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1 Introduction 

Advances in IT and ICT have resulted in an exponential growth in computing systems and 
applications that impact all aspects of life. Nevertheless, scale and complexity of such 
systems and applications represent obstacles to further developments: configuration, 
healing, optimization, protection and in general management challenges are beginning to 
overwhelm the capabilities of existing tools and methodologies, and rapidly render the 
systems and applications almost unmanageable, not optimised and insecure. 

IBM introduced the Autonomic Computing initiative in 2001[10], with the aim of developing 
self-managing systems. The word autonomic is inspired by the functioning of the human 
nervous system and is aimed at designing and building systems that have self-
configuration, -healing, -optimization and -protection features. The human body’s 
Autonomic Nervous System is the part of the nervous system that controls the vegetative 
functions of the body such as circulation of the blood, heart rate, body temperature, the 
production of chemical ‘messengers’, (i.e. hormones) etc., thus hiding from the conscious 
brain the burden of dealing with these and many other low-level, yet vital, functions. In a 
similar way, autonomic computing refers to the self-managing of computing resources in 
order to hide complexity from operators and users. Systems make decisions, using high-
level policies from operators. It will constantly check and optimize its status and 
automatically adapt itself to changing conditions. 

With the growth of the computer industry, notable examples being efficient networking 
hardware and powerful CPUs, autonomic computing has been proposed as a direction to 
cope with the rapidly growing complexity of integrating, managing, and operating computer 
systems. The realization of autonomic computing is likely to result in a significant 
improvement in system management efficiency. 

Upon launching the Autonomic Computing initiative, IBM defined four general properties a 
system should have to constitute self-management: self-configuring, self-healing, self-
optimising and self-protecting. Since the launch of Autonomic Computing, the self-* list of 
properties has grown substantially. It now also includes features such as self-anticipating, 
self-adapting, self-critical, self-defining, self-destructing, self-diagnosis, self-governing, self-
organized, self-recovery, self-reflecting, etc. 
 

1.1 Self-organising Systems 
 

A key challenge of the autonomic computing initiative has been to draw upon self-* 
properties in systems other than computational ones in order to develop new computing 
systems. Biology has been a key source of inspiration. Group-living animals have provided 
inspiration for the field of collective, or swarm intelligence [6] which models problems 
through the interactions of a collection of agents cooperating to achieve a common goal. 
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For example, eusocial insects (ants, bees, wasps, termites, etc.) form colonies presenting 
a high degree of social organisation. In these systems, problems are “self-solved” in real 
time through the emergence of the appropriate collective behaviour, which arises from the 
sum of all interactions occurring between the agents and with their environment.  

The mechanisms that lead to self-organization in biological systems differ from those 
occurring in physical systems in that they are influenced by biological evolution. Thus there 
is the possibility of using algorithms inspired by biological evolution. These are part of what 
has been described as biologically-inspired or “nature-inspired” computing (the latter term 
chosen because of the breadth of natural complexity that does not usually fall into the area 
of biology). A diverse range of fields have been analysed, including evolution and genetics, 
bacterial adaptive mechanisms, morphogenesis and self-organising principles more 
broadly [12].  

Another aspect of the interest in self-organisation has been the development of interest in 
complex networks [5] as an application area for computer science. The reason for the 
extraordinary interest of the computer science community in complex networks is arguably 
two-fold: first, the re-discovery of “small world” effects by Duncan Watts and Steven 
Strogatz and second, the discovery of the “scale-free” properties of many man-made 
physical networks (e.g. the Internet) and overlays (e.g. the World-Wide-Web). 

The first experimental study of the “small world” effect was conducted by Milgram in the 
late 1960s [15] and demonstrated that complete strangers are often linked by a relatively 
short chain of acquaintances. The newfound popularity of the concept is attributable to the 
efforts of Watts and Strogatz to formalise it using graph theory [24, 25], which led to 
associating “small world” topological properties (e.g. logarithmic relationship between size 
and diameter) with efficiency in communication networks [21]. 

After Faloutsos et al. published their now famous paper [9] presenting experimental 
evidence that the Internet exhibited “scale-free” properties, the community realised that the 
work on random graphs initiated by Erdos and Renyi in 1960 [8] was a powerful tool to 
understand the dynamics of the Internet. Since then there has been much research effort 
on understanding the nature of the self-organising complexity that arises from use of the 
Internet, e.g., [19]. 

Further interest in developing self-organising systems has considered the role that 
decentralized control of distributed systems can play in self-organisation. Peer-to-peer 
networks can be used as a basis for self-organisation among elements, in order to develop 
complex adaptive systems [2, 3] or self-organising multi-agent systems [4, 7]. These draw 
upon the emergence of novel properties at the whole system level when many elements 
are brought together automatically, without being programmed in by system developers, 
and inspiration is drawn from biological systems.  

Babaoglu and colleagues have developed a number of systems in this area [2, 3], all of 
which draw upon a dynamic network of peers with some sort of adaptive agents interacting. 
Babaoglu et al. [3] review these models and a variety of others all looking at how to 
manage systems running on unpredictable network environments drawing upon biological 
inspiration. 

Page 6 of 65 



 

IST IP CASCADAS 

 “Bringing Autonomic  

Services to Life " 
 

D3.1.doc

 

 

The Agent-based approach has been, and remains, a rich area for the study of the 
emergence of self-organisation. For example, “artificial markets” have been studied for 
their potential in market-based control [27]. The aspiration is that if the appropriate 
interaction/trading rules are encoded into a population of agents, then the agents will be 
able to self-organise into “useful” structures/networks, where “useful” is defined in terms of 
an application context e.g. Supply chains, or trading markets. 

Di Marzo et al. [7] review different aspects of self-organisation in Multi-Agent Systems. 
They show how inspiration derives from natural systems (complex physical systems as well 
as natural systems). For example, the concept of stigmergy, derived from the behaviour of 
social insects, has also been important in inspiring the design of Multi-Agent Systems. 
Bernon et al. [4] review several examples of applications of self-organising multi-agent 
systems.  They show how Multi-Agent Systems can self-organise to carry out tasks, even 
though individual agents have very simple properties. The emergent properties of the self-
organising system support each application.  

Another important area of investigation of self-organisation has focused upon how 
individuals can cooperate to produce self-organising behaviour. Like other aspects of the 
analysis of self-organisation, this has been inspired by cooperation in nature, in systems 
ranging from microorganisms [23] to human beings [18]. 

Von Neumann and Morgenstern [18] provided the foundation for such analysis through 
their invention of game theory, enabling the investigation of how cooperative entities could 
overcome possible disadvantages of cooperation in the presence of cheating and other 
exploitation. Maynard Smith and Price [13] applied game theory to animal behaviour 
through their development of the evolutionary stable strategy, and this has led to the field 
of evolutionary game theory [20]. 

Cooperation has been studied using evolutionary games, following Trivers’ concept of 
reciprocal altruism [22] and Axelrod and Hamiltons’ evolutionary game models of it [1]. 
They used the so-called Prisoners’ Dilemma model, modelling the interaction between two 
prisoners in identifying the strategies they should adopt in cooperation with each other and 
with their jailers. 

In the one-stage Prisoners’ Dilemma model, the prisoners only interact once. But a more 
realistic and more general scenario is that interactions are repeated over time, allowing 
individuals to react to previous past behaviour. The Iterated Prisoners’ Dilemma (IPD) 
implements this, and diverse strategies varying over time and space have been studied, 
showing how cooperation can emerge and be maintained despite the potential for cheating 
and other malicious behaviour. 

But the conditions supporting the emergence of cooperation as found in the IPD may not 
always be detectable in more complex real-world scenarios, accordingly there has been 
interest in other techniques for the analysis of individuals in order to detect their advance 
potential for cooperation and participation in self-organising activities.  

One such area focuses on means of determining the reputation of individual agents as a 
means of assessing whether interactions with them are worthwhile, e.g., [14, 16]. Other 
mechanisms work on the establishment of trust between potential cooperators, through 
links such as a “web of trust”. Both these areas of activity have great potential in facilitating 
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the emergence of self-organisation through cooperation, and accordingly are attracting 
considerable interest in autonomic and other areas of distributed computing. 

Overall the concept of self-organisation has motivated a great deal of research that 
promises to have considerable impact on emerging autonomic computing and 
communications technologies. 

2 Aggregation algorithms and overlay topology 

The first phase in the work of WP3 is to address “aggregation” which means the process by 
which nodes form associations (“links”) with other nodes. In abstract terms we call this 
“clustering” and we imagine that each node has a certain “type” and prefers to have links 
with nodes of the same type. Hence an effective autonomous aggregation algorithm would 
be one which, when independently followed by all the nodes in a system, leads to an 
increase in the fraction of links which connect nodes of the same type. The converse 
(“reverse-clustering”) is simply the case where the nodes prefer to have links with nodes of 
any type other than their own type. 

In this section we introduce the clustering algorithm which forms the basis of our simulation 
work. We describe how one algorithm (termed “passive” clustering) had some of the 
features we desired in such an algorithm (simplicity, effective aggregation) but was 
unsatisfactory because of its undesirable distortion of the network topology (creating 
arbitrary “hubs” (highly connected nodes)). An adaptation of the “passive” clustering 
algorithm retains the desirable features and avoids the undesirable. We have focused our 
first year’s work on simulations using this “on demand” clustering algorithm. 

2.1 “Passive” clustering 
 

We devised a first set of basic local rules requiring only direct interaction between first 
neighbours yet susceptible to give rise over time to spontaneous system-wide aggregation 
of elements. Because it involves two nodes being notified by a third (the “match-maker”) 
that they are now connected in the overlay, even though those same two nodes have no 
part in the decision process, we refer to the corresponding logic as “passive” clustering. 

The rules are as follows: 

• One node, the match-maker, is randomly selected. This is equivalent to say that 
every node in the system has a chance of “waking-up” and initiating a rewiring 
procedure, provided that this procedure is brief enough (and/or infrequent enough) 
that a situation in which two concurrent rewiring affect the same nodes is  extremely 
unlikely, and so every attempt can be considered an independent event. 

• The match-maker randomly selects two of its own neighbours and, if they happen to 
belong to the same type, instructs them to link together 

• If the two chosen nodes were not already directly connected (through the overlay) a 
new link is established between them (i.e. they become first neighbour of each 
other). 
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• If conservation of the total number of links is in force (optional) and a new 
connection is successfully established, the match-maker terminates one of its own 
links with one of its two selected neighbours. 

 

2.1.1 Basic rewiring dynamics 
 

We originally envisaged that relevant dynamics would only be observed in systems 
comprised of more than one type of such elements, so that the decision to reorganise a 
region of the overlay (by creating, terminating or reallocating one or more links) could be 
influenced by some identifiable characteristics of the nodes (or elements) involved. 
However, benchmarking simulations made us realise that even in a network where all 
nodes are identical (i.e. of the same type or “colour”), applying the passive clustering 
algorithm could still have a dramatic effect on topology and so that even this apparently 
trivial case required in-depth investigation. 

We discovered that repeatedly applying the passive clustering algorithm to an initially 
random graph comprised of a single type of vertices resulted in the production of a different 
network topology, characterised by a highly heterogeneous node degree distribution.  

The most surprising aspect of this result was that it contrasted with the prediction of an 
apparently similar abstract model, which stated that the system should retain 
homogeneous node degree. The contradiction revealed a subtle difference between the 
rewiring dynamics of the numerical experiment and those described by the abstract model. 

The model can be summarised as follows: 

• A graph comprised of n vertices is represented by its (symmetrical) n × n adjacency 
matrix M in which M(i,j) = 1 denotes the existence of a link between i and j and M(i,j) 
= 0 the absence of such direct connection. 

• A rewiring attempt takes the form of randomly choosing three vertices i (the match-
maker), j and k so that if (and only if): 

( ) ( ) ( )( 1,1,, ) =− kjMkiMjiM   (1) 

a new link is established between j and k, M(j,k) ←1, and M(i,j) ← 0 so as to 
conserve the total number of links. 

This effectively means that if i happens to be in the position of a match-maker (i.e. is 
connected to both j and k) and j and k are not already connected together, a new link is 
established and an old one is severed, which is precisely the same sequence of events 
that would have occurred with the same 3 vertices i, j and k in the benchmark simulation. 

One immediately obvious difference though is that the probability of selecting vertices i, j 
and k for which condition (1) is verified is substantially different in the two procedures, as in 
the simulated implementation of passive rewiring, in effect, only the match-maker i is 
selected at random (“waking-up” probability). By contrast, j and k being chosen randomly 
but among the first neighbours of i, M(i,j) and M(i,k) are always equal to one. If this was the 
only difference however, it should only slow down the dynamics observed in the abstract 
model and not give rise to any qualitative difference. 
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The critical, less intuitive factor, turns out to be that the probability of a successful match-
making is directly proportional to the number of neighbours of the match-maker in the 
abstract model, because a higher degree implies a higher probability that M(i,j) = M(i,k) = 1. 
Since a side-effect of rewiring is that the successful match-maker loses a first neighbour (to 
satisfy conservation), this creates the conditions for a negative feedback (“rich becomes 
poorer”) in the abstract model, preserving homogeneity of node degree.  

This is not the case in the simulated implementation of the local rules. On the contrary, 
every node of degree higher than one has basically an identical probability of becoming a 
successful match-maker (if i is the match-maker, it only depends on the probability of M(j,k) 
being equal to zero, which in turn simply depends on overall link density) so there is no 
such negative feedback.  

The difference between the abstract model and the simulated local rules is illustrated using 
a simple example in figure 1. Because a connected graph of five vertices and four edges 
can only exist in three different states, it is relatively straightforward to calculate the 
probability of transition between them and infer the invariant distribution for each of the two 
logics.  

 

 
Fig. 1 Transition diagrams for the abstract model (A) and simulated local rules (B), 
frequency of the three possible system states in the invariant distribution (C) and 
corresponding signature in terms of the frequency of all possible node degrees (D). 
 

These results can be generalised by using a Monte Carlo simulation version of the abstract 
model, so as to be able to compare the outputs for larger systems. As expected, the 
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difference between the abstract model and the simulated implementation of the local rules 
is maintained and becomes even more noticeable when the number of nodes and/or links 
increases. Figure 2 shows a comparison between the output of the two logics for a network 
starting as a random graph comprised of 100 vertices and 200 edges. Whilst applying the 
local rules gives rise to a typical power-law distribution (scale-free topology) it is obviously 
not the case for the abstract model (more homogeneous node degree). 

 

 
Fig. 2 Comparison of node degree distribution between the Monte Carlo simulation 
of the abstract model and the simulated implementation of the local rules. Initial 
conditions are a random graph of 100 vertices and 200 edges (100 independent 
realizations) 
 

2.2 “On-demand” clustering 
 

The results presented in section 2 clearly demonstrate that, in order to preserve 
homogeneous node degree in the realistic, local rules-based scenario, the rewiring 
procedure has to be modified so as to eliminate the indirect positive feedback leading to 
the emergence of scale-free topology in the passive clustering scenario. It may be objected 
that heterogeneous node degree can be highly beneficial to network operation if the higher 
connectivity of some vertices can be made to reflect their superior capability (see e.g. Jesi 
et al, 2006). However, in our case, such correlation is effectively absent, the emergence of 
hubs in the “passive rewiring scenario” resulting from the amplification of random 
fluctuations. As it cannot be guaranteed that those nodes ending up with a higher degree 
effectively have some specific features that designate them as efficient “super-peers”, the 
result could be disastrous and generate critical bottlenecks, which is why we aimed at 
maintaining node degree as homogeneous as possible throughout the system’s history. 
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We achieved this by distinguishing between the initiator of a rewiring procedure and the 
match-maker. Basically, upon “waking-up”, the initiator requests a new link from one of its 
existing neighbours, which will then act as the match-maker. Since with this logic, the 
probability for a node to be appointed match-maker is obviously a direct function of its own 
degree (and the match-maker still ends losing one neighbour in the process of a successful 
rewiring operation), it introduces a negative, “rich becomes poorer” feedback similar to the 
one observed in the abstract model. 

The detailed algorithm governing key node behaviour in the three roles of “initiator”, 
“match-maker” and “candidate” involved in a rewiring operation following the “on-demand” 
clustering procedure is shown in figure 3.  It involves exchanging five types of messages 
(plus the link termination message which isn’t discussed here). The “neighbour request” 
(NRQ) message is sent by the initiator to the chosen match-maker and specifies the type of 
node desired. The “neighbour reply” (NRP) message is sent by the match-maker to the 
initiator to inform it of a potential candidate. The “link” (LNK) message is sent by the 
initiator to the candidate to ask for the establishment of a new link, which will only be 
effectively created if it is compatible with the goals of the candidate, as evidenced by the 
receipt of an “acknowledgement” (ACK) message by the initiator. Note that, for most of the 
results presented in this section, this will always be the case, as all nodes in the system 
share the same objective, i.e. they are all assumed to be simultaneously in clustering (or 
reverse-clustering) mode. Finally, after a successful handshake between the initiator and 
the candidate, the match-maker is informed via the “success” (SCC) message, so as to be 
able to determine whether its own connection to the candidate has to be terminated in 
order to conserve the total number of links. 
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Fig. 3: The three “reasoning” loops governing node behaviour in the “on-demand” 
clustering scenario. Initiator rôle (A), match-maker rôle (B) and candidate rôle (C). 
See text for details. 
 

2.2.1 Aggregation dynamics 
 

In this section, we present simulation results that elucidate the collective aggregation 
dynamics arising in a network of peers following the local decision rules of the “on-demand” 
scenario, when all nodes are in “clustering” mode. We focused our investigation on two key 
parameters, namely the overall population size (number of peers) and the number of types 
involved. The average node degree (four), the topology in initial conditions (random graph) 
and the fraction of peers belonging to every type (an inverse function of the number of 
types, so that all “colours” are equally represented plus/minus one unit, due to rounding 
error) were maintained constant throughout the exploration of the parameter space. 

We define the following additional variables to use as quantitative measurements of system 
state: 

• Number of domains: the number of connected groups of peers belonging to the 
same type and exceeding a size of one (an isolated node, i.e. a node that is not 
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connected to any other node of the same type as its own, does not constitute a 
domain). 

• Size of the largest domain: the “headcount” of the largest domain found in the 
system, notwithstanding the type of its members. 

• Homogeneity: the fraction of links connecting two peers of the same type (can be 
for the entire system or for a specific domain, in which case the criterion is that at 
least one of the link’s endpoints belongs to the domain). 

We typically present mean values of these variables, averaged over 100 independent 
numerical experiments per combination of parameter values – population size and number 
of types – which ranged from 100 to 1000 peers (by increments of 100) and from two to ten 
node types respectively. 

Figure 4 shows the evolution of link homogeneity (an indirect measurement of aggregation 
success) over simulation time. The first immediately noticeable property is scalability, with 
the 1000-strong population converging to similar or higher homogeneity values than the 
100 nodes network. Though this is not a surprising result, a higher “surface/perimeter” ratio 
being in principle achievable in larger ensembles, it confirms that the chosen local rules are 
capable of supporting the self-organisation process leading to such ordered state 
independently of system size.  

The “slowing down” effect for larger populations is attributable to the fact that a fixed 
number of rewiring attempts are made per time unit, independently of the number of peers. 
Had the probability of initiating such an attempt been fixed and identical for all nodes 
(assuming that possible inconsistencies resulting from concurrent modifications of the 
overlay can be prevented), leading to the number of rewiring attempts per time unit being 
statistically proportional to population size, indications are that convergence would actually 
be faster in larger systems.  

For instance, if defining the plateau as the region in which the increase in overall 
homogeneity is <0.1%, it is reached in ~120 time-steps in the 100 peers/2 types scenario 
and in ~510 time-steps in the 1000 peers/2 types scenario, i.e. multiplying the population 
size by a factor 10 only translates into increasing the required number of rewiring attempts 
by a factor ~4. Scalability is again confirmed by the fact that the values are very similar in 
the case when 10 node types are involved. 

Note that performance can only be measured relatively to the conditions in the initial 
random graph in which, statistically, the homogeneity variable is simply an inverse linear 
function of diversity (number of types). So for instance, reaching a situation in which ~35% 
of links connect peers belonging to the same type in the 1000 nodes/10 types scenario 
effectively means that homogeneity has increased by a factor ~3.5 compared to the initial 
conditions. 
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Fig. 4: Evolution of homogeneity over simulation time, for two (A) and ten (B) node 
types. Dashed curves indicate extreme values observed in the 100 independent 
realisations per combination of parameter values. See text for details. 
 

Figure 5 shows the effect of the two key parameters (population size and number of types) 
on the characteristics of the domains, after 20,000 time-steps. Basically, the number of 
domains appears to be a power law of the diversity (number of types), the slope of which is 
a function of system size (number of peers). The mean size of the largest domain of each 
type (i.e. averaged over all 100 simulations and over all types) seems to be an inverse 
exponential of the diversity but it is also almost totally unaffected by population size (in 
relative terms). So in effect, the expected “headcount” of the largest domain is a linear 
function of system size. 

 

 
 Fig. 5: Influence of the two key parameters (population size and number of types) on 
the number (A) and size (B) of the domains. Dashed curves in A are power-law 
fittings. Dashed curves in B are exponential fittings. 

2.3 Spontaneous Separation of a Mixture of Behaviours 
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2.3.1 Mode Separation 
 

In section 2.2 above we established that a mixed population of types of node could 
successfully form clusters providing all nodes obey a set of simple local rules. In many real 
world scenarios we would expect that some nodes would follow one set of rules and some 
another. A node may alter its rule set from time to time to reflect its internal state and we 
might even imagine that the rule set would be chosen to secure some selfish advantage for 
a node. 

In this section we begin to explore the dynamics of a population which is a mixture of 
‘types’ as in section 2.2 above, but where there is also a mixture of behaviours. In the work 
reported in this section we are concerned with only two behaviours: each node is in either 
clustering or reverse clustering mode. In the flow diagram of figure 3, Initiator rôle (A), a 
node in clustering mode will  answer “yes” to the query “in clustering mode?” whereas a 
node in reverse clustering mode will answer “no”. In other words clustering nodes will 
request links to new neighbours of the same type as themselves whereas reverse 
clustering nodes will request links to new neighbours of a type different from their own. 

We were interested to see whether a population of nodes forming new links by type 
according to these modes would also tend to separate along mode lines, even though the 
modes are not themselves directly visible from one node to another. Would we tend to see 
highly interconnected sub-populations in the same mode? 

 

2.3.2 Mixed Mode Simulations 
 

In all simulations the population was formed by assigning each node the clustering or 
reverse clustering mode with equal probability. The mode of a node remained unchanged 
throughout the simulation run. 

To assess the dynamics of the system we introduce two new measures, closely related to 
the global homogeneity as described in section 3 above. 

First we have the global separation which is the fraction of links connecting nodes in the 
same mode. High values for this indicate that the initially mixed population (with global 
separation value 0.5 on average) has indeed separated such that nodes have more 
neighbours in the same mode (regardless of what type those nodes may be). 

Secondly we have the global satisfaction which is the fraction of links which are acceptable 
to the nodes according to the type of the neighbour. In other words a node in clustering 
mode is “satisfied” with a link which connects it to a node of the same type. A reverse 
clustering node is satisfied with a link which connects it to a node of a different type. If only 
one of the nodes connected by the link is satisfied with its neighbour, the global satisfaction 
score for that link is halved. 

The scoring system is given in table 1 below. To summarise we have three scores: 
homogeneity measures the extent to which nodes of the same type are clustered; 
separation measures the extent to which nodes in the same mode are clustered; 
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satisfaction measures the extent to which the nodes’ preferences for neighbours of a 
particular type are met. 
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Node A 
Type 

Node A 
Mode 

Node B 
Type 

Node B 
Mode 

Homogeneity 
Score 

Separation 
Score 

Satisfaction 
Score 

1 Cluster 1 Cluster 1 1 1 

1 Cluster 1 Reverse 
Cluster 

1 0 0.5 

1 Cluster 2 Cluster 0 1 0 

1 Cluster 2 Reverse 
Cluster 

0 0 0.5 

1 Reverse 
Cluster 

1 Cluster 1 0 0.5 

1 Reverse 
Cluster 

1 Reverse 
Cluster 

1 1 0 

1 Reverse 
Cluster 

2 Cluster 0 0 0.5 

1 Reverse 
Cluster 

2 Reverse 
Cluster 

0 1 1 

 

Table 1: Scoring system for the three measures of system organisation. The global 
homogeneity, global separation and global satisfaction scores are simply the mean 
values of these scores for all links in the system. 
 

In the same way as in section 2.2 we saw global homogeneity rise during a simulation run, 
we expected to see global satisfaction rise in the mixed population because the local rules 
cause nodes to request nodes of a type which will “satisfy” them. We were interested to 
see how high satisfaction would rise and whether separation, which is not explicitly sought 
by the local rules, would occur. 

 

2.3.3 Mixed Mode Results 
 

Global separation increased over the course of each simulation run, resulting in values 
after 20,000 time-steps of 0.75 (+/- 0.05). The mean final separation value was little 
affected by the number of nodes and the number of types although the variance was larger 
in small networks (data not shown). 

The number of types in the network did have a significant effect, however, on the number 
of time-steps taken to reach the final separation value. Figure 6 shows the separation of 
the mixed population over time. In all cases the population was 1000 nodes, with average 
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degree four. Each node had an equal probability of permanently assuming the clustering or 
reverse-clustering mode. 

 

 
Fig 6: Evolution of network measures over simulation time. (A) Each curve shows 
mean separation results from 10 independent simulation runs. (B, C, D) Three 
examples of individual simulation runs showing evolution over time of Global 
Homogeneity, Global Satisfaction and Global Separation. (B) 4 Node Types, (C) 7 
Node Types, (D) 10 Node Types. 
 

The separation we see taking place is driven by the local rules through which nodes strive 
for “satisfactory” links. Each new link will only form if it is satisfactory to both requestor and 
candidate (see figure 3) and the effect of that new link on the global satisfaction measure 
will depend on the score for the link dropped between the matchmaker and the candidate. 
If the dropped link was already mutually satisfactory (scoring 1) the global satisfaction 
measure will not change. If the dropped link was mutually unsatisfactory (scoring 0) or only 
satisfactory to one of the linked nodes (scoring 0.5) the global satisfaction measure will rise 
by 1 or 0.5 respectively (and hence the satisfaction measure can never fall over the course 
of a simulation run). 

This ratchet effect also applies to the separation measure. Since a candidate node will not 
accept a new unsatisfactory link, it is impossible for a clustering node to acquire a reverse 
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clustering node as a new neighbour, and vice versa. We were concerned therefore that the 
separation we see is no more than rising satisfaction by another name. We therefore 
examined the global homogeneity, satisfaction and separation measures for individual 
simulation runs to see what the relationship was. Figures 6b, c and d show three examples 
for four, seven and ten types of node. In each case there are 500 nodes in the network, 
permanently assigned to clustering or reverse clustering mode at time 0 with equal 
probability. 

The plots of figure 6b, c and d are typical of individual simulation runs and show that the 
observed increase in separation over time is indeed closely associated with, but not 
identical to, the rise in satisfaction. Both measures cannot decrease during a simulation 
run, as explained above. Both can only rise if there is a successful new link established. 
Any increase in global satisfaction or global separation score resulting from that new link 
will depend on the satisfaction or separation score respectively of the link dropped by the 
matchmaker to make way for the new link. 

3 Collaborative computing and load-balancing 

3.1 Rationale 
 

The purpose of developing the type of self-organising aggregation framework described in 
this report is to identify and document suitable rule sets capable of supporting autonomic 
operation of distributed peer-to-peer applications in the absence of central control. In the 
current trend toward service-oriented architecture (SOA), such an application would likely 
be designed as a collection of self-contained but mutually dependent service modules, 
providing elaborate “meta-services” via transparent composition and workflow 
management (Stal, 2002; Adam and Stadler, 2006). 

Engineering such an advanced self-managing distributed service provision framework is 
the focus of much attention, particularly from industry (Kephart and Chess 2003). However, 
in most cases, it relies on centralised monitoring and implementation. We take the opposite 
view that effective system agility requires individual components to be fitted with the basic 
“reasoning” and decision-making abilities required to build, maintain and recycle 
collaborative relationships “on-the-fly” in a dynamic environment featuring a wide variety of 
perturbation factors (from variable resource availability to largely unpredictable demand 
patterns) (Montresor et al., 2002; Nakrani and Tovey, 2004). 

In this section, we demonstrate how the local “on-demand” clustering rules described in 
section 3 can be used to generate and maintain a collaborative overlay connecting 
elements with complementary abilities, improving the performance of the system as a 
whole. Depending on individual circumstances, this can mean teaming up with processing 
nodes hosting the same service but facing different workloads (in which case aggregation 
can be used for load-balancing purposes, via transparent redirection of requests) or, on the 
contrary, with elements performing completely different functions (in which case one such 
element can act as an access point to a service that it cannot offer by itself, possibly as 
part of providing a composite “meta-service”).  

Page 20 of 65 



 

IST IP CASCADAS 

 “Bringing Autonomic  

Services to Life " 
 

D3.1.doc

 

 

The overall objective is to dispense from centralised orchestration, in a manner somewhat 
similar to the one we proposed in previous work (Saffre et al., 2006b; Saffre et al., 2007), 
but with the important difference that the topology of the overlay is not fixed. On the 
contrary it is used to connect pre-specialised service components and doesn’t involve (re-
)allocation of local resources. 

3.2 Simulated implementation 
 

In order to experiment with the collaborative computing and load-balancing abilities of our 
overlay construction and maintenance framework, we devised a typical distributed 
processing scenario, as well as a modified set of local rules to inform the decision of 
requesting a neighbour of a particular type. 

At initialisation, we compute a global workload distributed across the system according to a 
number of criteria (tuneable parameters). We then measure the global effect of rewiring on 
co-operative processing in terms of the evolution of that workload over time (no additional 
requests are made at run-time). This is of course meant as a demonstrator, featuring an 
easily measurable variable, i.e. the monotonically decreasing fraction of the initial workload 
still waiting to be processed. In practice, the same decision rules would take as their input 
the local structure of the demand in terms of service requests (type and arrival rate), not 
the properties of a static workload. 

The two key parameters basically determine whether the demand is homogeneously 
distributed or not and what fraction of individual components receive requests for services 
that they do not provide directly. Defining heterogeneity of the workload is done by 
arbitrarily designating a specified fraction of nodes as being “overloaded”. This simply 
means that, in initial conditions, the number of requests queuing at these nodes is 
multiplied by a factor 10. A second parameter determines what fraction of the nodes are 
designated “specialised” entry points. A generic entry point starts with all service types 
equally represented in the local load, whilst all requests queuing at a specialised entry 
point correspond to its particular type. Figure 7 shows an example of each of the four 
possible initial states (“normal/generic”, “normal/specialised”, “overloaded/generic” and 
“overloaded/specialised”). 

Page 21 of 65 



 

IST IP CASCADAS 

 “Bringing Autonomic  

Services to Life " 
 

D3.1.doc

 

 

"Normal/Specialised" (type 2)

0

5000

10000

15000

20000

25000

30000

1 2 3

Queue

# 
R

eq
ue

st
s

"Normal/Generic"

0

5000

10000

15000

20000

25000

30000

1 2 3

Queue

# 
R

eq
ue

st
s

 

"Overloaded/Specialised" (type 2)

0

5000

10000

15000

20000

25000

30000

1 2 3

Queue

# 
R

eq
ue

st
s

"Overloaded/Generic"

0

5000

10000

15000

20000

25000

30000

1 2 3

Queue

# 
R

eq
ue

st
s

Fig. 7: The four possible initial node states, with three different service types. 
 

The load-balancing logic is as follows. At every time-step, every node goes through the 
entire list of its first neighbours. For every one of them, it checks whether the queue 
maintained by that neighbour for the service that it provides is shorter than the 
corresponding local queue. If it is, one request is transferred (one step toward evening the 
load). This is done independently of whether both nodes are of the same type or not. 
Obviously, if the node initiating the queue length comparison is a specialised entry point for 
a service that is different from the one provided by that particular neighbour, no transfer 
can occur (as the local queue will be empty). 

The rewiring process is as follows. At every time-step, every node has a fixed probability of 
initiating a neighbour request. If it does, it follows the same procedure as the on demand 
clustering described in section 2 above apart from two modifications: 

• The requested type is not based on the initiator being arbitrarily set in “clustering” 
(same type) or “reverse-clustering” (any other type) mode. Instead, it is designed to 
reflect the current workload. Basically, one request is drawn at random among all 
queues and determines the desired type. This ensures that the probability of 
requesting a neighbour providing a given service is linearly proportional to the 
relative length of the corresponding queue (which mimics a rational decision by the 
initiator to try to establish the most useful collaborative link). It should be noted that 
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this logic also implies that a node without any requests queuing does never initiate 
a rewiring attempt. 

• To keep things relatively simple at this stage, the candidate proposed by the match-
maker does not perform any compatibility test: accepting the rewiring is automatic 
and mandatory (on the candidate’s side). 

At initialisation, all nodes are embedded in a random graph so as to reach a specified 
target average node degree. In all the simulations presented here, the population size is 
1000 and the average node degree is four. The diversity (number of service types) is set to 
ten. 

3.3 Results 
 

In order to present results in the clearest possible way, we introduce the notion of a 
“cumulative penalty”, which is incremented by one unit at every time-step for every request 
still queuing in the entire system. Obviously, this is an abstraction: in practice, a real 
penalty should only be incurred if queuing time exceeds an acceptable limit, probably 
defined as part of a service level agreement (SLA). However, it is a simple and convenient 
variable to use for the purpose of comparing global performance between rules and 
scenarios (i.e. “the lower, the better”). 

Figure 8 shows individual simulation traces for multiple combinations of the most relevant 
parameter values, namely the fraction of “specialised” access points, the fraction of 
overloaded elements and the probability (per time-step) that a node initiates a “neighbour 
request” procedure (P). 

The overall trend is that the advantage of allowing the overlay to self-organise (reduced 
penalty) is maximised when all nodes act as generic access points (i.e. must handle 
requests for all services). This is to be expected in the sense that, with an average degree 
of four, finding suitable neighbours to process all ten request types effectively requires 
rewiring during the course of the simulation. Conversely, if all nodes are specialised access 
points (i.e. only receive requests for the service they can perform in isolation), the effect of 
rewiring is improved load-balancing (i.e. overloaded elements can more efficiently delegate 
processing if their neighbours belong in majority to the same type, which is highly unlikely 
in the initial random graph conditions). Indeed, in this scenario (100% specialised), the 
entire workload can in principle be processed locally (without request transfers) at the cost 
of substantially increased delays (which is the reason why all three curves, including P = 0, 
eventually saturate in fig. 8b, indicating that there are no requests left queuing in the 
system).  
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Fig. 8: Evolution of the cumulative penalty over simulation time, for three different 
“neighbour request” probabilities (1000 nodes, 10 types). (A) 0% specialised, 10% 
overloaded. (B) 100% specialised, 10% overloaded. (C) 50% specialised, 10% 
overloaded. (D) 50% specialised, 20% overloaded. See text for details. 
The intermediate case (50% specialised) is probably the most interesting and realistic, as it 
implies the presence of nodes with different and potentially conflicting objectives (e.g. a 
generic access point could be teamed up with an overloaded specialist of a different type, 
resulting in neither of them being able to use each other’s service). The expectation here is 
that the continuous rewiring process can implicitly deal with such a situation, statistically 
resulting in the establishment of more efficient partnerships in the long term. The evolution 
of the cumulative penalty (a measure of global success) suggests that the higher the 
fraction of overloaded nodes, the more beneficial the self-organisation of the overlay, which 
confirms that load-balancing is the clearest advantage of rewiring (compare fig. 8c and 8d). 
However, this macroscopic trend doesn’t convey any useful information about the local, 
microscopic dynamics. 

These are best explained by tracking the evolution of node degree over time, decomposing 
the signal based on node characteristics (normal versus overloaded, specialised versus 
generic). Results show that overloaded elements effectively succeed in surrounding 
themselves with “helpers” (independently of whether they are specialised or not), resulting 
in higher average degree (see fig. 9). 
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Fig. 9: Evolution of average node degree, split by node category (1000 nodes, 10 
types, 10% overloaded, 100 independent realisations). (A) 0% specialised. (B) 100% 
specialised. (C and D) 50% specialised. See text for details. 
The fact that the separation appears earlier in the 0% specialised scenario (t ~ 100) than in 
the 100% specialised scenario (t ~ 1000) reveals that the reason why overloaded nodes 
gradually acquire a higher degree is because they continue requesting new neighbours 
after their “normal load” counterparts have finished processing all their local requests and 
so have effectively stopped doing so (resulting in the asymmetry). Indeed, when 
specialised, a normal node has 1000 requests in its single populated queue at t = 0, versus 
100 in every one of its ten queues for a generic access point, resulting in a 1000 versus 
100 time-steps delay before normal nodes start idling and effectively become available as 
“helpers” (1 request processed per time-step). Note however that a generic access point 
can be idling and still have requests queuing (and so initiate rewiring attempts), as long as 
the local queue corresponding to its own type is empty. So even in the 0% specialised 
scenario, normal nodes are only gradually stopping to act as initiators after t = 100, hence 
the “slow start” noticeable on fig. 9a. 

Fig. 9d is shown to indicate that, for an identical load, generic access points are statistically 
more successful at acquiring new neighbours than specialised ones. This effect is 
explained by the fact that, in a scenario featuring ten different types, the probability of a 
specialised node repeatedly asking for a single kind of neighbour resulting in a successful 
handshake diminishes rapidly as the local supply for the requested type gets depleted.  
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4 Impact of selfish behaviour on aggregation dynamics 

Models of aggregation dynamics in networks are often based on the assumption all nodes 
perform according to their expected behaviour, that is to say cooperatively with other 
nodes. But this can’t always be assumed in the real world. Accordingly we have to consider 
the effect of selfish behaviour by nodes on aggregation dynamics. 

 

4.1 Benchmark: influence of permanent cheaters 
A possible benchmark scenario is to consider the situation where a subset of nodes cheat 
all the time, that is they supply misleading information when acting as matchmakers 
irrespective of whether they will gain benefits from this cheating.  

The potential impact of this cheating can be studied by modifying the simulation models of 
clustering described above.  

Initial results are based on making a varying proportion of nodes fail to act as matchmakers 
whenever requested (proportion of cheaters in figure 10 below) and measuring the effect 
this has on convergence to global homogeneity. 

4.1.1 Results 
As expected, the presence of some nodes which refuse to act as matchmakers under any 
circumstances has an effect on aggregation. Global homogeneity, a measure of the degree 
to which clusters form, rises under all circumstances, but reaches lower plateaus as the 
percentage of cheaters increases. Further work is needed to explore the effect of 
permanent cheaters as different parameters are varied. 

Page 26 of 65 



 

IST IP CASCADAS 

 “Bringing Autonomic  

Services to Life " 
 

D3.1.doc

 

 

 
Figure 10. Effect of permanently cheating nodes on global homogeneity in clustering 
algorithm. 1000 links, randomly connected network. 
 

4.2 Rational selfish behaviour 
An appropriate extension of this approach is to consider the situation when some nodes 
cheat under certain conditions, but not all the time. Analysis of this can be assisted through 
the assumption that nodes are acting rationally, so as to gain selfish benefits. Here both 
simulation and game theory can be used to analyse the outcome of aggregation dynamics. 

 

4.2.1 Degree-based 
One approach to the investigation of rational selfish behaviour in aggregation algorithms is 
to consider the consequences of selfish cheating behaviour on average degree, that is, will 
aggregating nodes alter their behaviour selfishly in order to gain advantage through their 
links, and what effect will this have on the overall degree distribution? 

We are particularly interested in seeing what the effect will be on global system behaviour 
when a subset of the nodes follows a ‘cheating’ strategy which might be intended to give 
them some advantage over their ‘honest’ neighbours. The first example of this, for which 
results are not yet available, considers the situation where nodes might wish to maintain an 
artificially high number of preferred neighbours (i.e. neighbours of the same type if the 
node is in clustering mode) by acting as an ‘honest’ matchmaker only when the requestor 
is of a different type. 
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4.2.2 Objective-based: selfish overlay creation for load-
balanced service composition 

 

4.2.2.1 Introduction 
 

The Internet has evolved to become a commercial infrastructure of service delivery instead 
of merely providing host connectivity. Recently, different forms of overlay networks have 
been developed to provide attractive service provisioning solutions, which are difficult to be 
implemented and deployed in the IP-layer. 

We term the logical connections among service provider nodes a service overlay. Services 
are deployed across the Internet and managed by individual, uncoordinated service 
providers. 

In this context, service composition is the process of assembling independent, reusable 
service components to construct a richer application functionality. 

When service components are deployed by multiple providers, issues of scalability, load-
balancing across service instances must be addressed. Figure 11 captures the scenario 
under consideration: several replicas of different services are deployed on overlay nodes at 
different Internet locations. A client session is formed by choosing a specific set of service 
instances. 

The focus of this section (4.2.2) is on the mechanisms to construct and maintain the 
service overlay taking into account the client request load that characterizes overlay nodes: 
overlay connections reflects the need for a node to distribute its load across replicas of the 
overloaded service. We use the term re-wiring to indicate overlay maintenance. 

In this section we show that the problem of service overlay construction can be cast as a 
network creation game, first defined in Fabrikant (2003). We have extended the basic 
model to accommodate the service load experienced by the nodes and we study the 
equilibrium overlays that are built through their uncoordinated interaction. Our experiments 
on the service overlay creation game are hindered by the fact that computing the best 
response in this game is NP-hard. Hence, we present a randomized local algorithm to 
study service overlay creation with a realistic size. 

Our preliminary results show that selfishly created overlays can scale well and allow for 
efficient load allocation. 

The problem of load balancing for service overlays has been studied for example by  
Raman (2003), where obedient nodes perform overlay routing to balance client requests. In 
contrast, the study of uncoordinated and selfish load balancing ineluctably leads to the 
framework of congestion games (see for example Suri 2004, 2004a). The framework of 
congestion games offers tools to match client-server machines with the goal of sharing 
server work-load, neglecting the graph connectivity required by service overlay to achieve 
service composition. 
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Instead, in our work load sharing is considered as an additional constraint when building 
the service overlay; however, load balancing decisions cannot disrupt the normal overlay 
operation. 

The remainder of this section is structured as follows: in Section 4.2.2.2 we detail the 
system model and architecture and in Section 4.2.2.3 we define the problem of the service 
overlay creation. In Section 4.2.2.4 we describe the numerical evaluation of our model and 
present some preliminary results. We illustrate related works in Section 4.2.2.5 and 
conclude in Section 4.2.2.6. 

 

4.2.2.2  System model  
 

In this section (4.2.2) we focus on service overlay networks, wherein overlay nodes provide 
not only application-level data routing but also value-added services, such as media 
compression/transcoding, language translation, encryption or decryption services, etc... 
Each service might have multiple instances that can be composed on-the-fly into a service-
level path that provides new application functionalities. 

We address a scenario where independent service providers deploy and manage their 
service instances at multiple locations on the Internet. Other third-party portal providers 
might compose these for end-users. 

Figure 11 shows an example of a service overlay network, consisting of several overlay 
nodes deployed at different Internet locations. Individual service providers deploy their 
service components at these nodes (that they might own), which autonomously form an 
overlay network. 

Service-level paths are constructed by choosing a set of required service instances and 
forming a path in the overlay network. The origin of a service-level path lies at overlay 
nodes that we term exit nodes for the particular client session. The exit node receives all 
client requests for a service or a set of services. Our system architecture is inspired by the 
work in Raman (2003). 
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Figure 11. System architrecture under consideration with example local service path. 
 

Unlike data routing, composing an end-to-end service path requires not only the overlay 
network connectivity, but also the satisfactions of various user quality-of-service 
requirements, such as response time and delays. 

In this preliminary work we neglect the impact of the underlying physical network on the 
performance of the service overlay. 

While there are several challenges in the context of service composition, in this section we 
focus on the construction and maintenance of the service overlay network. Service overlay 
creation is achieved by the uncoordinated interaction of nodes that wish to minimize the 
cost incurred in the creation and maintenance of overlay links. Node selfishness is 
expressed in terms link, communication and load costs. 

We arbitrarily define an underlying economical model to explain the functioning of the 
service overlay. Service providers have a (monetary) gain per-request-served that arrive at 
exit nodes. However service capacity is finite and the latency (response time) experienced 
by end-users grows as the pth power of the number of requests-per-service at the exit 
node. This assumption is in line with related work such as Awerbuch (1995), Alon (1997), 
Avidor (2001) and Suri (2004a). 

Excess service load can be shared (or traded in exchange of monetary compensation) 
between overlay nodes that have the same service replicas. 

The closer a service replica to the overloaded exit point, the lower delay experienced by 
end-users: indeed, requests do not have to follow long service-level paths to be satisfied. 

 

4.2.2.3  Uncoordinated service overlay creation 
 

Given a generic unstructured overlay network that defines the logical connectivity among 
nodes, the problem we address in this section (4.2.2) is to find stable overlay 

Page 30 of 65 



 

IST IP CASCADAS 

 “Bringing Autonomic  

Services to Life " 
 

D3.1.doc

 

 

configurations that take into account load and connectivity constraints. As outlined in 
Section 4.2.2.2, load constraints imply that overloaded (exit) nodes seek at establishing 
direct links with other nodes offering the same service so as to share end-user requests, 
while at the same time being constrained by connectivity requirements. Note that also non-
overloaded nodes are involved in the service overlay creation process. 

Understanding the overlay network characteristics is the domain of our study in this 
section. Unless a centralized entity with a global vision of the overlay network dictates how 
to setup links in the overlay so as to satisfy performance and load constraints, each node 
needs to determine neighbors to establish links with. Our goal is to characterize the service 
overlay when nodes select links selfishly. To improve the tractability of the problem, we 
limit the scope of our study to physical topologies in which every node can communicate 
with every other node, that is the communication graph (i.e., the underlay) is connected. In 
the scenarios we investigate, we assume that an underlay routing protocol exists. 

 

4.2.2.3.1 Assumptions 
 

With the aim of simplifying the problem formulation we assume that only one service 
instance is deployed on each overlay node. Hence, in the following a node is equivalent to 
a service. 

We define a type ti associated with a node i as the encoded description of the service that 
node can provide. 

Every node i is characterized by a nominal capacity λni which defines the end-user request 
load a node can handle; λci identifies the current load experienced by node i. In the 
following we assume that: 

 
Equation 1 simply states that the system is able to support the requested load, that is, the 
system does not saturate. 

Note: because of the document format used, subsubscripts are not shown in the text in 
some cases where they should be. They are shown in the numbered equations. 

 

4.2.2.3.2 Overlay creation game 
 

We model overlay creation as a non-cooperative game with n nodes (i.e, players) whose 
strategies are to select which nodes to connect to. Our model extends the one presented 
by Fabrikant  et. al. in Fabrikant (2003). 

Formally, there is a finite set of players N = {1,...,n}, a finite set of player types  

T = {t1, t2 ,...,tn } and the strategy space of player i  N is the list of other players to 
connect to, i.e., the set Si  = {(sij)j≠i|sij € 0,1} where |Si| = 2(n-1). Players simultaneously 
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announce the list of other players with whom they wish to be connected. Their decisions 
generate an undirected graph G(s) = (N, A(s)) as per the linking rule of the game. Note that 
this is a single-stage game with simultaneous announcements. Our game model requires 
complete information of the service overlay graph as well as node types and assumes 
players to be computationally unbounded. 

In our game, A(s) = {(i,j) : i ≠ j, sij = 1 sij =1}. Therefore, a link (i,j) is formed if either 
participant in the link decides to establish the connection. In the game, each player selects 
its strategy to minimize its cost. 

The cost incurred by player i when all players adopt strategy s is additive in the cost lj of a 
link to players of different type, in the cost lj of a link to players of the same type modulated 
by a threshold function based on load information, as well as in the sum of the costs of 
reaching all other players: 

 
 

where NBi is the set of overlay neighbors for which a direct link exists, dG(s)(i,j) is the 
shortest path distance from node i to node j in the graph G(s), and δti,tj is the Dirac-Delta 
function δti,tj =1 if ti = tj and 0 otherwise. 

The connection cost α represents the relative importance of player i's direct links to others 
and is the only parameter in the model. Following the definition of the set A(s), if player i 
establishes a link to player j, player i only will pay the cost for this action. 

The function  is defined as follows: 

 

  is used to modulate the linking cost to a node running a replica of the 
service instantiated in i. When λci  ≤ λni , linking costs can be easily reduced to the model 
defined by Fabrikant (2003). However, when λci  ≥ λni link costs to other nodes with the 
same instance of the overloaded service in i significantly decrease. Hence, as long as node 
i can support its current load, it will seek to minimize communication and linking costs; 
when the requests load λci approaches and exceeds the threshold λni, node i will prioritize 
the creation of links to overlay nodes that can support requests for the overloaded service. 

The total cost of the graph G is then defined as: 
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We now define what constitutes a solution of the game, that is, which overlay topologies 
result from the overlay creation game. When networks arise from the unilateral action of 
players, standard Nash equilibrium analysis can be informative about the structure of the 
networks that emerge. Let  s = sN = (si ,sN\i) and let ζ designate the set of all undirected 
networks on N. 

Definition 1: A network G(s) \in ζ is a Nash equilibrium network if there exists a strategy s 
that supports G(s) where 

  

4.2.2.3.3 Game optimization process 
 

We study the equilibrium graphs created by the service overlay creation game through a 
numerical analysis. We use an (iterative) procedure in which players make decisions based 
on their current view of the network in order to select which actions to perform (change 
links). 

The initial condition of a game is a connected random graph (see details in Section 
4.2.2.3.4) and players change their link configuration to minimize the cost they bear, as 
given by Equation 2. We uniformly distribute the types to the nodes in the overlay. 

We use two variants of this process in our numerical analysis. The first is characterized by 
an exhaustive search of the best response strategy, that is we compute the Nash 
equilibrium of the one-shot game. This approach limits the size of the network that we can 
study, as the time complexity to find all possible strategies a node can have is exponential 
with the number of nodes (the problem is somehow similar to that studied by Fabrikant 
(2003), where it is shown that computing the Nash equilibria for the network creation game 
is NP-hard). 

We thus propose an alternative approach wherein we restrict the set of actions available to 
a player. 

It should be noted that this alternative approach is a stand-alone algorithm and not an 
alternative method to compute Nash equilibria. These procedures are described in detail 
below. 

 

4.2.2.3.3.1 Exhaustive search, Dynamic Best-response 
 

Ideally, all of the strategy space available to a node should be examined to determine the 
action(s) yielding the lowest cost, as defined in Equation 2. 

Our algorithm enumerates for every node i all the connection vectors that are within the 
feasible region of the optimization problem and associates a cost computed using Equation 
2. Node i will select the connection vector (the strategy) that minimizes the cost. Note 
carefully that during each round, players are not aware of the moves of other players. This 
means that though we use a fixed ordering of actions, our numerical analysis is in line with 
the simultaneous announcements assumption of the game. If this was not the case, a node 
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could strategize by observing what other nodes chose before, whilst being in the same 
simulation round. 

In this work we used the dynamic best response algorithm that is described, together with a 
possible optimization, in Sureka (2005). The simple exhaustive algorithm can also be 
improved using integer linear programming methods. 

 

4.2.2.3.3.2 Randomized local search 
 

We now describe an alternative algorithm for the overlay formation. As opposed to the 
exhaustive search technique, we limit the set of actions available to each player in the 
following way: during each round, a node can perform only one link addition and one link 
drop operation. The addition of a link is restricted to the 2-hop neighborhood of a node 
whilst a link drop is restricted to direct neighbors only. In practice, we introduce a 
``mediator'' role: node i explores all possible mediators, which are all direct neighbors. For 
each mediator j, node i queries for a node k of the same type (ti = tk) that is not in i's 
neighborhood. A randomized selection is performed in case of ties. When a link addition 
(i,k) is performed, a link drop (i,j) follows, where j is the node that offered node k. 

Note carefully that a ``mediator'' j that satisfies ti = tj is ruled out as a possible option. It 
should be noted that we allow links to be established and dropped thus the initial node 
degree remains constant or increases: players cannot strategize on the number of links. 

Note that in this algorithm, link creation is not dictated by Equation 2 but only depends on 
the initial service graph. Hence the parameter α has no influence on the final overlay 
graphs. We keep, however, the legend describing α in the plots in Section 4.2.2.4 to 
identify results for different experiment runs. 

 

4.2.2.3.4 Discussion 
 

The service overlay creation game produces graphs that can potentially absorb a 
heterogeneous workload incoming at different entry points. However, our model is not 
concerned with the mechanism used to allocate the load, as it is done in traditional and 
selfish load-balancing. An interesting area of future research is to couple our overlay 
creation game with a mechanism used to trade excess load between service replicas 
owned by independent providers. A good candidate would be a distributed VCG auction 
scheme (Parkes 2004), in which excess load is allocated to those replicas that (truthfully) 
declare that they have spare capacity to offer. 

 

4.2.2.4  Numerical evaluation 
 

In this section we present the experimental setup used to characterize service overlays 
created by selfish nodes. Our goal is to compute the Nash equilibria topologies of the 
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overlay creation game and the stable topologies of the randomized local search algorithm 
using the methods described in Sections 4.2.2.3.3.1 and 4.2.2.3.3.2 above. The overlay 
network graph G(s) defined in Section 4.2.2.3.2 is represented by an adjacency matrix. 

 

4.2.2.4.1 Experimental set-up 
 

The initial conditions of the optimization problem are given by a set of N nodes, a node 
type vector T that identifies which services are instantiated on the N nodes and a randomly 
generated service overlay. 

We use the Erdos-Renyi model of random graphs to generate the initial overlay topology, 
with a link probability defined by the parameter p. We define a maximum number  of 
different services available in the overlay and uniformly distribute them on the nodes. 

In this work we assign equal nominal service capacities to each node, that is  

 
The request load λci assignment is described in Section 4.2.2.4.3 below. We also set the 
linking cost defined in Equation 2 to lj = 1 . 

Every experiment is executed 50 times and the plots showed in Section 4.2.2.4.3 are an 
average over the number of experiment runs. For every simulation run we randomize on 
the initial service overlay. 

 

4.2.2.4.2 Metrics 
 

In this preliminary work we are interested in studying the graph properties of the equilibrium 
service overlay. 

We evaluate the node degree that characterize each node. Note that although the graphs 
obtained with the two procedures described in Sections 4.2.2.3.3.1 and 4.2.2.3.3.2 are 
undirected by construction, in the resulting service overlay links are considered 
bidirectional. Hence, the adjacency matrix that represents the overlay graph is the 
symmetric version of the matrix representing the outcome of the optimization process. 

For the Nash equilibrium topologies calculated with the dynamic best response algorithm 
we also show the total cost of the network as defined in Equation 4. The total cost is 
computed over the undirected equilibrium graph which is the outcome of the overlay 
creation game. As defined in Section 4.2.2.3.2 costs are not shared by the end-points of an 
edge but they are paid by the node that created the edge. 

 

4.2.2.4.3 Preliminary results 
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In this Section we present some preliminary results on the graph structures obtained with 
the two optimization procedures. We restrict our attention to small service overlays, where 
N = 9 peers host one service each. 

 

The initial overlay that we use as a seed for the optimization process is obtained using the 
Erdos-Renyi model with p = 0.4. We perform a connectivity check before running a 

simulation. We set the maximum number of service instances to  

and uniformly distributed service replicas (ti) on every node: there are three replicas per 
service on different nodes. The nominal capacity allocation used in our experiments is λni = 
1 for all i. Figure 12 shows an instance of the initial and the best-response service overlays. 

 
Figure 12. Two instances of service overlays. Using the initial service overlay, nodes 
run the dynamic best-response algorithm and rewire the overlay. 
 
In this preliminary work we study two settings. 

• Case 1: The end-user request load λci is concentrated on three nodes (that are 
overloaded) hosting different services, whereas all other nodes are idle; λci = λcj = 
λck = 3 where ti ≠ tj ≠ tk. 

• Case 2: The end-user load is more balanced: for each service type one replica 
receives λcl =2, another λcm =1 while the third replica receives λcn =0, where tl ≠ tm ≠ 
tn. 

We study the impact of the only parameter of the model α that takes the following values:  
α = {1,102,103,104,105}. 
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4.2.2.4.3.1 Results for Case 1 
 

Figure 13 shows the tail of the node degree distribution for the equilibrium graph that 
results from overlay creation game, where the cost of a player follows Equation 2. 

 

 
Figure 13. Case 1: Tail of the distribution of node degree of the equilibrium graph, 
overload scenario. For a low value of α, the tail has exponential decay, while for a 
high value of α, the decay approximately follows a power-law. 
 

The graph is shown in a log-log scale and the curves indicate, for a given node degree d, 
the fraction of nodes with degree greater than d. For α = 1, that is for a small cost 
associated to the creation of a link with respect to communication costs (in terms of hop 
distance), the distribution is not very skewed and its tail decays in a similar fashion to the 
exponential distribution. When α ≥ 100, the decay in the distribution is more steep, and 
exhibits similar behavior to that of a power-law. 

Figure 14 shows the total cost of the equilibrium graph (see Equation 4) as a function of α. 
We note an exponential trend of the curve. 
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Figure 14. Case 1: Total cost of the equilibrium graph. Note how costs increase with 
the parameter α. 
 

Figure 15 shows the tail of the node degree distribution for the randomized local search 
algorithm. Note that in this case the parameter α has no influence on the results, while the 
difference in the curve shapes is explained by different initial conditions of the service 
overlay. 

 

The graph indicates an exponential decay of the degree distribution. This is a consequence 
of the re-wiring strategy of the local algorithm: the initial degree of a node can only increase 
due to the ``switch'' strategy when selecting which link to add and which to drop. 
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Figure 15. Case 1: Tail of the distribution of node degree of the graph resulting from 
the randomized local search, overload scenario. The parameter α has no impact by 
construction: the tail of the distribution of node degree follows an exponential 
decay, while variations depend on the initial random overlay. 
 

4.2.2.4.3.2 Results for Case 2 
 

In the following we present our results for a scenario in which the end-user request load 
comes at two entry points for every different service. We do not show the total cost of the 
equilibrium graph nor the degree distribution of the randomized local algorithm since similar 
observations as for Case 1 can be made. 
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Figure 16. Case 2: Tail of the distribution of node degree of the equilibrium graph, 
overload scenario. For a low value of α, the tail has exponential decay, while for a 
high value of α, the decay is much more compact than in Case 1. 
 

Figure 16 shows the tails of the degree distribution for the equilibrium graphs. While similar 
observations as for Case 1 can be made, we notice that the degree distribution span is 
reduced as compared to the previous scenario. This is a consequence of the presence of 
two entry points in the service overlay together with the request load distribution. Two out 
of three overlay nodes hosting a replica of the same service reached or passed the 
threshold (see Equation 3) that reduces the linking cost to nodes of the same type. 

The important finding that we have obtained in this work is that our game model can be 
seen as a way of obtaining power-law graphs supporting a heterogeneous workload. We 
are currently investigating on a refinement of the randomized local search algorithm to drop 
unnecessary links so as to obtain degree distributions that decay approximately as a 
power-law. 
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4.2.2.5  Related work 
 

Traditional load balancing has a long history in distributed systems literature. A small 
sample of previous results, that focus on coordinated and often centralized solutions, 
includes the following: Philips (1993) investigates the online assignment of unit length jobs 
under the L  norm; Alon (1997) considers offline assignments of unit length jobs; Avidor 
(2001) consider greedy assignments of weighted jobs under the Lp norm, where the client-
server graph is complete bipartite while Awerbuch (1995) considers arbitrary client-server 
graphs and uses the L2 norm. 

Uncoordinated load balancing has been studied using game theory for example by Suri 
(2004, 2004a). Congestion games are at the heart of these works: uncoordinated, selfish 
clients compete to select servers providing the lowest response time (latency). Client 
latencies are related to the server loads. Server response time is assumed to be inversely 
proportional to the speed of the server, but grows with the p-th power of the number of 
users connected to the server. As we point out in Section 4.2.2.1 this framework is not 
suitable to meet the connectivity requirements of the service overlay. 

The work presented in Raman (2003) from which we borrow the system model achieves 
load balancing among service replicas through overlay routing. The link metric adopted to 
select overlay service paths is inversely proportional to the capacity available at nodes on 
the service path. Note that load information is disseminated in the overlay so as to update 
the link cost metric. 

The works that are closely related to ours are presented in Fabrikant (2003), Chun (2004), 
Corbo (2005). Fabrikant et al. first present the network creation game that they use to 
characterize Internet topologies (Fabrikant 2003). Their model accounts for link creation 
and communication costs and the resulting graph is generated by the unilateral interaction 
of selfish players. This model is extended in Corbo (2005), where the authors consider 
equilibrium topologies that arise from the bilateral interaction of selfish players; in their 
model, link cost is paid by both vertices of an edge in the equilibrium graph. Chun (2004) 
presents an extension of the basic model in Fabrikant (2003) wherein an application-level 
routing overlay is constructed by selfish overlay nodes. 

 

4.2.2.6  Conclusion and future work 
 

In this work we study service overlays created by the uncoordinated action of selfish nodes 
deployed across the Internet. Instead of routing in the overlay excess user requests that 
would overload a node, we allow nodes to re-wire the overlay taking into account both their 
uncoordinated, selfish behavior and load requirements. 

Services are instantiated on the nodes of the overlay by independent, selfish providers who 
seek at maximizing their gain by serving as many end-user requests as possible. We 
model the creation and maintenance of the service overlay using an extension of the 
network creation game originated by Fabrikant (2003) that takes into account link, 
communication and load costs. 
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The ultimate goal of the overlay creation process is to render the service-overlay capable 
of absorbing a heterogeneously distributed workload that would otherwise result in some 
nodes with a specific service being overloaded and others remaining idle. 

 

Our preliminary results show that varying the α parameter in the cost model produces 
service overlays with degree distributions with tails ranging from exponential to power-law 
distributions. 

We also propose a randomized algorithm to achieve the same goal without the need for 
global knowledge of the overlay graph. The algorithm converges to stable overlay 
configuration with degree distributions with exponential tails. 

In our future work we will design a mechanism to allocate load across service replicas, 
based on the selfishly constructed overlay. With the ultimate goal of studying the ``Price of 
Anarchy'' Koutsoupias (1999) we will compare the load distribution computed by a 
centralized optimal load balancing algorithm and the worst case equilibrium obtained with 
our solution. 

5 Self-aggregation and ACE specification  

 

This section is focused on how to apply self-aggregation algorithms within the context of 
the ACE model being developed by WP1.  

Sub-section 5.1 describes the ACE architecture proposal from WP1. Sub-section 5.2 
shows how the aggregation algorithms described in section 2 can fit into the ACE 
architecture.  

Sub-section 5.3 describes the architecture of the prototype being realized at DEI and 
provides an initial discussion on the evaluation of its performance. In the prototype we 
experiment the application of the aggregation algorithms in the context of a simplified 
version of the ACE model. Our ACEs are distributed entities interacting through an event-
based middleware. For the moment they do not perform any application-specific action, but 
they are able to enact the self-aggregation algorithms in a distributed setting. 

Sub-section 5.4 closes the chapter by presenting a preliminary evaluation of the approach.  

5.1 ACE Architecture Proposal from WP1  
 

An ACE consists of a common part and a specific part. The common part is identical for 
each type of ACE and contains a minimum set of fundamental capabilities. In contrast, the 
specific part contains additional functionality that is required for solving particular tasks and 
may be different for each type of ACE [1]. 

Starting from this definition and from the Conceptualisation elaborated in the first project 
year, Figure 17 shows the WP1 proposal for the Ace structure [2]. In the following we 
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shortly describe the elements related to WP3 aggregation algorithms. For a complete 
description the reader can refer to [2]. 

Specific Part

Self-Model 

Reasoning Engine Message
handler

FacilitatorGA 
Common Interface 

 

Figure 17. ACE conceptual model [2]. 

5.1.1 Common Part 
The Common Part defines the way ACEs behave, communicate and interact with the 
outside world (i.e., other ACEs or the environment). The communication is message-based 
and then the Common Interface is implemented by a Message Handler which is able to 
understand a fixed set of messages which implement the way ACEs collaborate and 
communicate. 

5.1.2 Common Interface 
The set of messages addressed by the Common interface are: 

 Goal needed (GN): a sort of request, with a semantic description attached, which 
specifies what kind of functionalities the ACE needs from other ACEs, to achieve its 
goals. This implies that any ACE should be able, given a GN, to semantically match 
it with its Goal Achievable (GA) (see next item) in order to properly answer to the 
received GN.  

  Goal Achievable (GA): this message is used by an ACE to state what kind of task it 
is able to provide. It is also a semantic description and typically is used to reply to a 
GN request any time the ACE is able to satisfy it. 
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5.1.3 Specific Part 
The Specific Part contains the ACE specific functions. It exposes these functions through 
the Specific Interface. 

5.1.4 Specific Interface 
The Specific Interface contains a description of each function contained in the ACE specific 
part. For each function a semantic description of the Goal Achievable (i.e. the job the ACE 
is able to do) and the Preconditions (i.e. indispensable and essential action, conditions) 
needed for the function execution are specified. 

5.1.5 Self-Model 
The Self-Model describes the possible states for the ACE and the possible transitions 
between pairs of states. In other terms, it could be defined as a state machine and then 

the Self-Model is a description of the steps the ACE will execute to achieve its goal. 

Any state is described by a semantic description used by the ACE to reason about its 
current state (see Reasoning Engine).  

The transition functions are the specific functions: they indicate a state change and are 
described by an event, a condition (Precondition) that would need to be fulfilled to enable 
the transition, and then the specific function to be executed. 

The ACE self-model is published by using the above described GN – GA protocol. 

 

 

ACE1 

ACE2 

ACE3 

 ACE 
aggregation to 
deliver a 
service 

 

Figure 18. Ace aggregation. 
 

5.1.6 Reasoning Engine 
The reasoning engine executes (the implementation of) the self-model and its main role is 
to keep trace of: 
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The state reached in the Self-Model execution. Eventually, it may take trace of the history, 
storing the previous states of the self-model. 

The environment: any GA or GN coming from other ACEs. 

Mainly, it is able to run the state machine used to describe the self-model. It checks 
if a transition may take place, runs the transition, invoking the proper specific 
features if specified, and proper represents the semantic description of the new 
reached state. 

5.1.7 Facilitator 
The Facilitator is the core autonomic part of the ACE, adapting its behaviour to the 
changed conditions, situations, fault etc… 

The behaviour adaptation in this model means changing the self-model state machine. In 
order to achieve this, the self-model “developer”, or any autonomic mechanism able to 
shape the self-model, has to insert in the original self-model some additional transitions to 
so called “variation states” necessary to adapt the ACE behaviour, such additional 
transitions are called Join Point. 

The facilitator main execution cycle is the following: 

The Reasoning Engine will notify any changes perceived in the environment or in the 
ACE’s internal state (self-model) to the Facilitator. The Facilitator is able to match such 
changes to a template and, any time a match is found, the proper Join Point is activated in 
order to adapt the current self-model to a modified one needed to face the changed 
condition. 

5.2 Self-Aggregation  
 

As discussed in the previous section, within WP1 autonomic behaviour are understood as 
the possibility for an ACE to change its self-model. This change is triggered by the 
Facilitator that is able to identify the situations that determine the change.  

From the perspective of WP3, aggregation algorithms can be seen as another way for the 
ACE of being autonomic. In this case, the change does not affect the self-model of the 
ACE, but the relationship with its neighbors. This can still be considered a form of evolution 
to be handled by the Facilitator subcomponent on the basis of the algorithms presented in 
the previous sections of this report.  

The reasons for the Facilitator to trigger aggregation can be of various kinds. For instance: 

• The Facilitator realizes that the load of the ACE to achieve its goal (GA) should be 
split among various others in order to improve the overall performance of the 
system. 

• The ACE already belongs to an aggregation but the Facilitator realizes that it 
cannot reach the ACE neighbors. In this case, the aggregation algorithms need to 
be started in order to recreate the aggregation itself. 
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• The Facilitator realizes that, in order to achieve its current goal (GA), the ACE 
needs a number of goals (GNs) that cannot achieve by itself. In this case, the 
aggregation algorithm can be started to establish a stable relationship with those 
neighbors able to offer the required goals (GNs). 

Various other reasons for aggregation can be identified depending on the specific 
application the ACEs are built for. The Facilitator will offer a language for expressing the 
rules triggering the execution of the aggregation algorithms. This language will be used by 
the developer to properly define the autonomic behaviour of ACEs. 

For performance reasons, it is likely that the aggregation algorithms do not run forever 
when started. The Facilitator will incorporate some heuristics to determine when to stop 
aggregation still obtaining a reasonable grouping of ACEs. 

As discussed in the previous sections, the aggregation algorithms that are currently 
available are of two kinds, those supporting the aggregation of neighbours of the same 
type (clustering) and those supporting the aggregation of neighbours of different types 
(reverse clustering). It is reasonable to think that, in a given situation, an ACE would need 
to enact both of them to establish different overlay networks of neighbours (possibly 
mapped on the same physical network) coexisting within different conceptual planes. So, 
for instance, an ACE will participate in a cluster group for a certain purpose and in a 
reverse cluster group for a different purpose. Being these groups defined in different 
overlay networks, they will not interfere with each other. 

From the perspective of WP1, a network of ACE neighbors can be seen as an aggregated 
ACE whose goal (GA) is obtained by composing the goals (GAs) of the component ACEs. 
With this respect, the result of an aggregation algorithm on a network of ACEs can be seen 
as a change in the Self-Model of the corresponding aggregated ACE. This allows us to re-
conduct all extensions to the Facilitator needed to support aggregation into the framework 
designed by WP1 that considers any autonomic behavior as a change into the Self-Model. 

In the next months we will concentrate on the requirements for the language for triggering 
aggregation, on the heuristics for stopping it, and on the possibility of supporting the 
coexistence of different aggregations at different planes.  

In the next sections we describe a first proof of concept prototype of distributed ACEs able 
to perform some variations of the aggregation algorithms presented in the previous 
sections of this report.  

 

5.3 Architecture of the distributed prototype of self-
aggregating ACEs 

The aim of our prototype is to implement a simplified population of ACEs each of which is 
able to execute the the clustering and reverse clustering aggregation mechanisms. ACEs 
are distributed and can communicate by sending and receiving events according to a 
publish/subscribe style. Each ACE for the moment is very simple. It has a type (colour in 
the WP3 terminology) and knows its neighbors. Moreover, it is able to understand if 
another ACE is of the same type or of a different type. For the moment the prototype is 
able to manage simple types. The management of complex types requires the definition of 
proper type matching mechanisms. 
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We have chosen a publish/subscribe interaction paradigm because of its ability to support 
multicast interaction, decoupling between senders and receivers of events, easy plugin/out 
of components. To implement such a paradigm we have exploited the REDS middleware 
[3,4] that we shortly present in Section 5.3.1. It offers a MessageBroker that is the logical 
component in charge of both receiving subscriptions and events and delivering the events 
to those that have subscribed to them. This logical entity can be installed as a centralized 
component or as a distributed set of brokers. The middleware is in charge of supporting the 
synchronization among them in order to guarantee that all subscribers receive the events 
even if these are published by component connected to a different broker. 

In order to support the deployment and the startup of the system, we have developed a 
utility component called Configurator. Its goal consists in the instantiation of the distributed 
ACEs components and of the communication middleware. 

The figure below summarizes the various components of the architecture. 

 

 

Figure 19. Main components of the prototype architecture. 
 

In the following we give some details on each prototype component. 

 

5.3.1 ACE Component 
The ACE component contains the following classes (see Figure 20):  

• The class AceLocalNode contains all data needed for the correct execution of an ACE. 
Among the other data, it owns a list of neighbor nodes each one represented by an 
instance of AceNode. 

• The abstract class AceNode contains the type and the identification of an ACE.  
• The interface AceMessageHandler is the class that manages the interaction with the 

other ACEs. It is a REDS client that allows the ACE to connect and to use the 
MessageBroker. 

• The logic of self-aggregation algorithms is defined in the AggregationAlgorithm class 
(and in its subclasses). 
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 Figure 20. Main elements of an ACE.  
Referring to the WP1 ACE model, AceLocalNode and AceNode are to be considered part 
of the ACE Self-Model, while the AggregationAlgorithm is the part of the Facilitator in 
charge of managing autonomic reconfiguration of the relationships between the ACE and 
its group. 

 

5.3.2 Dynamic view 
The diagrams in Figure 21 and Figure 22 represent the interactions between a triple of 
ACEs to implement the active and passive clustering algorithms.  

 

Figure 21 defines the steps to be followed to execute the passive algorithm: 

 

1. The initiator, at a certain point in its life decides to start the (reverse) clustering 
algorithm. This decision can be taken as a result of a change in its internal state or 
as a result of the observation of the external environment. To start the algorithm the 
initiator sets its state to busy and chooses two of its neighbors. These neighbors 
must be compatible with each other, i.e., they have to be of the same type in case 
clustering is going to be executed, of different types otherwise.  

2. The initiator node sends a startAggregation request to firstNeighbor and 
secondNeighbor and waits for the responses. If one of the two is busy, initiator 
stops the execution of the algorithm. Otherwise it executes the next steps. 

3. initiator sends a connect() message to the secondNeighbor that executes an 
addNeighbor(firstNeighbor). initiator node waits for the response message from 
secondNeighbor. 
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4. After receiving the confirm message, initiator node sends a requestSwitch() to the 
firstNeighbor. The firstNeighbor node executes a removeNeighbor(initiator) and 
an addNeighbor(secondNeighbor.) 

5. initiator waits for the reply message from firstNeighbor. 
6. initiator informs the two neighbors that the switching operations have been 

terminated 
7. Finally, initiator removes the firstNeighbor from its neighbor list.  

Please notice that setBusy and setIdle operations are used to avoid that more than one 
(reverse) clustering activity is performed at a time.  

initiator : AceNodeLocal firstNeighbor : AceNodeLocal secondNeighbor : AceNodeLocal

1 : setBusy()
2 : startAggregation()

3 : setBusy()

4 : startNeighborChange()

5 : setBusy()

6 : connect(firstNeighbor)

7 : AddNeighbor(firstNeighbor)

8 : requestSwitch(initiator, secondNeighbor)

9 : removeNeighbor(initiator)

10 : addNeighbor(secondNeighbor)

11 : stop()

12 : setIdle()

13 : setIdle()14 : stop()

15 : removeNeighbor(firstNeighbor)

16 : setIdle()

 

    Figure 21. Passive (reverse) clustering algorithm. 
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Figure 22 describes the steps to be followed to perform the active aggregation algorithm. In 
this case, the initiator looks for a matchmaker among its neighbor. This identifies, among 
its neighbors, a candidate for aggregation and then triggers the aggregation mechanism. In 
our implementation, only a neighbor that doesn’t belong to the right type (i.e., different from 
initiator in clustering and same as initiator in reverse clustering) can be selected as 
matchmaker; at present, the extension to different cases is under study. 

More in detail, the steps being executed are the following: 

1. The initiator chooses one of its neighbors among those having a type that is not 
compatible with its own type. This (in)compatibility relationship depends on the 
aggregation approach (clustering or reverse clustering) being executed. If, for 
instance, reverse clustering is executed, then any neighbor having the same type fo 
the initiator is not compatible with it. initiator elects this node as matchMaker and 
sends to it a matchRequest(). If the node accepts to be a matchmaker, it sets itself 
to busy. 

2. The matchMaker identifies a new neighbor to connect to the initiator. Then it 
sends both to the initiator and the other neighbor a startNeighborChange() 
request.  If the two nodes are currently idle, they set themselves to busy and signal 
their ability to participate to the switch.  

3. matchMaker sends a connect() to the neighbor that executes an 
addNeighbor(iniator). matchMaker waits for the response from the neighbor 
node. 

4. The matchMaker sends a requestSwitch() to the initiator. The initiator executes 
the methods removeNeighbor(matchMaker) and addNeighbor(neighbor). 

5. Finally, the matchMaker sends a stop() request to the other parties and then it 
removes the initiator from its list of neighbor.  
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matchmaker : AceNodeLocalinitiator : AceNodeLocal neighbor : AceNodeLocal

1 : matchRequest()

2 : setBusy()

3 : startNeighborChange()

4 : setBusy()

5 : startNeighborChange()

6 : setBusy()

7 : connect(initiator)

8 : AddNeighbor(initiator)

9 : requestSwitch(matchMaker, neighbor)

10 : removeNeighbor(matchMaker)

11 : addNeighbor(neighbor)

12 : stop()
13 : setIdle()

14 : stop()

15 : setIdle()

16 : removeNeighbor(initiator)

17 : setIdle()

 

Figure 22. Active (reverse) clustering algorithm. 

5.3.3 Configurator component 
The main steps performed by the Configurator component are: 

• The instantiation of the MessageBroker. 
• The creation of the initial population of ACEs and their connection to the 

middleware 
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• The start up of the clustering algorithm execution. 
 

The diagram in Figure 23 describes the main classes belonging to the Configurator (except 
for the ACE component that is shown only for clarity reasons). 

AceConfigurator is the core of the component: it exploits the information within 
AceTopology (and its subclasses) to define the topology of the system. During its lifecycle, 
each ACE stores the real connections between the ACE nodes as a list of neighbors. 

 

 

Figure 23. Main elements of the Configurator component. 
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5.4 REDS 

In this section we provide an overview of the REDS middleware we exploit to support 
event-based communication [3, 4].  

REDS (REconfigurable Dispatching System) is a framework of Java classes to build 
publish-subscribe applications for large, dynamic networks. 

Distributed publish-subscribe applications are organized as a collection of components, 
which interact by publishing messages and by subscribing to the classes of messages they 
are interested in. Publish-subscribe applications are built around a publish-subscribe 
middleware, which provides a dispatcher, responsible for collecting subscriptions and 
forwarding messages from publishers to subscribers, and a library to access the services 
of the dispatcher and implement application components. 

REDS provides the client API to write publish-subscribe applications and defines a general 
framework of components, with clearly defined interfaces, to build a distributed dispatcher 
organized as a set of brokers linked in an overlay dispatching network, which collaborate to 
route messages from publishers to subscribers. 

With respect to other publish-subscribe middleware REDS provides several innovations:  

• Its modular architecture allows system integrators and middleware programmers to 
easily adapt REDS to their needs, e.g., by defining their own format for messages 
and filters, the mechanisms used internally by each broker to match and forward 
messages, and the strategy for routing messages, just to mention the most relevant 
aspects. 

• REDS is the first publish-subscribe middleware expressly designed to support 
arbitrary topological reconfigurations of the message dispatching network. Each 
REDS broker includes two modules, the TopologyManager and the Reconfigurator, 
which embed the logic used to manage run-time reconfiguration of the dispatching 
network, either to react to changes in the underlying phisical network or to adapt it 
to the application's needs, e.g., to balance the traffic load, or to change the number 
of brokers and their connectivity. 

• Finally, REDS natively supports replies to messages, thus naturally providing 
bidirectional communication within the framework of content-based publish-
subscribe communication. REDS brokers keep track of the transit of messages 
tagged as Repliable and store routes followed back by replies. 
By supporting replies natively, REDS brokers are able to track the number of 
expected replies for each message and check if and when all of them have been 
received---a feature that cannot be obtained by implementing replies at the 
application level. 

5.4.1 Reds in a nutshell 

Components of an application built using REDS access the publish-subscribe services 
provided by REDS through an object that implement the DispatchingService interface. It 
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provides methods to subscribe and unsubscribe to classes of messages, to publish 
messages, to receive subscribed messages, and to reply to them. REDS provides several 
implementations of the DispatchingService interface, which differ for the protocol used to 
access the REDS dispatcher. Developers using REDS may define their own format of 
messages and filters (used to define the classes of messages application components 
want to subscribe to) by extending the Message class and implementing the Filter 
interface. Otherwise, they can use the messages and filters already provided with REDS. 

The REDS dispatcher is organized as a set of brokers linked together in an overlay 
dispatching network. Each REDS broker is internally structured in a set of modules 
grouped in two layers: the Overlay and the Routing layer. The former manages the overlay 
network that connects brokers, while the latter is in charge of routing messages on top of 
such overlay. Figure 24 shows the internal structure of a REDS broker. 

 

Figure 24: the internal structure of a REDS broker 

The goal of the Overlay layer is to implement the mechanisms to manage the overlay 
network that connects REDS brokers and to exchange messages on top of it. In particular, 
it embeds the protocols that keep the overlay network connected when the topology of the 
underlying network changes (e.g., because some peers leave a peer-to-peer network or 
because of mobility in MANETs). 

The Routing level offers the very publish-subscribe functionalities: it stores clients' 
subscriptions and uses the Overlay to route messages from publishers toward subscribers.  
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Programmers using REDS may adapt the behavior of the system to their needs by 
implementing new versions of the REDs components in case the available implementation 
does not fit their specific needs.  

As an example, one could define a new component which realizes a new routing strategy 
for messages and subscriptions. If correctly implemented, such component can be 
combined with existing ones to implement a fully functional, innovative dispatching network 
with a minimal effort. (Details on REDS can be found in [3,4]). 

5.5  Performance analysis: preliminary results 
 

In this section we show the first results we have obtained using our prototype to execute 
the ACE self-aggregation algorithms. Specifically, we illustrate some simple performance 
results for the clustering (and reverse clustering) algorithms, by considering both active and 
passive clustering and different topologies (Random, Torus, Spiral). 

All results we have collected so far refers to a configuration with 100 nodes, 1000 links and 
5 different node types (colors).  

To give an idea of the algorithm performance we have collected information about the 
number of exchanged messages (to measure the traffic over the network) and the level of 
node homogeneity achieved by the algorithms. By level of homogeneity we mean the 
percentage of nodes having neighbors of the same type. Clearly, a high level of 
homogeneity is our goal in case we are enacting a clustering approach. In case we refer to 
a reverse clustering mechanism, then we would need to tend to keep the level of 
homogeneity very low.  

All measures have been taken assuming specific times for the termination of the 
aggregation (see 3rd column in all the following tables).  

More precisely, for the clustering algorithms we have observed results close to an 
asymptote when the simulation reaches the 100 seconds. For this reason, we show the 
obtained results for time intervals of 25 seconds starting from 0 second and ending at 100 
seconds. 

For the reverse clustering algorithms we have observed quite stable results also ending the 
simulation at 20 seconds. On this basis, we show the obtained results starting from 0 
second and ending at 20 seconds with time intervals of 5 seconds only. 

At present, a more thorough analysis is in progress to give statistical soundness and 
validity to the results. To this end we are trying to set up a measurement framework where 
the experiments are performed in a controlled way, so to take into account the variables 
that affect the results (e.g., the number of nodes and link and for the number of different 
node types). Besides, the experiments should be replicated so that a set of statistical 
operations (e.g., measures of central tendency and data distribution) can be done on 
collected data. The obtained results can then be used to decide which algorithm is most 
appropriate for addressing a particular problem or situation. 
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5.5.1 Passive clustering 

 

Table 2 Passive clustering. 
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Figure 25. Passive Clustering: Homegeneity level vs algorithm completion time. 
 

The results in table 2 and Figure 25 seem to indicate that the RANDOM topology is the 
best suited to achieve a high level of homogeneity (goal of the clustering) with a substantial 
equivalence with the other topologies in the number of exchanged messages. 

  

5.5.2 Active clustering 

 
 

Table 3. Active clustering. 
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Figure 26. Active Clustering: Homegeneity level vs algorithm completion time. 
 

 

In this case we observe again a superiority of the RANDOM topology with respect to the 
others. In particular, the RANDOM topology for active clustering offers results that are 
comparable with the ones obtained for the Passive Clustering. Instead the Torus and Spiral 
topologies reach for active clustering a lower level of homogeneity with respect to the case 
of passive clustering. 

 

5.5.3 Passive Reverse Clustering 
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Table 4. Passive reverse clustering. 
 

 

Figure 27. Passive Reverse Clustering: Homegeneity level vs algorithm completion 
time. 
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With this kind of clustering, the three different topologies present similar performance in 
terms of both homogeneity level (in this case it should be as low as possible) and number 
of exchanged messages with a slight dominance of RANDOM topology. 

 

5.5.4 Active Reverse Clustering 
 

 

Table 5. Active reverse clustering. 
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Figure 28. Active Reverse Clustering: Homegeneity level vs algorithm completion. 
 

With this algorithm we observe a complete convergence  (0% of homogeneity level) 
reached with the RANDOM topology in a very short time (10 seconds). Torus and spiral 
topologies exhibit good performances as well (even if not optimal), which confirm a 
superiority of the active versus the passive version of the algorithm. 

 

5.5.5 Findings 
By summarizing, we can roughly say that for clustering algorithms the RANDOM topology 
achieves a good level of homogeneity both with active and passive version, while torus and 
spiral topologies show lower performances that slightly decrease in the case of active 
clustering. 

For reverse clustering algorithms, instead, it is possible to clearly indicate the RANDOM 
topology and the active version of the algorithms as the combination that shows the best 
performance: complete convergence with a low number of messages and with a short 
completion time. 

Moreover, for each algorithm we have also shown, for each completion time, the number of 
exchanged messages that roughly measures the traffic over the network. In such a way the 
selection of the aggregation algorithm can be performed basing not only on the reached 
homogeneity level but also on the cost paid in terms of generated network traffic.  
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6 Conclusions 

 

This first deliverable presents the first year’s most significant results with respect to one of 
the high-level objectives of WP3: to investigate the suitability of specific algorithms for the 
self-aggregation of Autonomic Communication Elements (ACEs), an enabler for self-
organized service creation, deployment, regulation and life-cycle management. We 
followed a two-tier approach, using modeling and simulation to investigate fundamental 
systemic properties (sections 2-3) and their sensitivity to the most relevant source of 
perturbation (“selfish” decision-making, section 4), then developing a prototype 
implementation of the preferred rule-set using a pre-existing middleware framework (proof-
of-concept, section 5). 

We found that even extremely simple candidate local rules had “hidden” properties 
susceptible to lead to inoperable global configuration, supporting our initial hypothesis that 
a principled study of system properties has to be an integral part of the process of 
engineering the behavioural repertoire of individual components. Our main conclusion is 
that, if the objective is to design a set of local rules capable of scaling up to a large, fully 
decentralised population of such components, failing to conduct such a preliminary, model- 
or simulation-based investigation can have catastrophic consequences, even when small-
scale experimental deployment revealed no unwanted properties. 

Our results lead us to recommend using the “on-demand” clustering algorithm whenever 
constraints dictate that only strictly local messaging between first neighbours (i.e. 
information transfer without any dedicated messaging infrastructure - either centralized or 
distributed - or forwarding capability) is available. This will of course not always be the 
case, but can be regarded as the most challenging scenario for a rule-set relying on self-
organization to promote the emergence of the desired system configuration (due to the 
strict locality of information and absence of explicit long-range interactions) and so 
constitutes the ultimate test of robustness.  

In practice, this means that whenever operating under these extreme conditions, an ACE 
following the “on-demand” clustering algorithm would initiate a rewiring procedure as soon 
as it detects a discrepancy between its “Goal Needed” (GN) and “Goal Achievable” (GA) 
lists of required/available functionalities. This situation can result from many different 
events like, e.g., the breaking of an existing collaborative link (GA → GN), the submission 
of a new type of request (additional GN), a change in the local load (GA → GN, due to a 
surge in demand leading to the current collaborative relationships being no longer able to 
absorb the corresponding workload)…  

Depending on the circumstances, the initiator can choose one or more of its first 
neighbours (ACEs with which it has an existing relationship) as (a) match-maker(s), and 
the constraint on the conservation of the total number of links can be relaxed or not. But 
fundamentally, our work demonstrates that successful self-organization would take place, 
at a predictable rate, provided that well-identified conditions are met (most importantly in 
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terms of the diversity of “goals types”, which must be low compared to population size and 
of the same order of magnitude as the average node degree). 

In the course of this work, we also found that some aspects of the self-aggregation process 
were more closely related to the activities of WP4 than originally envisaged. This is 
because “selfish” decisions motivated by the nodes’ supposed goal of maximizing their own 
efficiency can directly impact on system dynamics by interfering with the normal execution 
of the clustering algorithm(s).  

We have investigated methods to quantify the impact of such a “cheating” behaviour and 
applied other techniques to determine what topological reorganization would likely occur in 
a population of “selfish” nodes. Whether “selfish” and/or “rational” decision-making can play 
a constructive part in the self-organization process (as it does in natural ecosystems and 
markets) or must somehow be kept under control by appropriate disincentives has still to 
be determined and will be part of future work. 

[RICHARD, PAUL, PIETRO – PLEASE MODIFY /APPEND THE LAST TWO 
PARAGRAPHS AS YOU SEE FIT] 

The objective of the prototype implementation was two-fold: (1) to verify that the abstract 
algorithms used in simulation could actually be transposed into a functional interaction 
framework applicable to a real distributed system, and (2) to facilitate integration of WP3’s 
outputs into ACE design by combining the terminology of WP3 and WP1 into a coherent 
whole, thus providing a common reference. 

The successful implementation of the various rule-sets demonstrated that translating the 
abstract models into concrete sets of interaction patterns was eminently feasible. By 
investigating multiple starting topologies (random, spiral, torus), our experiments helped to 
quantify some non-intuitive advantages of the random graph. Finally, the prototype was 
also used to produce a first batch of results relating to the “messaging cost” and 
convergence time associated with the various clustering algorithms  
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