters> 
   </Method> 
  </Methods> 
 </Service> 
</Services> 

Figure 8: Service Method Description. 
When an add-on registers itself at an atom, it also registers its metadata. This metadata may be 
stored completely in the service section, or it may add to the component description in general, 
adding to its knowledge. The user then has the option of retrieving knowledge (semantics), 
service descriptions, or parts of the semantics based on the keywords they enter. To provide this 
functionality, the component will realise a ‘ComponentHandler’ interface that will have a set of 
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methods to allow the user to retrieve context. The appropriate component (a Knowledge Atom) 
will also implement other methods to retrieve the service information. The methods are shown in 
the Component section 4.6.1 of the Interface section.  

4.3.3 History Component 
Part of the philosophy of the knowledge network is to provide a kind of who, what, when, where 
functionality. A history component is useful for writing values of a source at periodic intervals to 
a database to be later retrieved and analysed. As we are allowing add-on components to be 
completely generic, we can implement a standard history component with a known functionality. 
This is the default component that users can add-on to write a history of a source. This does not 
prevent a user from writing their own history component if they want to provide different 
functionality.  
<Service> 
 <Name>History Component</Name> 
 <Description>Generic history component</Description> 
 <URI>The address of the service</URI> 
 <ClassName>The Java class name of the component object</ClassName> 
 <Parameters> 
  <!--Intitialisation parameters of the service--> 
  <Parameter> 
   <!--milliseconds--> 
   <Name>fetchValueInterval</Name> 
   <Type>java.lang.Integer</Type> 
   <Name>host</Name> 
   <Type>java.lang.String</Type> 
   <Name>port</Name> 
   <Type>java.lang.String</Type> 
   <Name>username</Name> 
   <Type>java.lang.String</Type>ing 
   <Name>password</Name> 
   <Type>java.lang.Str</Type> 
  </Parameter> 
 </Parameters> 
 <Methods> 
  <!--A list of methods for the service--> 
  <Method> 
   <!--A single method specification--> 
   <Description>Retrieve a list of elements</Description> 
   <Name>getValue</Name> 
   <Return>Element</Return> 
   <Parameters> 
    <!--A list of parameters for the method--> 
    <Parameter> 
     <Name>startTime</Name> 
     <Type>java.util.Date</Type> 
    </Parameter> 
    <Parameter> 
     <Name>stopTime</Name> 
     <Type>java.util.Date</Type> 
    </Parameter> 
   </Parameters> 
  </Method> 
 </Methods> 
</Service> 

Figure 9: Service Interface. 
The main goal of knowledge networks is to access and organize data coming from a very 
heterogeneous set of knowledge sources. However, one of the most valuable applications of 
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knowledge networks should be storing the history of values coming from sensors. By this way, a 
better and more accurate perception of the environment is achievable. Due to the availability of 
past data, it should for example be possible to infer something that is unknown about the 
present or even about the future. In our opinion knowledge networks should in fact deal with the 
problem of accessing data from a distributed and heterogeneous set of sensors but also with the 
problem of organizing and consolidate sensor data in a sort of knowledge. 

Due to the fact that the storage is probably not the main goal of knowledge networks but has lots 
of implications we propose specifications of a standard history component. It has to be 
implemented not inside a knowledge atom but as a separate component. To realize its purposes 
it has to register itself to a KA (exposing values to be saved) using the addService() method 
(inherithed from KNComponent). Internally it simply fetches every fetchValueInterval 
milliseconds a value from the KA and stores it in a database. It also provides the method 
getValue(startTime, stopTime) to the KA needed to fetch data from the backend instead of the 
live sensor. By this way registering the history component to a KA simply produces a KA 
capable of storing and retrieving historical data. 

The following XML piece is an example on how to register the default history component to a 
knowledge atom. Note that this not only provides the functionality to specify the specific 
component to be loaded but also publishes its configuration as well as its public interface. 

4.3.4 Knowledge Atom, KA 
Representing the most basic component of a knowledge network, the rough structure of a 
knowledge atom is depicted in Figure 10. It contains a knowledge source object and relevant 
descriptions that provide the context of the object contained. Within the scope of WP5, the sole 
purpose of a knowledge atom is to introduce a specific data source into the scope of a 
knowledge network and to provide generic access to the underlying data source; it is not 
concerned about any organisational aspects within or outside the knowledge network nor is it 
responsible for the configuration, maintenance or (de-) registration thereof.  

 

Figure 10: Knowledge Atom. 
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Definition 1: Knowledge Atom – is a data object containing a single piece of knowledge and 
relevant semantics.   

Simplified, a knowledge atom encapsulates two objects: firstly it contains a knowledge object 
which reflects a single knowledge entity independent of its type, size or context; secondly it has 
relevant semantics of the knowledge object attached providing relevant descriptive context, 
system and usage based information that are relevant for the creation, maintenance and 
observation of the knowledge object. For instance, a knowledge atom could encapsulate the 
reading of a single sensor (e.g. temperature reading @ location GPS_COORDINATES[X]), 
where attached semantics could include the GPS location of the sensor, the purpose of the 
sensor, the required update frequency, etc. On the other hand the knowledge object could 
reflect a more complex structure such as e.g. the human DNA code. 

Within the context of a global knowledge network, knowledge atoms may be seen as “protected” 
objects, that is that they are not devisable, which is based on the simple fact that, independent 
of its complexity, they only embrace a single “piece” of knowledge. Nonetheless, the semantics 
of a knowledge atom may be extended if necessary. It is also envisioned that knowledge atoms 
and the knowledge they embrace exist locally rather than in a distributed environment. However, 
as a whole knowledge atoms may be shared, cloned, referenced or transported globally 
throughout the network. In the sequel knowledge atoms are denoted by k = (o, S), where o 
represents the knowledge object and S its semantics, both are subject to further specification. 

Figure 11 shows the full xml description of the knowledge atom concept as available to date. 
<KNComponent> 
 <Ident> 
  <UUID>Unique ID for the component</UUID> 
  <Type>Atom</Type> 
  <AccessInfo> 
   <URI>Uniform Resource Identifier to locate the component</URI> 
   <Login> 
    <User>The username to access if required</User> 
    <Password>The password to access if required</Password> 
   </Login> 
  </AccessInfo> 
 </Ident> 
 <MetaInf> 
  <Description> 
   <Name>Description of the component</Name> 
  </Description> 
  <Keywords> 
   <Key>Arbitrary key word or structure</Key> 
  </Keywords> 
 </MetaInf> 
 <Atom> 
  <Service> 
   <Name>The name of the service this atom provides by default</Name> 
   <Description>Sementic description of the service</Description> 
   <URI>The address of the service, can be null for a local service</URI> 
   <ClassName>The Java class name of the service object</ClassName> 
   <Login> 
    <User>The username to access if required</User> 
    <Password>The password to access if required</Password> 
   </Login> 
   <Parameters> 
    <Parameter>A single parameter for the method<Name>The parameter name</Name> 
     <Type>The parameter type</Type> 
     <Value>The parameter value</Value> 
    </Parameter> 
   </Parameters> 
   <Methods> 
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    <Method> 
     <Name>isAlive</Name> 
     <Return>Boolean -->True if atom is accessible</Return> 
    </Method> 
    <Method> 
     <Name>getValue</Name> 
     <Return>Element --> The atom value</Return> 
    </Method> 
    <Method> 
     <Name>getType</Name> 
     <Return>Element --> The atom type</Return> 
    </Method> 
    <Method> 
     <Name>getConfig</Name> 
     <Return>Element --> The atom access configuration</Return> 
    </Method> 
   </Methods> 
  </Service> 
  <Data> 
   <Value>Atom value</Value> 
   <Type>Data type of the atom value</Type> 
   <Config>Configuration of the atom source</Config> 
  </Data> 
 </Atom> 
 <Services> 
  <Service> 
   <Name>The name of a service this component provides as an add-on</Name> 
   <Description>Sementic description of the service</Description> 
   <URI>The address of the service, can be null for a local service</URI> 
   <ClassName>The Java class name of the service object</ClassName> 
   <Login> 
    <User>The username to access if required</User> 
    <Password>The password to access if required</Password> 
   </Login> 
   <Parameters> 
    <Parameter>A single parameter for the method<Name>The parameter name</Name> 
     <Type>The parameter type</Type> 
     <Value>The parameter value</Value> 
    </Parameter> 
   </Parameters> 
   <Methods> 
    <Method> 
     <Name>The methods name</Name> 
     <Description>Sementic description of the method</Description> 
     <Return>The return type of the method </Return> 
     <Parameters> 
      <Parameter>A single parameter for the method<Name>The parameter name</Name> 
       <Type>The parameter type</Type> 
       <Value>The parameter value</Value> 
      </Parameter> 
     </Parameters> 
    </Method> 
   </Methods> 
  </Service> 
 </Services> 
</KNComponent> 

Figure 11: Current XML Specification of Knowledge Atoms. 
As described previously, the rationale of knowledge atoms is to introduce new data stemming 
from various data sources into the scope of the knowledge network. To be properly registered, 
organized and used two types of generic interfaces have to be established. The component 
interface needs to be extended to allow for source values and services to be accessed. Figure 
12 describes the Knowledge Atom interface, whereas a preliminary specification of the 
knowledge atom component is shown in Figure 11, where the data access interface is realized 
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by the getValue, getType and getConfig methods. The second aspect, the exchange of 
contextual information, is realized through the Component interface, which is also implemented by 
the knowledge container component.  The third aspect is the service access. This is done 
through the addService and removeService methods. AddService will add an add-on component 
to the atom that will run a service. This can be of any type and is described by the 
serviceDescription.  
 

+setModel(in model : XML Element) : XML Element
+getModel(in name : string(idl)) : XML Element
+removeModel(in name : string(idl))
+addService(in model : XML Element) : XML Element
+removeService(in name : string(idl))
+getServiceList() : XML Element

«interface»
Component

+isAlive() : boolean(idl)
+getValue() : XML Element
+getType() : XML Element
+getConfig() : XML Element

-atomElement : XML Element
KnowledgeAtom

 

Figure 12: Knowledge Atom Interface. 
Let us now briefly outline some possible data sources that are of particular interest to the 
concept of knowledge networks. The type and number of knowledge sources presented in the 
table below is by no means complete with respect to the type of sources available in the “real” 
world. Nevertheless it is envisioned that a multitude of different knowledge sources will be 
incorporated through the concepts of knowledge atoms through the course of the project and 
beyond. 
 

Table 2: Example Data Sources for Knowledge Atoms. 
Type Description 

Embedded Small pieces of data to be embedded into the atom structure itself. Particular 
relevant for non-volatile data. 

Web Service Data made available through a web service. 

Sensor Data available through the concept of sensors. Possible sub-types may 
include hardware based sensors, software based sensors and sensor arrays 
of either of the above. 

Knowledge Broker Data made available through a brokerage system. Specific implementation 
will depend on the type of system to be used 

ACE Data made available though the generic or specific interface of an ACE (this 
type will depend on the realisation of ACE’s) 

Knowledge Container Atoms that require data from within the KN require access to KC’s 
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4.3.5 Knowledge Container, KC 
The Knowledge Container is the aggregating component of the knowledge network. It will group 
elements to define the structure of the network, while the values are retrieved from atoms. The 
containers can hold other containers or other atoms or both. A container may also act as an 
aggregated source and store aggregated information in an atom, while also storing other 
containers to navigate to lower levels in the network. Figure 13 is a diagram describing the basic 
concepts of a Knowledge Container. 
 

 

Figure 13: Knowledge Container. 
Definition 2: Autonomous Knowledge Component– is a purpose built, loosely coupled 
collection of knowledge atoms / knowledge container. 
 
The algorithms used for aggregation can be of any type and are yet to be decided upon. The 
hierarchical structure we provide is slightly different to an ad-hoc peer-to-peer system. It does 
not allow any element to link to any other, as some restrictions are provided by the hierarchical 
structure. To this extent, we do not want an atom to be allowed to also be a container that may 
aggregate other elements in a random manner. This is more chaotic than the structure we 
envisage. We have decided to keep the knowledge container and the knowledge atom concepts 
separate. The atoms will be aggregated by algorithms producing a largely static structure that 
will change only gradually through time. We then propose to generate overlay networks defined 
by temporary links between atoms to produce a more dynamic structure. This structure however 
is secondary compared to the static hierarchy and will not actually change the hierarchical 
structure. Similar to knowledge atoms, additional semantic information may be attached to a KC, 
thus providing relevant information about the type, scope, purpose, usage, etc. of the knowledge 
they embrace, the purpose they were created for and the way they are used. Unlike knowledge 
atoms, KC’s are freely extendable, dividable and modifiable, that is that new knowledge atoms 
can be added, older ones may be removed or hierarchical links between them may be modified, 
created or removed at any time. Figure 14 describes the additional metadata that may be used 
to describe a knowledge container. This stores the location of components aggregated by the 
container. 
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<KNComponent> 
 <Ident> 
  <UUID>Unique ID for the component</UUID> 
  <Type>Container</Type> 
  <AccessInfo> 
   <URI>Uniform Resource Identifier to locate the component</URI> 
   <Login> 
    <User>The username to access if required</User> 
    <Password>The password to access if required</Password> 
   </Login> 
  </AccessInfo> 
 </Ident> 
 <MetaInf> 
  <Description> 
   <Name>Description of the component</Name> 
  </Description> 
  <Keywords> 
   <Key>Arbitrary key word or structure</Key> 
  </Keywords> 
 </MetaInf> 
 <Container> 
  <Ident> 
   <UUID>Unique ID for the component</UUID> 
   <Type>Atom | Container</Type> 
   <AccessInfo> 
    <URI>Uniform Resource Identifier to locate the component</URI> 
    <Login> 
     <User>The username to access if required</User> 
     <Password>The password to access if required</Password> 
    </Login> 
   </AccessInfo> 
  </Ident> 
  <Ident> 
   <UUID>Unique ID for the component</UUID> 
   <Type>Atom | Container</Type> 
   <AccessInfo> 
    <URI>Uniform Resource Identifier to locate the component</URI> 
    <Login> 
     <User>The username to access if required</User> 
     <Password>The password to access if required</Password> 
    </Login> 
   </AccessInfo> 
  </Ident> 
 </Container> 
 <Services> 
  <Service> 
   <Name>The name of a service this component provides as an add-on</Name> 
   <Description>Sementic description of the service</Description> 
   <URI>The address of the service, can be null for a local service</URI> 
   <ClassName>The Java class name of the service object</ClassName> 
   <Login> 
    <User>The username to access if required</User> 
    <Password>The password to access if required</Password> 
   </Login> 
   <Parameters> 
    <Parameter>A single parameter for the method<Name>The parameter name</Name> 
     <Type>The parameter type</Type> 
     <Value>The parameter value</Value> 
    </Parameter> 
   </Parameters> 
   <Methods> 
    <Method> 
     <Name>The methods name</Name> 
     <Description>Sementic description of the method</Description> 
     <Return>The return type of the method </Return> 
     <Parameters> 
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      <!--A list of parameters for the method--> 
      <Parameter>A single parameter for the method<Name>The parameter name</Name> 
       <Type>The parameter type</Type> 
       <Value>The parameter value</Value> 
      </Parameter> 
     </Parameters> 
    </Method> 
   </Methods> 
  </Service> 
 </Services> 
</KNComponent> 

Figure 14: Current XML Specifications of Knowledge Containers. 
As has been depicted in Figure 13 the underlying concept of a knowledge container is similar to 
the concept of a knowledge atom. That is, it encapsulates knowledge. However, unlike 
knowledge atoms the purpose of a knowledge container is to organize knowledge in a semantic 
or spatial fashion rather than providing access to the underlying information. Basically a 
knowledge container or KC may embrace (or reference) any number of knowledge atoms or 
knowledge containers independent of their location (locally or remotely). In order to enable the 
construction of larger highly distributed knowledge network structures and to support the 
concept of self-similarity, individual knowledge containers may contain other containers or any 
number of knowledge atoms.  This allows the construction of knowledge networks utilising the 
concept of KC’s only, whereas the knowledge sources only exist as leaves of a constructed 
network. In other words, knowledge atoms store the knowledge (or provide access to it) whereas 
KC’s are used to organise it. This concept also enables the construction of networks of networks 
where each node (KC) of a network-like structure may contain a network itself which in turn 
could contain networks and so on. Within a P2P environment this concept is known as the 
construction of super networks which is depicted in Figure 16. 
 

Similar to the knowledge atom, a preliminary specification of the knowledge container 
component is shown in Figure 14.  As shown the KC concept also implements the Component 
interface which realizes generic access to context related information stemming from KA’s as 
well as KC’s. Utilizing this interface abstracts the access of contextual information from both 
KA’s and KC’s into a single concept. Other methods specified deal with the registration, access 
and removal of elements as required in order to construct a network like structure. Note that 
unlike the knowledge atom implementation, the knowledge container component is not abstract. 
On the contrary it is intended to be final and as such not to be sub-classed. The reason for this 
is based on the fact that no specific implementations are envisioned for this component. Instead, 
required functionality for the organization of knowledge has to be available in all containers. 

Organizing containers based on various semantic, hierarchical, geographical or logical concepts 
the rationale of a KC is to provide purpose-built, structured knowledge on higher levels of 
granularity. Similar to knowledge atoms, additional descriptive information are attached to a KC 
via a context object, thus providing relevant information about the type, scope, purpose, usage, 
etc. of the knowledge they embrace, the purpose they were created for or the way they are 
used. Unlike knowledge atoms, KC’s are freely extendable, divisible and modifiable, that is, that 
new KA’s or KC’s may be added whereas others may be removed. Furthermore, any conceptual 
links implemented to organize individual components may be modified, created or removed at 
any time. Please note that although some concepts represented through the context part of a 
KC and a KA respectively may be shared or inherited, they are not the same and therefore not 
necessarily equivalent.  
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+setModel(in model : XML Element) : XML Element
+getModel(in name : string(idl)) : XML Element
+removeModel(in name : string(idl))
+addService(in model : XML Element) : XML Element
+removeService(in name : string(idl))
+getServiceList() : XML Element

«interface»
Component

+getAtoms() : XML Element
+getConatiners() : XML Element
+getInventory() : XML Element
+remove(in uuid : string(idl))
+add(in component : XML Element, in register : boolean(idl), in drillDown : boolean(idl))
+queryContainer(in query : XML Element) : XML Element

-atomElement : XML Element
KnowledgeContainer

 

Figure 15: Knowledge Container Interface. 
 

Sub-Network  

Figure 16: Super Networks 
A KC could embrace a number of sensor readings (knowledge atoms) that together reflect a 
higher concept. For instance, in a weather sensor example, a number of temperature readings 
can be aggregated into a singe KC to define average or sampled field temperatures in a zone. 
Alternative, a mix of sensor readings (e.g., humidity, pressure, wind, other than temperature) in 
a region, could be used to provide weather information at a specific location. Using a weather 
example, the purpose of a KC could be the provision of weather information of all major cities in 
e.g. United Kingdom. Assuming that there exist relevant sensors in all cities concerned and that 
their also exists a dedicated KC for each city (preferably individual KC’s reside on a 
computational resource that is somehow connected to the city they belong too) then another KC 
(e.g. WEATHER(United Kingdom)[KC[0], KC[1], KC[2], …]) could be created that embrace all 
other KC’s concerned thus providing a central dedicated knowledge resource where individual 
KC’s can be added or removed automatically and which can be used by other services.  

Page 30 of 72 



 

IST IP CASCADAS  

“Bringing Autonomic Services to Life”

 

WP5: Knowledge Networks

Knowledge Networks 
Specifications, and Description of 

Alpha Software

 

 

Alternatively, the KC’s embraced by the WEATHER(United Kingdom) KC may be sub-grouped 
even further taking additional information into account such as discrete geographical regions. 
The notion of the original KC could then be extended as follows: 
 
WEATHER(United Kingdom)[ 
WEATHER(England) [KC[0], KC[1], KC[2], …], 
WEATHER(Scotland) [KC[0], KC[1], KC[2], …], 
WEATHER(Wales) [KC[0], KC[1], KC[2], …], 
WEATHER(Northern Ireland) [KC[0], KC[1], KC[2], …] 
] 
 
Although simplistic, the above weather example validates the suitability of the KC approach and 
shows its flexibility and the extendability towards more complex scenarios. It also shows that 
KC’s can be expressed formally through a dedicated mark-up language, which fosters 
interoperability among different physical and virtual resources. 

4.4 Interfaces, Summary 
This section provides a summary of all available interfaces for each component of the 
knowledge network as depicted below. 

+setModel(in model : XML Element) : XML Element
+getModel(in name : string(idl)) : XML Element
+removeModel(in name : string(idl))
+addService(in model : XML Element) : XML Element
+removeService(in name : string(idl))
+getServiceList() : XML Element

«interface»
Component

+isAlive() : boolean(idl)
+getValue() : XML Element
+getType() : XML Element
+getConfig() : XML Element

-atomElement : XML Element
KnowledgeAtom

+getAtoms() : XML Element
+getConatiners() : XML Element
+getInventory() : XML Element
+remove(in uuid : string(idl))
+add(in component : XML Element, in register : boolean(idl), in drillDown : boolean(idl))
+queryContainer(in query : XML Element) : XML Element

-atomElement : XML Element
KnowledgeContainer

«uses»

«uses»

«uses» Services

 

Figure 17: Summary, Interfaces. 

4.5 Knowledge Execution 
Within the knowledge network component layer as outlined above distributed knowledge 
resources may be linked together through a reference mechanism indicating the location of 
individual KC’s that are part of another KC. However, for knowledge execution purposes, 
knowledge components have to be accessed directly, that is a communication link has to be 
established that allows efficient bi-directional data transfer between relevant components of one 
or more KC’s, thus creating a virtual view of a distinct set of knowledge. Such functionality may 
be implemented through P2P overlay networks that can be constructed in an ad-hoc manner to 
be used by a service or application requesting a discrete set of knowledge. 
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To enable the efficient construction of such virtual views without altering the knowledge network 
itself the concept of a virtual KC is introduced next. Basically, a virtual KC is, in structure and 
functionality, equivalent to a real KC. The difference is that it only links to other KC’s that already 
exist on the network, it never links to knowledge resources directly, which allows for complete 
separation of the knowledge provisioning layer and the knowledge view layer as illustrated 
through the knowledge provisioning pyramid depicted earlier on. Furthermore, virtual KC’s may 
also be used by services to construct knowledge requests and if populated will provide 
necessary information to construct the overlay network itself. 
 
One of the advantages of virtual views is that highly specific collections of knowledge can be 
created in an ad-hoc manner without changing the underlying data structures. Thus, if a service 
expires its corresponding KC may be destroyed without changing the underlying knowledge 
network. Utilising KC’s to specify and create such views has another advantage, that is that 
services can specify the type of knowledge they desire directly on the object which will deliver 
the knowledge once it has been located and necessary overlays have been built. This again 
fosters self-similarity of knowledge components and interoperability of computational resources. 
 
To retrieve knowledge we will provide a query system that is XML based. This system will 
navigate the knowledge network to identify the appropriate sources to query. When these have 
been identified they can be queried and the relevant information retrieved. There will be a query 
mediator that interfaces with the different XML-based query engines that are to be used. RDF 
would be a suitable format for navigating the network or querying simple sources such as 
sensors. However, with complex XML data at the sources we may require something like the 
declarative XML query language XQuery or the deductive XML query language Xcerpt to query 
it. The sources will store a query engine suitable to their data and the mediator will then interface 
with them and control the query process. We also recognise that it may be possible to use the 
results of the query execution to update the knowledge in the network by strengthening links 
between sources that are consistently used together to answer a query. These links will produce 
overlay networks that can be used to help to optimise query executions. 

4.6 Knowledge Organization 

4.6.1 Batch vs. On-line Organisation 
We recognise two different situations when knowledge will be organised. When the network is 
initially being constructed, it will need to retrieve information from its sensors and organise this in 
an on-line manner. Once this knowledge is generated, it may be stored at one location (or 
replicated across multiple one) and then, if the network is re-started, this knowledge can be used 
to re-configure the network in a batch manner based on the stored knowledge. The organisation 
will primarily be done using the on-line information as this will dynamically change through time 
and only be available in an on-line format. Batch organisation can then be used for re-
construction. However, with something like a history component, the batch organisation could be 
run periodically to retrieve historical data to also update the network. In the scope of knowledge 
networks, both batch and on-line organizations have advantages and can be used separately or 
in a combined way.  
 
Batch organisation enables a fast access to information because related data is stored at a 
given location and is already available. There is no need to access different KCs in different 
locations by following external links. This fast access comes at the cost of possible 
inconsistencies which may exist between a data source (i.e. a sensor that produces data) and 
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the KC where this data is copied to. Therefore, batch organisation of knowledge is usually used 
when fast access is necessary and the desired information is valid for a long time. Also, batch 
organization facilitates storing of heavy-weight information which could have problems in being 
highly distributed and build on-the-fly.  

Online organisation can be used in environments with limited storage space and when it is not 
possible to organize a priori great amounts of information. Because of the fact that in the online 
case, data is not replicated to store it in various KCs, only a small amount of additional memory 
is necessary to save links to the original data. A second advantage is the consistency and 
freshness of online organised knowledge, in that organized data is built on-the-fly, on the basis 
of the fresher available information. One drawback of online organisation of knowledge is the 
fact that requesting data may take some time because desired information can only be obtained 
indirectly by following at least one link. This, in addition, usually leads to consumption of network 
resources because the links which have to be followed may point to physically distant locations. 
Hence, online organisation of knowledge is used in situations where storage capacity is limited 
or consistency of data plays an important role, whereas the time necessary to obtain information 
is of minor priority. 

The following short examples illustrate the described organisation methods. An array of motion 
detectors, monitoring a building and supporting an alarm system, would be aggregated in a KC 
in an online way. The network in this building is most probably capable to handle a number of 
frequent requests to each sensor relatively fast. Batch organisation would not be suitable 
because state changes of the sensors have to be recognised as fast as possible. Copying data 
to a KC and updating it rarely would delay the reaction time of the alarm system. In contrast, a 
KC that aggregates stated facts which will most probably not change often, would be organised 
in a batch way. If those facts are for example mathematical theorems like trigonometric functions 
and these theorems are accessed very frequently for different calculations, an online 
organisation would result in a lot of unnecessary network traffic. Replicating the concerned 
theorems once and copying them to an appropriate KC would minimise network resource 
consumption. In this example, inconsistency is no problem because mathematical theorems are 
unlikely to change. 

4.6.2 Vertical vs. Horizontal Organization 
Naturally, the structure and relations of a knowledge network is highly dynamic and mainly 
depends on the scope the network is used for. Being capable of self-adapting itself to better 
serve future requests as well as reacting on the dynamics of volatile knowledge values as well 
as sources a knowledge network will evolve over time. However, internally two different 
concepts of organisation are used to shape different levels of knowledge granularity, namely 
vertical and horizontal structures.  

At the bottom of both organisational concepts are always knowledge atoms, which is due to the 
fact that KA’s are seen as active knowledge sources that feed information into the network 
rather than organising them. Considering a tree like organisational structure for either concept, 
that is when avoiding cyclic references of components within the same branch, atoms are 
always found as a leaf node. Containers on the other hand are solely designed to organise 
knowledge, such that they are never leaves but build up the remainder of the tree or to be more 
precise knowledge network. Note the distinction between a tree and a network is important for 
the organisation but not for the representation. That is that when organising or querying a 
knowledge network cyclic references are detected and serve as endpoints in order to avoid 
processing the same branch of knowledge over and over again. Nevertheless, within the global 
structure of a knowledge network cyclic references can not be avoided and are in fact desired to 
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allow for multiple entry points into a network for dedicated maintenance, organisation and 
querying tasks. 

Simplified, vertical structures are those relationships that involve multiple knowledge containers 
at different levels, where the level of knowledge granularity is equal to the position of the 
container the knowledge is referenced from. The rationale of a vertical organisation is that high 
level concepts of sources that exist at a lower level can be grouped together thus providing a 
conceptual view at different levels of granularity.  This concept is visualised in Fig. 17, where 
several KC’s are organised at different levels to provide different views of the atoms that are 
located at the bottom of the tree. The main advantage of such an organisation is that individual 
knowledge can be accessed directly by querying for the concept used to organise the 
knowledge rather than iterating over all available atoms independently to determine if they are 
relevant to a current query or not. 

 

 

Figure 18: Vertical Organisation. 
For example, in a sensor network scenario, a number of different readings, such as temperature, 
wind force, wind direction etc. may be available for a number of different locations, e.g. each city 
in Europe (Figure 18). Assuming that each sensor exposes the Atom concept and registers itself 
into the scope of a knowledge network, then these atoms can be organised automatically based 
on the concepts they reflect.  
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Figure 19: Example – Vertical Knowledge Organisation. 
As depicted in Figure 19, all sensors are grouped based on their type, e.g. temperature. 
Furthermore some sensors are then grouped to higher concepts such as wind, clouds or 
weather as the top level container in this example. Horizontal structures, as depicted in Figure 
19, are those relationships that enable to organise knowledge that is conceptually located at the 
same level of abstraction.  

 

Figure 20: Horizontal Organisation. 
Such structures can be used to choose and select an area in the knowledge space on the basis 
of given attributes. For instance, each sensor in the sensor network scenario above, may exhibit 
the concept of its location, e.g the sensor is located in London. Then all atoms that are also 
located in London may be organised into a single container independent of their type, reading 
etc. Horizontal structures are likely to be (conceptually) distributed on a wider area than vertical 
ones and as such are not so fine-grained. Therefore such structures may be faster to query that 
vertical ones.  
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4.7 Knowledge Network Components and ACE’s 
In this section we are going to sketch some ideas about how the relationship between 
knowledge networks and ACE’s. These kind of relations are fundamental since: 

1. The components of the knowledge network will be implemented by means of ACE’s 
2. Application-level ACE’s will access the knowledge network to acquire context 

information. 
Before describing the above two relations let us briefly recap the ACE architecture as currently 
proposed in WP1 (see Figure 21). 

 

Figure 21: Currently proposed ACE architecture (the specific interface has made more 
explicit than in the ACE architecture discussed in D1.1). 

The ACE architecture is composed of six main parts: 

1. The specific part is where the specific services of an ACE are located. For example, an 
ACE offering some kind of message delivering service will have in the specific part all the 
code dealing with the actual delivering of messages. 

2. The self-model is a Finite State Automaton (FSA) describing the behaviour of an ACE. 
Specific transition in the FSA triggers the methods in the specific part. For example, 
depending on its self-model, the ACE decides whether to fulfil a request or not, and 
which specific service to employ. 

3. The reasoning engine runs the self-model triggering state transitions on the basis of 
received events 

4. The communication between the ACE and the external world takes place either with a 
discovery protocol called GA-GN (this discovery is carried on by the common interface), 
or by specific messages to access the ACE specific functionalities (these messages are 
handled in the specific Interface1).  

                                                 
1 The ACE architecture we present here is the same that has been defined in WP1, and that is actually described in 
D1.1. However, in order to better clarify how KN components can be implemented via ACEs, we have made more 
explicit than in D1.1 the presence of a specific interface.   
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5. The facilitator is the component in charge of enforcing autonomic behaviours by 
changing dynamically the self-model’s FSA. For example, the facilitator can add new 
states to the FSA or rewire its links to change the ACE behaviour. 

This ACE architecture provides a good separation of concerns between the various parts of an 
ACE, and enforces flexibility and autonomic behaviour. 

4.7.1 Implementing Knowledge Network Components with ACEs 
Now, by recalling that Knowledge Atoms (KA) and Knowledge Containers (KC) are the two main 
components of the knowledge network, Let us know show how noth these two components can 
be readily mapped in the ACE architecture. 
 
For a Knowledge Atom (see Figure 22): 

• The specific part comprises the methods to access underlying information sources as 
well as individual reasoning and knowledge processing capabilities. Which capabilities 
are to be implemented differs from KA to KA.  

• The self-model maintains the state of the aggregation process. It may be a finite state 
automaton indicating what the KA is doing. For example, it can simply be an automaton 
with 2 states: “collect data” and “sleep”. The KA cycles between these two states. 

• The facilitator changes the self-model to enact autonomic algorithms, possibly changing 
the way in which aggregated values are computed. 

• With the GN-GA protocol  the KA can describe to enquiring ACE’s which knowledge it is 
able to produce. For example, it can express semantically in its GA message that it 
“provides the average temperature over a specific area”. 

• Finally, a message handler in the  specific interface could be in charge of delivering 
the proper knowledge, provided by the KA, to a requester (e.g., actually get the proper 
average value). 

 

 

Figure 22: Knowledge atom implemented in the ACE architecture 
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For a Knowledge Container (see Figure 23): 

• The specific part comprises the methods to link (i.e., hold a reference) to the various KA 
• The self-model maintains the state of which KA are contained (i.e. linked) by the KC and 

decides whether to link to new ACE or to remove previously existing links. 
• The facilitator can change the self model to deal with unexpected situations. For 

example, if a network link to a KA breaks down, the facilitator can change the self model 
to reflect the fact that KA is no longer available. 

• With the GN-GA protocol the KC can describe both that it can offer a reference to a 
collection of KA (this is the GA message), and that it is looking for KA to aggregate (this 
is the GN message). 

• Finally, a message handler in the specific interface could be in charge of providing an 
access to specific KA in the KC collection. 

 

 

Figure 23: knowledge container implemented in the ACE architecture. 

4.7.2 How application ACE accesses the Knowledge Network? 
Given that the knowledge atoms are implements as ACE, the access to the knowledge network 
is similar to invoking services to an ACE: 

• An application ACE will express its need for knowledge by means of a GN message. 
• Suitable knowledge atoms will answer with their GA message. 
• The knowledge atom will also provide a reference in its specific interface to a specific 

message handler (e.g., get average) 
• The application ACE sends a “getValue” message to the handler 

Page 38 of 72 



 

IST IP CASCADAS  

“Bringing Autonomic Services to Life”

 

WP5: Knowledge Networks

Knowledge Networks 
Specifications, and Description of 

Alpha Software

 

 

Page 39 of 72 

• The knowledge atom responds with the value.  
Naturally, ACE discovery services will be applied also to knowledge atoms to let “application” 
ACE retrieve suitable knowledge information. Similar consideration applies for an ACE trying to 
access a knowledge container.  

In addition, in each ACE, its self-model can be considered as a knowledge atom, which 
represents its internal self-model. Such self-model, can become part of a knowledge network 
simply by having it registered into a KC (typically, the ACE will also act as a KC for itself, to 
enable its internal model to become part of a larger knowledge network). We emphasize that in 
our view, knowledge atoms are not static, but can contain dynamically varying information, 
which is in line with the ACE idea of having an internal facilitator in ACE’s that continuously 
updates the self-model. 

4.8 Checking Knowledge Network Specifications Against WP6 
Requirements 

During the specifications identification work, we have always kept into account the requirements 
identified in WP6. The result is that the above described specifications either already meet such 
requirement or have been conceived so as to make it possible to meet such requirements in 
next developments. Below, we copy the WP5 requirement table that can be found in D6.1, with 
an additional column shortly discussing how each of the requirements have been (or is to be) 
met. 

WP Functional
/ Non 
Funct. 

Scenario Requirement Answer 

R_5_1 F * Knowledge networks must support for a
virtual view of environment to facilitate the
concept of interest to adapt to changing
conditions 

Knowledge Atoms are sorts of virtual sensors 
that can provide a virtual view of the 
environment 

R_5_2 F * There must be support for distribution of
knowledge across a dynamic network 

Knowledge networks can be distributed, and 
mechanisms for distributed knowledge 
management are being studied 

R_5_3 F * There must be support for self-similar Knowledge containers can promote self-
similar aggregation of knowledge and 
perception at different granularity levels 

knowledge aggregation and for access to
knowledge at different granularity levels 

R_5_4 F SH/UM There must be support to represent and
manage knowledge related to the user and
the social level (user and social context
profiling). 

 

Knowledge atoms, as virtual sensor, can 
embody any kind of knowledge, there 
included user and social context. 

R_5_5 F * There must be support to represent and
manage knowledge related to the ACE level
(profiling of ACEs and of their dynamic and
aggregated status) 

 

ACEs can expose their self-model as a 
knowledge atoms, to that knowledge network 
can include knowledge about ACEs. 

R_5_6 F * There must be support to manage in an
integrated (cross-layer) way user-level, ACE-
level, and network-level, knowledge. 

With the concept of knowledge atom as 
virtual sensors, various knowledge atoms 
managing different type of knowledge can be 
integrated with each other. 

R_5_7 F * There must be support for construction and
management of aggregated distributed
knowledge. 

 
Knowledge atoms and knowledge container 
can be use to build, via proper algorithms, 
aggregation of distributed knowledge. 

R_5_8 F * To reach a high level of integration,
knowledge networks should provide standard
semantic mechanisms to organize and
compose heterogeneous information and
heterogeneous services. 

 

Although ontology does not enter the 
specifications defined so far, knowledge 
atoms and knowledge containers can be 
represented according to specific ontologies 
to enable semantic knowledge management.



 

IST IP CASCADAS  

“Bringing Autonomic Services to Life”

 

WP5: Knowledge Networks

Knowledge Networks 
Specifications, and Description of 

Alpha Software

 

 

Page 40 of 72 

WP Functional
/ Non 
Funct. 

Scenario Requirement Answer 

R_5_9 NF * To achieve a proper reconfiguration
meaningful context information are to
collected with high time granularity. 

Knowledge atoms are connected with data 
sources and can always provide up-to-date 
information. 

R_5_10 NF * Knowledge networks should provide also for
producing and organizing new knowledge,
inferred from existing one (e.g., for the sake
of prediction). 

Proper algorithms for knowledge 
management can be used to have new 
knowledge containers that represents 
somewhat new knowledge inferred from the 
information of contained knowledge atoms. 

R_5_11 F * It may be necessary to protect selected
sensible parts of knowledge networks from
attacks (or, which is the same, knowledge
networks must be able to exploit the security
services of WP4).  

Being possible to implement knowledge 
network components in terms of ACEs, 
whatever security solutions will be envisioned 
for ACEs this will be also immediately 
applicable to knowledge network 
components. 

R_5_12 F SH/UM There must be support for spatial knowledge
and spatial representation of situations. 

 The concept of location is explicitly part of 
knowledge network components. 

R_5_13 F WA There must be support for semantic
knowledge and shared ontologies to facilitate
interoperability 

See answer to R_5_8. 

    

5 Mechanisms and Applications of Knowledge Networks 

In this section, we report on experiments being performed to test two specific mechanisms that 
promise to be of general use for the building of self-organized knowledge networks (namely, 
field-based overlays and self-organized region aggregation), and then sketches several use 
cases in which knowledge networks can be fruitfully applied both as a support to situation-
awareness and autonomicity.   

5.1 Self-Maintaining Overlay Data Structures as Knowledge 
Networks 

A general mechanism we studied and experimented with to support the activities of knowledge 
networks is based on overlay field-based data structures. These overlays are distributed data 
structures encoding specific aspects of the ACEs’ operational environment. They can be 
propagated across a network as a sort of virtual force field, in order to represent and 
“communicate” context information.  

From a modeling perspective an overlay data structure can be modeled as a knowledge 
container (KC) collecting a number of knowledge atoms (KA) that constitute the distributed 
elements of the overly. 

The strength of these overlay data structures is that they can be accessed piecewise as the 
ACEs visit different places of the distributed environment. This lets the ACEs access the right 
information at the right location. ACEs interacting and perceiving their operational environment 
by means of these knowledge networks can disregard the underlying physical network and its 
dynamics (see Figure 24). 
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Figure 24: ACEs perceive a number of overlay data structures describing their 

environment. Each overlay is composed by a number of knowledge atoms. 
 

In addition, overlay data structures enable sorts of “stigmergic” interactions [BonDT99] in that 
ACEs' interactions can be mediated by these kinds of overlay “markers” distributed across the 
environment. From another perspective, overlay data structures generalize the idea of overlay 
networks. Overlay networks are basically routing distributed data structures providing ACEs with 
a suitable application-specific view of the network (i.e. they allow ACEs to perceive a specific 
overlay topology of the network) [Rat01]. Overlay data structures do not focus on network 
topology only. They are general-purpose and can encode any kind of context information, thus 
they are a perfect match for knowledge networks. 

To clarify this idea let us focus on the problem of coordinating the movements of some 
application ACEs in a distributed environment [MamZ06]. In particular, we focus on the simple 
application of having two persons, provided with a PDA, moving across an environment 
instrumented with an ad-hoc network infrastructure. The goal of the application is to allow one 
person to be guided by the PDA, to follow the other person. A simple solution based on overlay 
data structures is to let the person to-be-followed to spread in the environment (i.e., ad-hoc 
network) a data structure that increases an integer value by one at every hop as it gets farther 
from the source. This creates a sort of gradient that can be followed downhill by the other person 
to complete the application (see Figure 25(a)). If the person to-be-followed moves, it is important 
that the overlay data structure adjust its shape accordingly, so that the gradient leads to that 
person anyway (see Figure 25(b)). The power of this approach is that the knowledge network 
provides expressive contextual information tailored for that specific task. The ACE running on 
the PDA does not need to have any map of the environment, nor does it have to execute 
complex algorithms to decide where to go. It just blindly follows the overlay data structure. 
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(a) (b)  
 
Figure 25: (a) gradient overlay data structure enables an ACE to follow another one. 

(b) The data structure is updated to reflect the new ACE position.   
  

Beside this exemplary application, overlay data structures can be applied in a wide range of 
application scenarios, ranging from robotics to network routing: 

Motion Coordination. As already stated in the previous example, overlay data structures, spread 
across a properly networked environment, have been used in [MamZ06] for the sake of enabling 
ACEs (e.g. users carrying a PDA, robots, cars) to coordinate their respective movements. The 
goals of ACEs' coordinated movements can be various: letting them to meet somewhere, 
distribute themselves accordingly to specific spatial patterns, or simply move in the environment 
without interfering with each other and avoiding the emergence of traffic jams. As previously 
stated, overlay data structures provide suitable tools for this task, in fact, they can be accessed 
piecewise to guide ACEs motion step-by-step. 

Routing in a Mobile Ad-Hoc Network. Routing can be easily modeled as a coordination problem: 
ACEs (i.e. network nodes) need to cooperate forwarding each other messages to enable long-
range, multi-hop communication. The main principle underlying many routing algorithms is to 
build several overlay data structures (implemented by means of a set of distributed routing 
tables) suitable to provide route information. Specifically, these data structures create paths in 
the network enabling ACEs to forward messages in the right direction. These paths (i.e. data 
structures) are maintained to take into account changes in the network topology [Poo01]. The 
idea at the basis of distributed routing data structure is the same as motion coordination: provide 
ACEs with a ready-to-use representation of the context (i.e. where the message should go next). 

Swarm Intelligence. From a general perspective, overlay data structures are at the core of a 
number of swarm-intelligent (e.g. ant-inspired) systems [BonDT99]. These approaches mimic 
the way in which social insects, like ants, coordinate their activities to achieve complex tasks 
(e.g. the mechanism used by ants to find food can be used in the context of computer networks 
to route packets or find relevant resources). The key to these approaches is in emulating the 
way in which ants interact with one another. They do so by means of pheromone signals they 
spread in the environment that will be perceived by other ants later on. These pheromone 
signals can be used to find food sources, or to coordinate efforts in moving some heavy objects, 
etc. Pheromone signals can be easily modeled by means of overlay data structures. Overlay 
data structures implementing the concept of pheromone could be distributed by the ACEs 
themselves as they move across the network. These data structures can then be used as trails 
driving ACEs' activities. For example, the research projects Anthill [BabM02] and SwarmLinda 
[MenT03] share the idea of applying ant-inspired algorithms to Internet-scale Peer-to-Peer 
systems. Here, overlay data structures - modeling ants' pheromones - create paths connecting 
peers that share similar files, thus enabling, for example, an effective content-based navigation 
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in the network of peers. 

Amorphous computer. Overlay data structures are at the core of the amorphous computer 
[Nag02] research. An amorphous computer consists of massive numbers of identically-
programmed and locally-interacting computing nodes, embedded in space. Overlay data 
structures can be spread and deployed in the amorphous computer to let various patterns and 
shapes emerge among the computational particles. Just to mention few trivial examples, if a 
leader particle spreads a hop-increasing overlay data structure (as defined above), it is possible 
to create approximately circular regions of controlled size: particles sensing the overlay are able 
to determine if they are in or out a specific circular region of radius R (i.e. they are in if they 
sense the data structure with a value lower than R). Similarly, if a line of particles propagate the 
above data structure, stripes instead of circles can be identified in the amorphous computer. 

Modular Robotics. A modular or self-reconfigurable robot is a collection of simple autonomous 
actuators with few degrees of freedom connected with each other. A distributed control algorithm 
is executed by all the actuators to let the robot assume a global coherent shape or a global 
coherent motion pattern (i.e. gait). Some proposed approaches adopt overlay data structures to 
control such a robot [SheS02]. A distributed shape or motion gait is encoded by means of 
overlay data structures spread across the robot specifying how the robot's actuators should 
bend. Robots are programmed to bend their actuators depending on the sensed data, thus 
realizing the prescribed motion gait. 

The fact that overly data structures have been successfully employed in all these scenarios 
motivate their adoption in knowledge networks to serve as a general mechanisms to encode 
context information and make it available to ACEs. 

5.1.1 Modeling Overlay Knowledge Networks and Their Self-
Maintenance Algorithm 

From a modeling perspective an overlay data structure can be modeled as a knowledge 
container (KC) collecting a number of knowledge atoms (KA) that constitute the distributed 
elements of the overlay. In particular, the KC expressing overlay data structures can be defined 
by means of a couple  (C,P). The content  C can be an arbitrary data structure representing the 
information carried on by the knowledge atom. The propagation rule  P determines how the 
overlay data structure should be distributed and propagated across the network. This includes 
determining the ``scope'' of the overlay (i.e. the distance at which it should be propagated and 
possibly the spatial direction of propagation) and how such propagation can be affected by the 
presence or the absence of other data structures in the system.  

The conceptual links between the knowledge atoms (expressed by the propagation rule) 
represent an example of horizontal knowledge organization. 

In addition, the propagation rules can determine how the content  C should change while it is 
propagated. Overlay data structure are not necessarily distributed replicas: by assuming 
different values in different nodes, they can be effectively used to shape a structure expressing 
some kind of contextual and spatial information. In addition, a maintenance mechanism should 
be enforced to let the overlay data structure preserve its intended distribution  (C,P) despite 
network contingencies. 

The idea of overlay data structures can potentially be implemented on any distributed 
infrastructure providing basic support for data storing (to store data values), communication 
mechanisms (to propagate overlay data structures) and event-notification mechanisms (to 
update overlay data structures and notify ACEs about changes in overlay data structures' 
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values). 

In most of the application scenarios described in the previous section, the main context 
information to be stored by an overlay is the hop-distance form the source. Hop-based overlay 
data structures are those having a content (C) and a propagation-rule (P) that depend only on 
the hop-distance from the source. Hop-based overlay data structures enable to express and 
diffuse across the network (possibly within a bounded scope) contextual information related to 
the network distance from the source. These kind of data structures have been widely used in 
motion coordination, routing and location-based-information-access applications. We designed 
the  Hop data structure as a basic template to build this kind of overlays. In particular, the  Hop 
data structure has a integer hop-counter (hop) as a content. Once one of these data structures 
is injected in the network, it propagates breadth-first maintaining the hop-distance from the 
source. These overlay data structures have to be maintained despite network topology changes 
either due nodes mobility or failures. The self-maintaining algorithm that will be described next 
performs exactly this task. The strength of these data structures, from a software engineering 
point of view, is that ACEs have simply to inject these data structures without further taking care 
of their update. All the burden in maintaining data structures is moved away form the ACEs. 

Other than the modeling phase, we designed an algorithm to enable hop-based data structures 
to self-maintain their distribution despite network dynamism. To describe this algorithm, we will 
use the term knowledge container KC to refer to the whole distributed overlay. We will use the 
term  knowledge atom KA to indicate a single piece of the overlay stored in a single node. For 
example a  Hop KC is made of a number of  KA each stored in a node of the network. Recall 
that a  Hop KCs propagates increasing its integer content by one at every hop. Given a local KA 
of such a KC called ‘X’, we will call another KA ‘Y’ a  supporting KA of ‘X’ if: ‘Y’ belongs to the 
same KC as ‘X’, ‘Y’ is one-hop distant from ‘X’, the value of ‘Y’ is equal to the value of ‘X’ minus 
one. With such a definition, a supporting KA of ‘X’ is a KA that could have created ‘X’ during its 
propagation. Moreover, we will say that ‘X’ is in a  safe-state if it has at least a supporting KA, or 
if it is in the node that first injected the KC (i.e. hop value = 0). We will say that a KA is not in a 
safe-state if the above condition does not apply (i.e. it has not any supporting KA and it has a 
hop value greater that 0).  

The basic idea is that a KA that is not in a safe-state should not be there, since no neighbor data 
could have created it. 

Each local KA can subscribe to the arrival or the removal of other KA of its type (i.e., belonging 
to the same KC) in its one-hop neighborhood. Upon a removal, each KA reacts by checking if it 
is still in a safe-state. In the case a KA is not in a safe state, it erases itself from the local node. 
This eventually causes a cascading deletion of KA until a safe-state KA can be found, or the 
source is eventually reached, or all the KA in that connected sub-network are deleted. 

In the case a KA is in a safe-state, the removal of neighbor KA triggers a reaction in which the 
KA propagates to that node. It is worth noticing that this mechanism is the same as when a new 
node is connected to the network. Similar considerations apply with regard to KA arrival: when a 
KA senses the arrival of a KA having a value higher than its own plus one, it means that, 
because of topology changes, a short-cut leading to the source has been created. In such a 
situation the KA can propagate to the new node to overwrite the previous KA, fixing the KC 
shape. This set of mechanisms is enough to make  Hop KC self-maintain. 

5.1.2 Experiments  
The effectiveness of our approach is of course related to costs and performance in managing 
overlay distributed data structures.  
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The cost of propagating a data structure, relying on a multi-hop mechanism, is something 
inherently scalable. Each node will have to propagate the data structure only to its immediate 
neighbors. The size of the network does not matter since the global effort to spread the data 
structure is fairly partitioned between the constituting nodes. 

The scalability of data structures maintenance is less clear. The main requirement for our 
algorithms is to be independent of the network size. This implies maintenance operations must 
be confined within a locality from where events that altered the data structure (e.g., a network 
topology change) happened. If it is so, concurrent events at distant points of the network do not 
accumulate locally. If, on the contrary, maintenance operations always spread across the whole 
network, distant concurrent events do accumulate and the system does not scale. 

With regard to Hop data structures, establishing if maintenance operations are confined to an 
area neighboring the place in which the network topology had actually changed is rather 
complicated. The size of this neighborhood is not fixed and cannot be predicted a-priori, since it 
depends on the network topology. 

 

(a)  

(b)  
Figure 26: The number of maintenance operation decreases sharply with the hop 

distance from topology reconfigurations caused by: (a) random node movements for 1 
wireless radius. (b) random node movements for 1/4 wireless radius. 

  
Thus, trying to answer, we exploited a knowledge network simulator developed within our group 
over Repast  (see also Section 6), and performed a large number of experiments to measure the 
scope of maintenance operations. To perform the experiments, we run several simulations 
varying the node density and their initial position. In particular, we run six sets of experiments 
where we randomly deployed 200, 250, 300, 350, 400, 450 nodes in the same area; thus 
obtaining an increasing node density and a shrinking network diameter. All the experiments 
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were repeated a large number (over 100) of times with different initial network topologies and 
the results were averaged together. The experiment consisted in a randomly chosen node 
injecting a  Hop data structure in the network. After that, randomly chosen nodes start moving 
independently (following a random waypoint motion pattern) perturbing the network. In 
particular, a randomly picked node moves randomly for a distance equals to 1 wireless radius. 
This movement changes the network topology by creating and disrupting links. The number of 
messages sent between nodes to adjust the data structure, according to the new topology, is 
recorded. Specifically, we evaluate the average number of messages exchanged by nodes 
located at x-hop away from the moving node. Then, we average these numbers over a large set 
of topology changes. The results of this experiment are in Figure 26(a). 

The experiments reported in Figure 26(b) have been conducted in the same manner. This time, 
however, nodes move for a distance of 1/4 wireless radius. This second set of experiments is 
intended to show what happens for very little topology reconfigurations (wider reconfigurations 
can be depicted as a chain of these smaller ones). 

The most important consideration we can make looking at the figure is that, when a node moves 
and the network topology changes consequently, a lot of update operations will be required near 
the area where the topology changes, while only few operations will be required far away from it. 
This implies that, even if the network and the data structures being propagated have no artificial 
boundaries, the operations to keep their shape consistent are strictly confined within a locality 
scope. This result is even more significant if compared to the average network diameter 
(averaged over the various experiments). It is easy, in fact, to see that the number of operations 
required to maintain a data structure falls close to zero well before the average diameter of the 
network, thus confirming the quality of our results. This fact supports the idea that the operations 
to fix distant concurrent topology changes do not add up, making the system scalable. 

In conclusion of this section, we foster the idea that overlay data structures are a powerful 
mechanism to support knowledge networks. In fact, they both enable the expression and 
retrieval of context information in a flexible and distributed way, and they can scale to large 
scenarios with a lot of ACEs being supported by knowledge networks. 

5.2 Self-organized Region-based Knowledge Aggregation 
An additional mechanism for knowledge networks concern distributed knowledge aggregation in 
large scale ad-hoc networks, i.e., sensor networks.  

In the next few years, we will assist to an increasing presence of sensors in our environments.  
There will be sensors deployed in our cities, in the countryside and possibly even in open waters 
for monitoring marine life. Probably, such mass deployment of sensor network systems will 
induce a radical change in their usage. Rather than being closed special-purpose systems 
devote to specific phenomena, as they are today, they will form the basis of truly pervasive 
shared sensing infrastructure, publicly available for general-purpose sensing activities by a 
variety of users [MulA06, Cur05]. In general, such pervasive sensing infrastructure can be of 
help to human, mechanical, or digital “users” to achieve higher degrees of perception and 
context-awareness. The need to effectively gather environmental information in a compact and 
energy efficient way, also by mobile users other than by fixed sinks, calls for algorithms enabling 
in-network aggregation of data and identification of relevant patterns. Knowledge networks aim 
to fill the gap between the physical world and user level services providing an efficient way to 
collect and provide contextual knowledge. To reach the goal they need mechanism and 
algorithms to collect, organize and infer existing and new knowledge. 
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One of the most basic primitives needed to organize data is aggregation. Using it we can select 
an item or a group of items from a set belonging to a common property. Aggregation is a very 
general primitive and can be used to aggregate sensor with similar readings but also persons, 
services, devices showing a common pattern. We can select for example all the persons 
dressing a red hat in the university campus or all the routers deployed in the second floor which 
are not busy since two hours ago. In general we can consider everything in the physical world as 
a sort of sensor exposing a particular set of values. Starting from these considerations, we have 
developed and simulated an aggregation algorithm suitable for building and maintaining 
knowledge networks. In particular it can successfully realize a form of either horizontal and 
vertical aggregation. Over an existing environment fulfilled of sensing ACE’s exposing the KA 
interface we can inject this algorithm to build links between logically correlated KAs. Moreover 
we can exploit the formation of such logically correlated regions to compute, at no additional 
costs and on a per-region basis, other aggregated data. 

 (a)  (b)

© 
(d)

Figure 27: Individual Stages of Region Self-Organisation. 
 

It is interesting to note the subtle difference between the different ways by which horizontal and 
vertical aggregation store knowledge. The first one just establishes relationships between 
different KAs, building a sort of knowledge overlay in which related concepts or values are 
linked. The second one uses data coming from different KCs to compute and obtain a more 
structured vision of the environment. Figure 27 clearly highlights the differences between the two 
approaches. In Figure 27(a-b) different ACE’s exposing KA interface are represented with their 
physical channels used to communicate each other. Horizontal aggregation build a virtual 
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overlay of links between related concepts, every ACE continues to expose only the KA interface 
but can make available to the outside data related not strictly to its values but also to the whole 
region in which it is included. Now, we can imagine ACE’s belonging to the same region to be 
linked to a common KC. In Figure 27(c-d), the algorithm is used at the KC level. After the vertical 
aggregation process has been executed,  different KC are organized in a more structured way. 
For example regions A and B are recognized to be related. In this example we show a very 
distributed application of knowledge networks concepts, but it is important to have in mind that 
the described mechanisms should be suitable also for a simple and centralized implementation 
based, for example, on relational databases. 

5.2.1 The Region Aggregation Noise Algorithm 
As described before, our algorithm is divided into two different blocks, one performing horizontal 
aggregation and the other the vertical one: 

• A distributed algorithm is continuously running in the knowledge network as a sort of 
“background noise” with the goal of partitioning the network into regions characterized by 
similar patterns for sensed data; 

• The formation of such regions is then used to compute on a per-region basis, 
aggregations of sensed data, so that users and services accessing the network through 
the appropriate interface can be provided with such pre-computed aggregated data. 

Basically, our algorithm work as follows. Consider a network composed by different devices that 
are able to communicate each other. Each device is executing an ACE and expose values 
through the KA interface. Let si and sj be two ACE’s exposing a KA. They can be considered 
neighbors if they able to communicate. Define the values into by si and sj as v(si) and v(sj), and 
let us assume that a  generic distance function D can be defined for couples of v values (thus 
defining v as a metric space), i.e., D(v(si), v(sj)). Region formation is then based on interatively 
computing the value of the logical link l(si,sj) for each and every ACE of the system, as in the 
following “Update_link” procedure: 

 

Update_link: 

if D(v(si),  v(sj)) < T {  

 l(si,sj) = min(l(si,sj) + delta, 1) 

} else { 

 l(si,sj) = max(l(si,sj) - delta, 0) 

} 

 

Where: T is a threshold that determines whether the measured values are close enough for 
l(si,sj) to be re-enforced or, otherwise, weakened, and delta is a value affecting the reactiveness 
of the algorithm in updating link.  What is already clear, though, is that after some iterations, if 
the D(v(si),  v(sj)) is lower than threshold T, l(si,sj) will converge to 1 otherwise to 0. In the 
simplest case, one could consider two nodes si and sj to be in the same region when l(si,sj) is 
over a threshold Th, However, to improve stability, we introduced a hysteretic cycle with two 
threshold Tl and Th.  
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Concerning T, a challenging issue in our approach consists in tackling the difference between 
the strictly local nature of “Update_link” interactions and the inherently global meaning of the 
threshold T. How can two nodes evaluate which is the right threshold to establish if they are 
similar enough to be in same region or not if they don't know anything about the rest of the 
network ? For instance, a difference of 10°C in a wood can be considered relevant during 
normal days but irrelevant for the sake of fire detection. To deal with this problem avoiding the 
need for a priori information, we opted to define T by exploiting dynamically collected global 
values of the property v. In particular we define T as a portion of the whole range of values seen 
over the network. Using scalar values, we defined T as:  

 

T = (globalMax – globalMin) * p  

 

where p is a real number between 0 an 1. By this way, one can parameterize the sensibility of 
the algorithm by using a relative value p rather than some absolute value requiring a priori 
knowledge on the whole range of v values. If one wants to obtain very large regions to organize 
the network based on macroscopic difference one can select p close to 1. If one is interested in 
more fine-grained region organizations one can select p close to 0. It is worth emphasizing that 
globalMax and globalMin are just two possible global values to be used to partition the 
environment into regions. 

The distributed execution of the algorithm is based on a sort of gossip scheme [Bab05]: each 
ACE periodically wakes up, randomly selects a specific number (or a specific percentage) of its 
neighbors, exchange with them the needed data (i.e., the v values, plus other data that will be 
detailed in the following), and then execute the “Update_link”  procedure for each of the selected 
neighbors: 

 

Do_forerever: 

 Wait(t); 

 neigh[] = Select_neighbor(num_neigh); 

 Foreach(neigh[]) 

  Data = Exchange_data(); 

  Update_link(data); 

Done 

 

By considering the situation in which regions are already formed, computing aggregation 
function in a region reduces to executing a gossip-based aggregation algorithm only between 
those couples of neighbor ACE’s that are in the same region (i.e., for which the l is over the Th 
threshold). Again, computing per-region aggregation function does not introduce significant 
additional burden to the network. The exchange of data between nodes can occur by 
piggybacking over the existing messages, and the computation of local aggregation algorithms 
reduces to adding a simple “Local_aggregation” function in the main body of our basic scheme, 
as follows: 
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Do_forerever: 

 Wait(t); 

 neigh[] = Select_neighbor(num_neigh);  

 Foreach(neigh[]) 

  Data = Exchange_data(); 

  Update_link(data); 

  Global_aggregation(); 

  If(connected) Local_aggregation(); 
Done 

a)  b)  

c)  d)  

Figure 28: Examples of region self-partitioning. a) a sample scalar field with 4 regions 
with different values of a property v; b) a 500-nodes sensor network immersed in the 
above scalar field, with links representing the actual physical layer or, which is the same, 
the self-organization into a single global region (as it happens when p=1); c) example of 
the overlay region organization with p=0,4 leading to a partitioning into 2 “large” regions 
(we show only the logical links between the nodes that are logically connected); d) 
example of the overlay region organization with p=0,05 leading to a partitioning into 4 
smaller regions, 
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5.2.2 Experiments 
We have performed numerous experiments based on simulations using the adapted Repast 
framework (see Section 6). Our goal was twofold. First, we wanted to evaluate the effectiveness 
of the region detection algorithm. Second, we wanted to evaluate the convergence and accuracy 
level of the aggregation algorithms, and the trade-off between accuracy and energy 
consumption.  

The results of the simulations were obtained by simulating scalar fields in which the sensor 
network is immersed similar to that of Figure 28-a. Though we have conducted several 
experiments on fields with different shapes and values, we have always obtained comparable 
results from both qualitative and quantitative viewpoint. Therefore, we report here on an 
environment filled with 500 wireless sensors disposed over a random graph such that the mean 
number of neighbors for each node is 15 (i.e., qualitatively assimilable to the sensor network of 
Figure 28-b). The simulated scalar field exhibits values v such that four different quadrants are 
recognizable (as in Figure 1-a). Each quadrant has a fixed mean m and variance s. Starting from 
the top left quadrant and proceeding clockwise, they could be identified as q1, q2, q3, q4. Mean 
values m1..m4 of f in q1..q4 are respectively 120, 80, 20, -20. Variances s1..s4 are arranged such 
that in each quadrant are allowed values v in range [m – 2, m + 2].  

Network behaviour can be described from both a static and dynamic point of view. From the 
former we can analyze, independently from the speed of convergence, which are stable states 
reached by the network and evaluate the effects of related parameter p. From the latter we show 
the dynamic behavior of the network, the speed of convergence and the accuracy level 
depending on  num_neigh and t. 

Let us first focus on region detection. 

From a static viewpoint, as described in Subsection 2.1 and as shown in Figure 1, variations on 
the parameter p induce the network in self-partition into regions of different sizes. The same 
behavior has been verified to apply for networks immersed in fields with different shapes and 
with different sizes, as in Figure 28(b-d)). 

Let us now switch to the dynamic viewpoint and show how variations of the gossip percent 
num_neigh and the sleep cycle t affect the speed of convergence and the accuracy of the region 
detection algorithm. Let’s consider a simulated a 500-nodes sensor network and a scalar field 
similar to that of Figure 28. Initially all nodes are not connected with any neighbor. We collect 
data over the first 255 cycles. Within cycles from 0 to 128 p is set to 0.4. During this interval the 
network converge to a status similar to that of Figure 1-c, i.e., splitting the network into regions. 
At cycle 129, we changed p from 0.4 to 1.0 , making the network re-compact into a single region 
(as in Figure 1-b).  

In Figure 29-a we show the evolution in the average number of nodes per region as time 
passes, by varying the gossip percentage. Figure 3-b shows the same kind of evolution but by 
varying the sleep period t of sensor nodes. Values are collected at the completion of each 
simulation cycle. Both the graph show that the number of nodes of the region start from 0, grow 
to 250 during the first phase [0 – 128 cycles] and than reaches 500 during the second phase 
[129 – 255 cycles]. Clearly, reducing the gossip percentage or increasing the sleep period t 
make the network slower in the region detection process.  

From Figure 29, it also emerges that the speed of the network is less influenced by variations of 
num_neigh  than by variations of t.   

The strange “stairs-like” trend of data lines obtained by setting t=4 and t=8 (Figure 29-b) clearly 
show the non-linear nature of the algorithm. These are mostly due to the fact that, when a region 
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is forming, lots of sub regions are growing within it connecting the most similar neighbors. Only 
when the new actual minimum ID of the new region reaches a node, such node recognize it is 
becoming part of a new region.  
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Figure 29: Evolution of region detection. a) t = 1. num_neigh = 1, num_neigh = 0.5, 
num_neigh = 0.25; b) num_neigh = 1. t = 1, t = 4, t = 8. 
Let us know focus on the behavior of the region aggregation noise approach in evaluating 
aggregated values. 

From the static viewpoint, all local aggregation algorithms experiences correctly reach 
convergence towards the corrent (real) value. 

From the dynamic viewpoint, Figure 30 shows the trend of several values aggregated on a per 
region basis. Curves in each graph represent the minimum (worst case) estimate of the region 
maximum, the maximum (worst case) estimate of the region minimum, the minimum and the 
maximum (the two worst cases) estimates of the average, and the real actual value of the 
average computed over all nodes within the growing region. Figure 30-a show results obtained 
with num_neigh=1.0 and t = 1. Figure 30-b and 30-c show results obtained reducing num_neigh 
to 0.5 and increasing t to 4, respectively, Clearly, reducing the gossip percentage or increasing 
the sleep period t make the network slower not only in region detection but also in correctly 
evaluating locally aggregated values. 

All the graphs in Figure 30 show the same trend. During the first cycles while links are being 
reinforced, all the aggregated values don’t change. At the beginning (cycle 0), when the region 
starts forming is clearly visible a fast convergence of the local maximum and minimum to their 
new values respectively of 120 and 80. Average related values have a relatively small transitory 
and eventually reach the value of 100 as expected. At cycle 128, p is changed to p = 1.0 and the 
region starts growing another time. The local maximum does not have to change its value. The 
local minimum reaches quickly its new value (-20) in a few iterations. Average values instead 
have a longer transitory but eventually slowly converge to the expected value of 50. Observing 
Figure 30 it is  clear that different aggregate values behave differently varying num_neigh and t. 
In particular accuracy of average related values are really more sensible to variations of  
num_neigh and t than the local minimum and maximum have.  

To summarize this, there is a clear trade-off between energy consumption and accuracy: higher 
num_neigh and the lower  t clearly provides for more accuracy over time, but overall increase 
the energy consumed. Due to the high convergence speed of Max e Min showed under all 
conditions tested and to the fact that regions are expected to have relatively limited size, 
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scalability of the region aggregation noise approach should not be a major issue. We tested it 
with sensor networks up to 10000 nodes obtaining similar results. 
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Figure 30: Per region aggregated values. Minimum estimate of the maximum, maximum 
estimate of the minimum, minimum and maximum estimates of the average and real value 
of the average. a) num_neigh = 1.0, t = 1; b) num_neigh = 0.5, t = 1;  c) num_neigh = 1.0, t 
= 4. 

5.3 Application Use Cases 
Other than having performed the above described studies, we have carefully evaluated via 
pencil and paper design exercise various possible usages of knowledge networks. We shortly 
overview here some of this performed studied. 

5.3.1 Living Diaries and Social Serendipity 
The living diary is a knowledge-network centric application, which aims at exploiting the 
pervasive devices embedded in an environment to produce a sort of digital self-composing diary 
in the form of a knowledge network. When a user moves in an environment (as in an exhibition) 
with a PDA and enriched with peripherals to access embedded devices (e.g., sensors and RFID 
tags) and to produce situational information (e.g., a GPS), this can generate a lot of elementary 
information about the context (i.e., knowledge atoms). On this base, a specific service (i.e., an 
ACE or a knowledge container devoted to manage such atoms),  can be in charge of collecting 
all contextual information that is gathered from the environment, and organize such information 
into a knowledge network that reports in an organized way all the facts, and events (e.g., people 
met and objects encountered) having occurred (see Figure 31).  The collection of knowledge 
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atoms describing the situations a user is in and has been – stored in PDAs or portable devices 
and possibly downloaded to some knowledge network repository on need – acts as an historical 
memory for the user. A user, on need, can then exploit a specific ACE to browse his living diary. 
As another example, in an exhibition center, it is possible to envisage some exhibition-specific 
ACE that, by browsing in the past the living diary of a user to detect detailed preferences and 
habit, can act as a personalized guide to the exhibition.  

As simple as it can be, the living diary shows very clearly how it may be useful to link pieces of 
knowledge together so that they can eventually represent a complex situation (in this case a 
complex history) and so as to make it possible to “navigate” the resulting knowledge network to 
make services become aware of situations. 

 
Figure 31: Example of Gabriella’s living diary in the form of a knowledge network. 

To put the living diary example forward, imagine an exhibition scenario where there is a sort of 
open place for people to meet or simply to rest (a cafeteria for example). We assume that such 
cafeteria is enriched with pervasive and wireless devices as the rest of the exhibition. When a 
user enters the cafeteria, some devices (e.g, an RFID reader) can recognize that such user has 
entered, so that the cafeteria is always aware of who’s in it. At this point, a user can decide to 
share with other users (either directly in an ad-hoc way or by mediation of some server of the 
cafeteria) his own personal profile, or even his living diary.  

By sharing (portions of) the knowledge networks representing the living diaries of the persons in 
the cafeteria, and by allowing group of ACEs to navigate such diaries, one can think of 
discovering relations between persons, common interests, or common past events (see Figure 
32). As a trivial example, ACEs can identify that two persons have just attended the same show 
in the exhibition, and can decide to signal this fact to them so as to promote socialization and 
exchange of experiences. More generally, ACEs can cooperatively explore the past life of users 
to discover facts and social affinities that users’ could have never discovered otherwise. In the 
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example of Figure 32, ACEs could discover that Gabriella and Franco already met in the past 
during a meeting.  This can be classified an a service supporting people-to-people coordination. 

Eventually, ACEs devoted to analyse, merge, and synthezise multiple living diaries, can extract 
useful synthetic information about the classes of persons that are currently in the cafeteria and, 
say, exploit such information for commercial (i.e., advertisement) reasons.  

 
Figure 32: Social serendipity at the Blogcafé by navigating and merging the knowledge 
networks (i.e., the living Diary) of different people. 

5.3.2 Overlay Field-based Knowledge Networks for Supporting 
Independent Living 

Consider a person, suffering from mild dementia, who has a problem in orienting himself even at 
home. Let us suppose such person lives in a smart house, with an embedded pervasive 
computing infrastructure made up of several sensing nodes and computational capabilities. On 
this base, such person can be supported via a simple mobile device (e.g., a PDA) to improve his 
spatial sense of the environment, i.e., by having the PDA giving him directions or suggesting him 
where objects and or persons can be found (see Figure 33). In other word, the idea is to exploit 
a pervasive computing infrastructure to improve the spatial-awareness of this person, which 
necessarily implies the associated software services to be spatial-aware. 

With this regard, knowledge networks have to provide a virtual view of the environment they are 
operating in to allow the concept of interest to be properly represented from a spatial 
perspective. The concept of overlay field-based knowledge networks discussed in Section 5.1 
perfectly fits this situation. In fact, we can assume that, in the distributed environment, an 
overlay knowledge network can be built such that: 

• the presence of an object or of a person of interest in an environment is translated into 
an overlay field-based knowledge network that propagates in the environment (whether a 
house or a larger environment such as an exhibition center); 

• self-maintenance algorithms provides for automatically updating the knowledge network 
as the person of interest moves or some object is moved; 
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The result is a sort of live knowledge network that, when queried by a user (better: when queried 
by some service component on the users’ PDA), can give directions on where the object or the 
person is (i.e., how far it is and in which direction). 

Again, this example shows that situational (spatial in this case) information cannot be simply 
considered as a set of independent knowledge pieces available somewhere. Rather, for a 
satisfactory adaptive orchestration of distributed activities (whether this is intended to be the 
orchestrated configuration of individual components or the coordination of distributed service 
components), the exploitation of local knowledge only may not be enough. Nor can one think of 
concentrating in a single site or of replicating anywhere all available knowledge, especially when 
this knowledge represents dynamically evolving situations, i.e., it is subject to obsolescence. 
The compromise is to enable components which need more than simply local knowledge to 
organize and correlate distributed knowledge into sorts of networks that enable distributed 
components to “navigate” through the available knowledge to attain, on demand, the required 
degree of contextual awareness.  

Figure 33: Supporting independent living in a smart home. 

5.3.3 Examples of Batch vs. On-line organization of Knowledge 
Networks 

The KN architecture developed so far provides two possibilities how to organise the location of 
knowledge within the knowledge network: batch and online (see also Section 4.6.1). Batch 
organisation means that data that is aggregated in a KC, is directly copied to this KC and it is 
typically stored at one place. Online organisation, in contrast, means that data in a KC is not 
necessarily stored in one and the same location. What is stored in an online organised KC are 
links to data sources, not the data itself. 

Let us now sketch some simple examples we have developed to clarify the usages of batch vs. 
on-line organization. 
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Figure 34: Combined KC, aggregating knowledge about a network. 
A KC describing a local area network and its parameters is an example where a combined 
knowledge organisation structure is most suitable (Figure 34). Information concerning design 
parameters of the described network may be copied to the KC, i.e. batch organised, because 
they will rarely change. This information can be e.g. the addresses of routers and servers, the 
link capacity between network elements, DNS entries, and so on. Parameters whose values rely 
on sensors are preferably stored online, i.e. the network describing KC just contains links to the 
original data sources instead of the values themselves. So, current bandwidth consumption, 
usage rate of routers or the current usage of services, available in the monitored network, can 
be obtained in real-time.  

Let us now consider an example in the area of traffic monitoring and regulation. In the scenario 
depicted below, the traffic situation in the city is monitored by road intersection counters installed 
at traffic lights. The traffic management system includes dynamic message signs, which informs 
car drivers about the current road situation and alternative routes. It can dynamically control the 
traffic lights as well as change the maximum allowed speed. As depicted above, intersection 
counters (car counters) are installed at the traffic lights which are controlling the traffic at the 
major road intersection points in the city. From the ACE model perspective, each counter can be 
seen as a knowledge atom (KA) which provides information (knowledge) about the amount of 
cars located at a particular road intersection point at a given time. In order to calculate the 
amount of cars located in a certain area at a particular time, the intersection counters need to 
exchange their knowledge about the number of cars at all involved traffic lights. The intersection 
counters 1, 2 and 3 exchange their traffic information among each other and build up horizontal 
knowledge organisation structures (Figure 35). In order to generate higher level knowledge and 
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recognise or predict certain traffic situations in our scenario (i.e. traffic jam recognition or 
prediction), it is required to combine the knowledge about the number of cars from the 
intersection counters with other types of knowledge like for example the weather forecast, day of 
the week and the current time. In this scenario the system combines different types of low level 
knowledge in order to generate high level knowledge and builds up therefore a vertical 
knowledge organisation structure. By combining the high level knowledge with other types of 
knowledge (both low and high level) knowledge containers (KCs) containing more complex 
knowledge structures could be built. In the example depicted in Figure 35, the knowledge about 
traffic jams is combined with the city map in order to generate the recommendations for 
alternative routes. 
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Intersection
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Intersection
Counter 3

jam prediction /
jam recognition Day / Time

Weather

City map

alternative route 
recommendation

Vertical know
ledge organisation

V2

V1
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Figure 35: Traffic situation monitoring scenario. 

5.3.4 Knowledge Networks for ACEs Discovery and Interaction 
The idea of Knowledge Networks can be successfully exploited to drive ACEs’ aggregation, i.e. 
by supporting ACEs in discovering other ACEs and interacting with them.  
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Clearly, it is possible to conceive that an ACE requesting the services of other ACEs manages 
on its own all the details about discovering other ACEs by comparing its GNs (“goal needed”, 
see also D1.1) with the published GA (“goal achievable”) and handling the interaction with all of 
them by invoking the right operations and passing well-formatted parameters to such operations 

However, it is also possible to consider that some intelligence substrate in the system (realized 
by a knowledge network) can support ACEs in this activity. In this case, one can think of ACEs 
depositing their GNs in the knowledge network, and have this action induce “aggregation 
reactions” to occur in the knowledge network. In particular, some kind of “enzyme ACEs” 
embedded in the knowledge network and having the form of a knowledge container, can be 
made capable of reasoning about (maybe) little pieces of the knowledge network, and can in 
charge of manipulating the deposited GN in trying to fulfill the service request. Analyzing the GN 
(expressed semantically with knowledge networks atoms), they find and put together other 
ACEs, that can participate in achieving that GN. If the mentioned concepts are unknown to the 
enzyme ACEs, no reaction will occur and the request will decay. 

TO exemplify this idea, let us briefly sketch a simple communication service, called Urgent 
Message Delivery (UMD). Let’s imagine a user application that needs to deliver text messages 
(e.g. urgent communications) to persons within an organization. The self-aggregation reaction 
process starts with the user ACE injecting into the environment a service request, expressed as 
a GN message. An “enzyme ACE” catches the request and exploits its known concepts to find, 
for instance, a device where the person may be logged-in (PDA, GSM phone, laptop). If this is 
the case, it then attempts to deliver (possibly interacting with other sibling enzyme ACEs into the 
system) the message to that device. Therefore, the service aggregation will comprise, for 
instance, the “log-in manager service” and the “SMS phone service” (if a GSM phone is used).  

If no “loggable device” can be exploited, it then seeks other ways to reach the person: for 
instance, using a location service (with RFID tags and wireless sensors), it detects that the 
person is currently in a certain room and that in such room there is a fax machine installed. The 
next possible aggregation strategy will likely put together the “localization service”, the “fax 
sender” service and others. 

The key principle of this knowledge-network-based service aggregation is that:  

• services are dynamically found and linked together to fulfill a GN;  

• such aggregation is performed by dedicated enzyme ACEs belonging to the knowledge 
network; 

• self-adaptation and autonomic behaviours can be enforced into enzyme ACEs and not 
necessarily into every single ACE; 

• services are aggregated in a situation-aware manner: if the situation changes (e.g. the 
GSM is no longer available), this is handled by reconfiguring the aggregation structure, 
replacing useless ACEs and finding new ones. 

For better developing the above idea, which is a sort of “embryonic” example of cognitive 
stigmergy, we expect strict interactions with WP1. 
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6 Alpha Software for Testing Knowledge Networks Concepts 

We shortly describe here the software modules we have developed so far to put knowledge 
networks to work and to test and evaluate knowledge network mechanisms. In-progress 
software development work and future development work are also discussed. 

6.1 Knowledge Network Components and KN Repository 
We have a number of components implemented to construct and test the knowledge network 
with. In short, these components are the knowledge atoms, the knowledge containers, with the 
respective interfaces for accessing to knowledge. The overall software architecture which has 
been developed so far enables building simple repositories of distributed knowledge (currently 
generated by simulated sources) and accessing them via the Web.  

In the absence of an ACE toolkit available (and of the corresponding communication protocols) 
at this stage of the project, a simplified XML-RPC mechanism has been chosen as the protocol 
to provide a distributed Web-based test environment. An existing library, helma.xmlrpc, which is 
part of the Apache XML-RPC project (http://ws.apache.org/xmlrpc/), has been used to 
implement this functionality which advantages can be summarised as follows: 

- XML-RPC is far more lightweight than Java's built in RMI support due to the fact that it 
only passes parameters rather than objects. 

- Java programs can use XML-RPC to connect directly to any other system supporting 
XML-RPC, rather than limiting connections to fellow RMI systems or having to use 
complex (and expensive) CORBA object request brokers. This also allows for direct P2P 
connections. 

- The use of HTTP as a transport substrate makes it relatively easy to integrate XML-RPC 
with web-enabled applications that spread across a heterogeneous computing 
landscape. 

- XML-RPC uses only a tiny subset of HTTP so that Java applications can easily avoid the 
overhead of full-scale HTTP processing. The core processing of XML-RPC takes 
advantage of Java's built-in understanding of TCP/IP. 

- XML-RPC allows a client to specify which method it wants to use and then looks for a 
handler. Because the reference is done by name, there aren't any stubs to manage or 
include, and changes can be made much more easily at runtime. 

In a nutshell, the XML-RPC approach provides a flexible mechanism to access individual 
components of the knowledge network and their methods directly via the RPC interface. Thus, 
each knowledge network component can be seen as a distinct resource that is accessible via a 
unique URI. This promotes one of the key objectives of the Cascadas project. That is to realise 
knowledge networks with independent and light weight components that can be linked together 
in a distributed environment. Furthermore, it allows for the dynamic extension of individual 
components in a way that specific services are added / removed at runtime. 

Individual client applications may use Java Remote Procedure Calls (RMI) to communicate with 
individual network components. The network itself may be composed of a number of distributed 
networks that also communicate with each other using RPC. On each computational resource, 
the network is made up of a number of containers and atoms with references to each other. For 
the simulation environment individual knowledge sources are also modelled by dedicated RPC 
handlers which can again be remote. 
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The basic architecture for the developed components hosted in this environment is shown in 
Figure 36. 

 

RPC 

RPC

RPC RPC

Client 

Knowledge Network Knowledge Network 

Container 

Container Container

Atom Atom Atom

Container

Container Container 

Atom Atom 

Server1 

Service1 Service2 

Server2 

Service3 Service4

 

Figure 36: Architecture of the Test Environment. 
Currently, the core of both types of components, atom and container, and specific handlers for 
the unique identification thereof, the provision of context related information and the dynamic 
registration of services were implemented. This allows the registration of atoms into the virtual 
space of a knowledge network which is identified by a web server that exposes the XML-RPC 
service. Furthermore client access to those components and their underlying (simulated) 
knowledge sources has been realised. As visualised in Figure 37, it is possible to register 
simulated knowledge sources to virtual knowledge network spaces as simulated by individual 
RPC services and to generically access those sources via the atom interface. Also, it is possible 
for clients (e.g., services and ACE – when the latter will be available) to access to knowledge via 
RPC. 
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Figure 37: Simulating Knowledge Networks 
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Figure 38: Weather example network. 
To evaluate the developed components and concepts we exploited the above software to create 
a dedicated demonstrator that simulates the hierarchical relations of a simplified yet distributed 
network for the provision of weather related data. The hierarchical relations of this data are 
depicted in Figure 38. 

Within this example three types of knowledge sources are available, though that number may be 
extended as desired. These measure temperature, wind force and wind direction, which are 
conceptually organised as shown. We have generated individual services for each concept in 
order to serve (simulated) sensed values for each type of sensor. These are made available 
through an RPC based service also registered to the web server that publishes the components 
of the knowledge network. Knowledge atoms representing each individual sensor are also 
generated and added to the web server, where we have around 1500 atoms representing the 
three different types of sensor for host of selected European cities. Each atom provides a 
standard interface allowing it to be accessed by any other component in the knowledge space, 
thus it is uniquely identifiable. Each atom is also self-descriptive in a way that it is equipped with 
a full set of metadata describing individual concepts of interests, including e.g. its type, its 
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location, its geographical region etc. each of these meta-data may be used inside the network 
for individual organisational purposes.  

This aggregation should produce the network hierarchy shown above, which is not known 
beforehand but may be derived based on the descriptive data of the atoms registered within the 
scope of the network.  

Other than the above components and mechanisms for hierarchical organization of knowledge 
components, additional software components to allow for individual knowledge organisation, 
there included a container component for managing the references inside the network and some 
distributed algorithms suitable to (self-)organize knowledge (as discussed in the following 
Subsection) also been implemented and tested. However, these components/algorithms have 
been not yet fully integrated with the main software. This implies that, so far, no automated 
organisation can be facilitated ‘inside’ the network, although this forms the cornerstone for the 
next development stage.   

  

 

Figure 39: The simulation environment. On the top there is a bar to control the simulation 
flow. The window on the right is to set the main parameters and in the centre is visible 
the main simulation window. 

6.2 A Simulator for Knowledge Network Mechanisms 
To demonstrate the organisational concepts related to knowledge networks in distributed 
settings, i.e., to test and evaluate the algorithms for overlay field-based data structures and the 
region aggregation noise algorithm, we have developed a simulation environment by extending 
upon the Repast simulator.  

The Repast simulator (http://repast.sourceforge.net/)  is fully based on Java, and provides a set 
of basic classes to build simulation of distributed computational scenarios, in which a set of 
“nodes” are immersed in a spatial environment and there can move and interact with each other. 
This makes Repast very useful to simulate spatially-situated distributed computational systems 
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such as swarms, ad-hoc networks, sensor networks, by extending the basic classes as needed 
to simulate specific behaviours for simulated nodes.  

We build upon Repast to simulate a number of computer-based nodes capable of interacting 
with each other in an ad-hoc way, capable of “sensing” properties in the environment, and thus 
acting as simulated KA. In particular, we used it to simulate and evaluate overlay-based 
approach and to test the region aggregation noise algorithms, via the development of 
appropriate KA classes to implement and run these algorithms in the simulation environment. 

A snapshot of the simulation environment is in Figure 39. 

6.3 Future Extensions 
At the time of writing, we are in the (quite advanced) process of integrating the above two 
software tools (see Figure 40). This integration will make the Repast simulation environment 
generate data, possibly pre-aggregated and pre-organized by proper distributed mechanisms 
such as the region aggregation noise simulated over a sensor network. Then, it will interface 
with the knowledge network repository to dynamically feed with data the knowledge atoms in 
there. The resulting software package, for which we do not exclude the possibility of integrating 
other sources of knowledge, will be of great use to demonstrate the possibility of exploiting both 
distributed and centralized mechanisms for building knowledge networks. 

Following this integration and the verifications of its functionalities, we plan add functionalities for 
coordination of distributed knowledge repositories and to integrate the knowledge network 
repository with some real data source (i.e., a real sensor network gathering real data from the 
environment and some PDAs gathering user data such as profiles and GPS position) and of 
developing some distributed knowledge network mechanisms over a real ad-hoc network of 
sensors and/or PDAs. The result will be a framework for both centralized and distributed 
knowledge network management, for which we will make available a proper interface for user to 
access and manage knowledge. Overall, this will form the so called “beta release” of knowledge 
network software (Figure 41). 

Later on, and in coordination with the other WPs, the beta release will be gradually transformed 
into a sort of knowledge service layer for the use of ACEs and possibly implemented by ACEs. 
In other words, we will transform the knowledge access interface into an ACE interface, and will 
gradually re-engineer the software so as to make it implemented in terms of ACE ensembles. 
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Figure 40: In-progress integration of the two alpha software modules. 

 

 
Figure 41: Possible scheme for beta release of knowledge network software. 

7 Conclusions and Roadmap 

The reported activities on knowledge network testify the achievement of a series of notable 
research results. In summary: 

• We  identified and agreed on a general reference architecture for knowledge networks; 
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• We managed to work out a sound set of structural specifications for knowledge network 
components and their organization: 

• We deeply studied and successfully experienced several distributed mechanisms and 
algorithms for managing knowledge; 

• We made a thorough analysis of the possible applications of knowledge networks for 
autonomic communication 

• We developed a set of alpha modules for testing with knowledge network concepts. 

In addition, within the workpackage, we have also well-defined ideas on how to proceed with our 
activities, to make the knowledge network idea a practical and usable tool for the support of 
autonomic communication services.  

Next steps will focused on two main threads of inter-related activities: (i) studying more 
advanced mechanisms for knowledge networks and (ii) advancing the study the issue of 
managing knowledge network ensembles and the development of the associated software 
infrastructure and tools. 

7.1 Knowledge Network Mechanisms 
The study of knowledge network mechanisms will concern algorithms by which it is possible to 
have a set of distributed “sensors” (i.e., knowledge atoms) self-organize with each other so as to 
autonomically and adaptively produce newly aggregated knowledge about a situation, with a 
particular attention to aggregation along the spatial dimension (which is particularly useful in 
pervasive computing scenarios). Self-organization and knowledge management along the 
temporal dimension will be explored too, as a possible mechanism to integrate advanced 
inference mechanisms in knowledge networks, and eventually being able to produce “prediction” 
about likely-to-occur situations.   

Also, we will study mechanisms which enable knowledge components (i.e., knowledge atoms) to 
self-aggregate along a general semantic dimension, other than along the spatial dimension. This 
implies having knowledge atoms (i.e., the knowledge within them) represented according to a 
specific ontology, and studying algorithms that makes it possible to self-identify semantic 
relationships between knowledge atoms, build in an adaptive way the corresponding semantic 
networks, and exploit these semantic networks to infer in expressive and powerful ways 
information about situations occurring in a context.   

At a later stage, we will eventually study how the overall framework identified for knowledge 
network can be fruitfully exploited as an infrastructure to enforce forms of knowledge-mediated 
interactions between ACEs. These would somewhat resemble forms of pheromone-mediated 
interactions in ant colonies, and would capture similar properties of self-organization and self-
adaptation, with the add-on of the possibility of being based on meaningful knowledge and of 
exploiting higher cognitive capabilities than that available by simple reactive ants. 

7.2 Knowledge Network Ensembles and Knowledge Network 
Software 

As a second thread of activities, we will explore the research issues involved in the management 
of situated knowledge network ensembles and in the exploitation of such knowledge by ACEs. 
Following the achieved identification of the structural requirements and of some basic 
mechanisms for knowledge management (which already reflects in the alpha software release), 
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we will continue researching how situated knowledge networks can be put to use, and how 
knowledge may be combined/split in differing scales of use by ACEs and ACE aggregates.  
A specific attention will be put on studying and experimenting how ensembles of knowledge 
components can be made available to components in a network (which implies identifying 
strategies for knowledge propagation) and how such knowledge can be made available at 
different levels of granularity, so as to enforce a self-similar perspective on knowledge 
management and access.  
Another related aspect that will be deeply studied concerns the requirements for knowledge 
networks to be scalable and light weight. While such properties can be achieved via various 
means, the nature of knowledge networks – which is overall a form of distributed data structure 
– suggests exploring methods and strategies for properly partitioning the ACEs forming the 
knowledge network across the network, as well as methods and strategies for self-adaptation of 
such distribution. The study of these strategies will be investigated also from a semantic and 
knowledge driven approach, and will possibly involve formulation of regression based models 
and self-growing cell structures (as found in the domain of unsupervised learning). 
Strictly related to the above, the task will focus on developing proper tools, metrics, and 
algorithms, for the evaluation and monitoring of knowledge networks. A particular attention will 
be posed on algorithms for increasing the reliability and the degree of trust in the knowledge 
provided by knowledge networks, that is, algorithms to enable a knowledge network to self-verify 
whether the interpreted/aggregated context is correct and consistent and, in the case of 
inconsistencies, making being able to determine the source of the failure try to resolve the 
inconsistencies. 
All these activities will also directly result in the continuous advance of the knowledge network 
software (along the lines identified in Section 6 and with the continuous integration in it of new 
mechanisms and tools), to become eventually part of the CASCADAS Open Source Toolkit. 
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