

IST IP CASCADAS “Component-ware for
Autonomic, Situation-aware Communications,

And Dynamically Adaptable Services”

Bringing Autonomic Services to Life

Deliverable D2.1 - Report on Pervasive Supervision
Session 6: Towards a Mathematical Framework for
Pervasive Supervision

 Status and Version: Final Version

 Date of issue: 23.12.2006

 Distribution: Project Internal

 Author(s): Name Partner

 Peter H. Deussen FOKUS

 Checked by:

CASCADAS — BRINGING AUTONOMIC SERVICES TO LIVE

Towards a Mathematical Framework

for Pervasive Supervision

Peter H. Deussen

ii

This report is part of the CASCADAS Deliverable 2.1. Since it makes heavily use of math-
ematical notions, the Word typesetting program is not suitable for this type of work. So we
decided to use the LATEX typesetting system instead and to present this work in a separate
document.

The document addresses a mathematical foundation of a number of terms necessary to
develop a theory and practical application of model-based supervision.

Deliverable 2.1 CASCADAS Work Package 2

Contents

Chapter 1. Introduction 1

Chapter 2. Mathematical Framework 5
1. Background Notations 5
2. Distributed Alphabets and Their Interpretations 7
3. Partial Ordered Multisets 9
4. Valued Interpretation 13

Chapter 3. Morphisms 15
1. Abstraction 15
2. Embedding and Image 19
3. Zooming 24

Chapter 4. Supervision 29
1. Basic Supervision Algorithm 29
2. Metrics for Self-assessment 33
3. Hierarchical Supervision 33

Chapter 5. Summary and Further Work 37

Bibliography 39

iii

CHAPTER 1

Introduction

Supervision is understood as the enhancement of a given system by an additional control
structure that continuously observes the state and behavior of the system and takes measures
if the system enters a non-suitable state to guide it back into an acceptable mode of operation.

This plain definition contains a number of terms that need to be explained in more detail.
Firstly, it talks not about a particular type of system (or even a concrete one) but addresses
a general notion of the term system. However, it assumes that a system comprises of states
(which can be observed) and of some type of dynamics that changes the system state which
can also (at least to a certain degree) be observed but also can be controlled. Finally, it as-
sume that there is an assessment of system state and behavior which allows to tell whether
a system state or behavior is suitable or not.

Observation means abstraction. It is impossible to sense a real system in its very details,
to monitor all the processes of a physical or—in the present case—of a information techno-
logical world. Moreover, abstraction is a necessary precondition for understanding (where
the term “understanding” is used to indicate the capability to judge whether a particular
process serves a given purpose or not and to estimate the effects of this process). It is not
possible to grasp a complex computation process in terms of basic processor instructions.
Complex communication means (e.g. communication protocols and protocol stacks) cannot
adequately described by the exchange of bits and bytes. The correct interpretation of obser-
vations of such processes and their control require of knowledge about the mechanisms that
are realized by them, of their semantics. This knowledge turns observations, i.e. the gath-
ering if data, into perceptions, i.e. contextualized information, and—symmetrically—goal
oriented activities into sequences of actions.

Contextualization, i.e. the interpretation and generation of data against the background
of specific knowledge requires the existence of (at least) a situational model of the surround-
ing world (or system) explaining the causal relationship of those data, but also an under-
standing of system internal relations. But from the perspective of causality, all situations and
the transitions between them are of equal desirability—having just a causal model of its sur-
rounding puts a system into the situations that it knows what is going on but it doesn’t care.
Thus it is crucial that it is in capable to assess the suitability of an observed situation. Having
a notion of “good” and “bad” provides a motive for a system to move from an undesired
situation to a desirable one.

Figure 1 shows the relationship of the external “real” system and the internal system
model. It assumes that the real system comprises of a set of situations and processes that lead
from one situation into another. Those processes are not single actions but probably complex
composed activities. On the system model site, situations correspond to system states, and
processes correspond to system actions. The relationship between model and real system is
established by observations and control.

1

2 CHAPTER 1. INTRODUCTION

a b

dc

τ

Pa

PdPc

Pb

Pτ

Model system

Real system

state readings (sensors)

observable events controllable events (actions)

τ hidden event (only visible by change of state readings

FIGURE 1. Relationship between real system and system model.

— Situations are assumed to be observable (e.g. by sensor readings). Of course, not
all aspects of a situation can be observed, thus different situations may not be dis-
tinguishable by the observation mechanisms. In the extreme case, the state reading
reduced to the simple information that some external state exists.

— Processes may be observable either directly by the perception of system events or
indirectly by the change of state readings (we use the “hidden action” τ to express
such an indirect perception). There might be even processes which cannot be ob-
served at all, neither by direct perception nor by indirect state reading.

— Finally, some of the processes of the real system might be controllable be the execu-
tion of system actions which are described in the system model.

We do in general not assume that the above relationships are actually in place. Instead, we
define a number of measures that expresses the suitability of the system model to understand
and to control the real system, i.e. the competence of the control system with respect to its
purpose.

This report is organized into three major parts. Chapter 2 introduces a strict mathemat-
ical formalisms of the notions of a “system”, “system behavior”, and “assessment”. At the
current stage, we restrict ourselves to the assessment of the suitability of system states. The
more generic (and much more complicated) assessment the suitability of system behavior
will be addressed in a later project phase. In defining these terms and developing their the-
oretical foundation, we try to be independent of any concrete formalism to describe system
models to give the designer of system models as much freedom in the choice of that formal-
ism as possible.

Chapter 3 continues with the development of the framework with the definition of no-
tions for system abstraction and system composition. Following the “no syntax” approach to
stay free from concrete formalisms, system composition is explained without referencing a

Deliverable 2.1 CASCADAS Work Package 2

pictures/model-and-world.eps

CHAPTER 1. INTRODUCTION 3

concrete composition or communication mechanism. Abstraction and composition are then
used to defined hierarchical models.

Chapter 4 then discusses supervision algorithms based on the notion of system models as
given before. A basic supervision algorithm to be used with “flat”, i.e. non-hierarchical sys-
tem models is discussed in detail, and metrics for system competence are discussed for this
algorithm. Finally, an extension of this supervision algorithm to hierarchical system models
is briefly discussed.

This report is on work in progress. So a number of questions is left open. We conclude
with a summary and an outlook on further work in Chapter 5

It remains to explain the relationship to the overall work programme of the CASCADAS
Work Package 2 on Pervasive Supervision. Given a system and a supervision system, we
suppose that this system employs the supervision system as a supplementary service. The
contract on supervision basically consists of a supervision model where the system under
supervision announces the information it is willing to disclose to the supervision system, its
own assessment of states, and the ways in which the supervision system is allowed to control
the system under supervision if such a control is necessary. For hierarchical supervision
of composite system (ACEs or self-organized ensembles of ACEs), the supervision model
(the contract) is composed from the local supervision models of the system components. A
precise justification of these ideas, in particular the relationship between different levels of
abstraction of within a hierarchical supervision model, is the main motivation of the work
presented in this report.

Pervasive Supervision CASCADAS Deliverable 2.1

CHAPTER 2

Mathematical Framework

In this chapter, we introduce an approach towards a model based framework for hierar-
chical supervision. After presenting in Section 1 the mathematical notations we use, we start
our course of elaboration in Section 2 with distributed alphabets, which provide a basic no-
tion of actions a that a distributed system can perform. We continue with the general notion
of a system that is used throughout this report, which is given by a set of states and a transi-
tion relation (labeled with actions from a distributed alphabet) that respects the distributed
nature of those actions.

For sequential systems (i.e. systems which run on a single computer), the automata the-
oretic operational semantics given by sequences of actions that are executable by such a
system has been proven as appropriate. For distributed systems however, more general ap-
proaches have been suggested. One possible candidate are so-called partial ordered multi-
sets, which are basically sets of actions equipped with a notion of causality. In particular it
takes into account that there is no causal relationship between actions executed by system
components running on different locations. This type of system semantics is discussed in
Section 3.

For supervision, not only the causal structure of a system is needed, but also an assess-
ment of the “suitability” (or “desirability”) of system states and system behaviors, as the
supervision system are supposed to stay passive when the system under supervision is in a
suitable state. In Section 4, we restrict our attention to the assessment of system states. As-
sessments of system behaviors will be considered in a later phase of the CASCADAS project.

1. Background Notations

For the sake of breviety we adopt the convention that whenever a structure A =
〈X, Y, . . .〉 is introduced in a definition, then its components are denoted by XA, YA, Thus
for instance, in Def. 2.7 we introduce so-called pomsets as structures v = 〈E, <, λ〉. In the
further course of this document, the first component of each pomset w will then denoted by
Ew, the second one as <w, and the third one as λw.

Since we make extensive use of relations throughout this report, we use some non-
standard notations: Let R ⊆ A× B be a binary relation. Then for some a ∈ A we let

R(a) =df {b ∈ B | a R b} .

For some set C ⊆ A, we extend this notion to

R(C) =df

⋃

a∈C

R(a).

The inverse of R is the relation R−1 ⊆ B× A and is defined by:

b R−1 a ⇔df a R b.

5

6 CHAPTER 2. MATHEMATICAL FRAMEWORK

If R ⊆ A× B and S ⊆ B× C, then the composition R · S ⊆ A× C of R and S is defined to be

a (R · S) c ⇔df c ∈ S(R(a)).

The identity relation idA ⊆ A× A is defined as

a idA b ⇔df a = b.

If R ⊆ A× A is a relation, we denote by R+ the smallest transitive relation that contains R
(i.e. R · R ⊆ R∗), and R∗ is R+ ∪ idA.

We in general do not distinguish (apart from the notational level) between binary rela-
tions and functions, i.e. we associate a (partial or total) function f from A to B by its graph,
i.e. the relation

G f = {〈a, b〉 ⊆ A× B | f (a) = b}

Adopting this point of view allows us to apply set operations also to functions, i.e. we use
expressions like f ∪ g. We however use usual notations like f (a) = b instead of b ∈ f (a) or
a f b. By f : A ⇁ B we denote the fact that f is a partial function from A to B (i.e. it might be
the case that for some a ∈ A there is no b ∈ B such that 〈a, b〉 ∈ f), while as usual f : A→ B
indicates that f is a total function. For f : A ⇁ B and g : B ⇁ C we define g ◦ f : A ⇁ C as
usual to be

(g ◦ f)(a) =df g(f (a))

(i. e. g ◦ f = f · g). Functional restriction is denoted by f � C for f : A ⇁ B and C ⊆ A and is
defined as

f � C =df f ∩ (C× B).

It is useful to have a disjoint sum: For sets A and B define

A + B =df A× {0} ∪ B× {1}.

An equivalence relation ≡ ⊆ A× A over some set A is a reflexive, symmetric, and transi-
tive relation. By

[a]≡ =df {b ∈ A | a ≡ b}

we denote the equivalence class of some a ∈ A w.r.t. ≡.

A/≡ =df {[a]≡ | a ∈ A}

is the quotient set of A w.r.t. ≡.
If f : A→ B is a surjective mapping, then the relation ≡ f ⊆ A× A defined by

a ≡ f b ⇔df f (a) = f (b)

is obviously an equivalence relation. We then abbreviate [a]≡ f
by [a] f and A/≡ f

by A/ f .

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 2. MATHEMATICAL FRAMEWORK 7

2. Distributed Alphabets and Their Interpretations

A distributed alphabet is given by a set of system actions together with a notion of indepen-
dence, namely a symmetric and irreflexive relation. Intuitively, two actions are independent
if they can be executed in parallel or distributed at different locations (e.g. computers). The
complement of the independence relation is called dependence relation. Thus, dependent
actions are those which are in direct causal relationship, e.g. because they have to be exe-
cuted in sequence, on the same processor, or in the same thread. We furthermore consider a
hidden actions which is traditionally denoted by the Greek letter τ. Usually, τ is used to refer
to “internal” system actions that cannot be observed from outside of the system but which
are nevertheless need to be taken into account in order to get meaningful definitions of no-
tions such as deadlocks and livelocks. In this report, τ is used in a slightly different meaning,
namely to refer to actions that are executed by the environment of a system that are not ex-
plicitly defined in the system model: τ means that in a given situation (i.e. system state), the
environment might do “something”. Thus τ is used to model “external non-determinism”.

It should be noted that all occurrences of τ are considered to be dependent (i.e. there is
no parallel execution of several instances of the hidden action). This choice in mathemati-
cal modeling has been made to indicate the fact that the knowledge whether actions can be
performed independently already bears structural information on the distribution of system
components. A system which in embedded in a “black” environment perceives it as a gen-
erator of sequences of events (messages, sensed data) without a way of judging whether the
processes that generate these event sequences are executed in parallel or not.

2.1. DEFINITION. Let Σ = 〈A, τ, D〉 be a structure comprising an alphabet A, a special
symbol τ ∈ A, and a symmetric and reflexive relation D ⊆ A × A. Then Σ is called a
distributed alphabet. We use the letter I to denote the complement of D, i. e. I =df (A× A) \D.
The relation I is called an independence relation. �

The following definition described the term “system” that is used in this report in a very
abstract way, namely as a structure that comprises states—although it makes no assumption
on the nature of system states, their structure, etc.—and state transitions which are labeled
by actions of a (distributed) alphabet. For real applications, system models are not supposed
to be given in this ascetic form. To the best knowledge of the author a state/transition seman-
tics can be assigned to all modeling formalisms that are candidates for describing supervi-
sion models. This includes finite state machines, extended finite state machines, all Petri-net
like formalisms, behavioral UML diagrams (as long a formal semantics is available), process
algebras, timed state machines (as timing can be approximated by non-determinism), etc.
This generic notion of a system however will restricted in the following by a few necessary
assumptions.

2.2. DEFINITION (Transition System). A transition system over a distributed alphabet Σ is

a structure

〈

S,
{

a
−→

}

a∈AΣ

〉

, where S is a set of states and
a
−→ ⊆ S× S assigns a state transfor-

mation relation to each symbol a ∈ AΣ. �

We now establish the connection between the notion of independence given by the rela-
tion IΣ and the transition relation of transition systems in an “extensional” way by explain-
ing the necessary effects (or better, non-effects) of the firing of independent system actions.

Pervasive Supervision CASCADAS Deliverable 2.1

8 CHAPTER 2. MATHEMATICAL FRAMEWORK

To give some intuition, let us use the “intensional” picture of a global system state com-
posed from the local states of a set of distributed components (in the most easiest form, such
a global state is a vector of local states). Actions are supposed to act on the local states of
the executing components, hence, independent system actions act on pairwise disjoint sets
of local system states (note that a communication action may act on the local states of all
components that participate in the communication). Thus if we consider two independent
actions a and b, then (1) the execution of a has no impact to the executability of b and vice
versa. (2), the execution order of a and b has no impact to the global system state that is
reached after their execution.

2.3. DEFINITION (Diamond properties). Let Σ be a distributed alphabet with associated
independence relation IΣ and let I be a transition system over Σ. Let a, b ∈ AΣ be actions
with a IΣ b, and let s1, s2, s3 ∈ SI be states. The following conditions on transition systems I
are usually called diamond properties:

(1) s1
a
−→I s2 ∧ s1

b
−→I s3 ⇒ (∃s4 ∈ S)

[

s2
b
−→I s4 ∧ s3

a
−→I s4

]

;

(2) s1
a
−→I s2 ∧ s2

b
−→I s3 ⇒ (∃s4 ∈ S)

[

s1
b
−→I s4 ∧ s4

a
−→I s3

]

.

We say that I enjoys the diamond properties if the conditions explained above are true for all
pairs of actions from Σ and all states of I. �

A second restriction of the class of transition systems we consider throughout this re-
port is the assumption of determinism in the sense that the execution of a specific system
actions leads to a uniquely defined result. Non-deterministic choice is still expressible by
means of a set of actions enabled at some state, these behavioral alternatives however can
be distinguished. An exception is the hidden action. For τ, bounded as well as unbounded
non-determinism is permitted.

2.4. DEFINITION (Deterministic Transition System). A transition system I over Σ is
called deterministic if for each a ∈ AΣ \ {τΣ} and for all states s, s1, s2 ∈ SI we have

s
a
−→I s1 ∧ s

a
−→I s2 ⇒ s1 = s2

�

The third assumption is on the specific behavior of the hidden action τ.

2.5. DEFINITION (Hidden Action). Let I be a transition system over Σ. Then τΣ is called
hidden in I if

τΣ−→I ◦ τΣ−→I ⊆
τΣ−→I , and

idSI ⊆
τ
−→I .

is true. �

The first equation in the above definition states that several occurrences of τΣ cannot be

distinguished from a single one, or—equivalently—the relation
τΣ−→ is transitive. If we con-

sider for instance a sensor that reports periodically certain aspects of the state of a system or
its environment, and if we assume that we do not have an explicit model of the processes

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 2. MATHEMATICAL FRAMEWORK 9

that are responsible for changes of the system state, then we use the τ action to model the
dynamics of these processes in a very abstract way. Thus, an alternative interpretation of the
transitivity of the τ action is that the set of states that are visible depends on the sampling
rates of its sensors. Furthermore, we assume that τ is always enabled (but does not neces-
sarily have an impact to visible system states), i.e. there is always some (probably hidden)
system activity of the environment.

Putting these three assumptions together, we obtain the definition of a “well-formed”
system, or that of an interpretation of a distributed alphabet.

2.6. DEFINITION (Interpretation). An interpretation of a distributed alphabet Σ is a tran-
sition system I such that the following properties do hold:

(1) I is deterministic.
(2) I enjoys the diamond properties.
(3) τΣ is hidden in I.

By Int(Σ) we denote the class of interpretations of Σ. �

3. Partial Ordered Multisets

If we consider sequential processes, sequences of actions are a suitable semantic struc-
ture to describe their behavior. If we however look on parallel or distributed systems, the
facts that two actions are executed in parallel (e.g. by distributed system components) can-
not adequately expressed if only sequences are considered. We will not contribute to the
long ongoing discussion whether actions sequences are really not suitable as semantics for
distributed systems (a comprehensive and amusing discussion of this topic can be found in
[29]), instead we will introduce a representative of a so-called “partial order semantics” that
essentially behaves like sequences in the sense that its algebraic structure, namely that of a
free monoid, belongs to the same class a the set of sequences over a given alphabet.

Partially ordered multisets (or pomsets, for short) have been introduced by Grabowski [16]
and further developed by Starke [34] and Pratt [28]. The basic idea is to model system be-
havior by an ordered set of events. Events stand for the occurrence (or execution) of system
actions. Thus events are labeled with system actions. The ordering expresses causality. Thus
an event e1 preceeds an event e2 if e1 has to be executed in order to enable e2. On the other
hand, events which are causally unrelated can be executed in any order.

Mathematically, causality is modeled by a partial order, i.e. a relation with the following
properties:

— It is anti-symmetric, because if e1 causes e2 then e2 cannot be the cause of e1,
— it is transitive, because if e1 causes e2 and e2 causes e3, then e1 is also an indirect cause

of e3.

In this report, we are mainly interested in the determination and execution of supervision
activities, i.e. of finite “plans”. Thus we restrict ourself to finite pomsets.

The material presented in this section bases on previous works of the author. A more
detailed presentation including proofs for all lemmas in this section (with the exception of
the pretty obvious Lemma 2.11) can be found in [11].

Pervasive Supervision CASCADAS Deliverable 2.1

10 CHAPTER 2. MATHEMATICAL FRAMEWORK

2.7. DEFINITION. Let Σ be a distributed alphabet. Let E be a finite set of event, < ⊆ E× E
be a partial order, and λ : E → AΣ a labeling function such that

λ(e1) DΣ λ(e2) ⇒ e1 < e2 ∨ e2 < e1

is true, then the structure v = 〈E, <, λ〉 is called a partially ordered multiset (a pomset, for short)
over Σ. By Pom(Σ) we denote the class of pomsets over the distributed alphabet Σ. �

At this point a clarification on notations have to be made. Symbols like <, @, etc. are in
general used to denote the irreflexive versions of partial orders, while 6, v, etc. are used to
refer to their reflexive counterparts.

The above definition establishes also the connection to distributed alphabets by stipulat-
ing the assumption that dependent system actions cannot be executed in parallel, i.e. have
to be causally ordered.

2.8. REMARK. A notion of isomorphism between pomsets can be defined as follows: Let u and v

be pomsets over the same distributed alphabet. Then u and v said to be isomorphic if there is a bijective

mapping h : Eu → Ev such that e1 <u e2 ⇔ h(e1) <v h(e2) and λu = λv ◦ h do hold; with other words,

h is a renaming of events which preserving ordering. The original sources then define a pomset as

an isomorphism classes of structures of the form 〈E, <, λ〉 rather than as these structures themselves.

In this report, we adopt the somewhat imprecise convention to associate those structures with their

equivalence classes, as well-formedness issues never occur. For a more stringent setting see [11]. �

We continue with a number of useful definitions and abbreviations that allow to deal
with pomsets in a more convenient way.

2.9. DEFINITION. Let v be a pomset over a distributed alphabet Σ.

(1) Two events e1, e2 ∈ Ev are called concurrent is v if they are not related by 6v:

e1 cov e2 ⇔df ¬(e1 6v e2 ∨ e2 6v e1).

(2) On the other hand, events which are not concurrent are in line:

e1 liv e2 ⇔df ¬(e1 cov e2).

(3) A co-set of v is some set C ⊆ Ev such that liv ∩ (C× C) = ∅. A cut of v is a co-set of
v which is maximal w. r. t. set inclusion.

(4) A set C ⊆ Ev is called pre-closed in v if C = 6v
−1(C).

(5) If C ⊆ Ev is a set of events, then v[C] denotes the pomset 〈C, <v ∩ (C× C), λv � C〉.
(6) A configuration of v is a pomset w such that w = v[C] for some pre-closed set C of v.

By Cnf(v) we denote the set of configurations of v.
(7) For some set C ⊆ Ev we use the notation v dCe to denote the configuration

v
[

6−1
v (C)

]

. A configuration of the form v d{e}e is called local. For local configura-
tions we drop the parenthesis and write simply v dee. Another configuration which
is frequently used is v bec =df v

⌈

<
−1
v (e)

⌉

.
(8) A pomset w is called a sequentializing of v if Ew = Ev, <v ⊆ <w, and λw = λv. By

Seq(v) we denote the set of sequentializings of v.
(9) For convenience we define another two partial orders on pomsets:

v 6 w ⇔df w ∈ Cnf(v), and v 4 w ⇔df w ∈ Seq(v).

(10) The empty pomset is denoted by ε and is defined to be 〈∅, ∅, ∅〉.
(11) If a ∈ A, then the letter 〈{0}, ∅, 0 7→ a〉 is also denoted by a.

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 2. MATHEMATICAL FRAMEWORK 11

(12) Finally, to simplify notions, if e ∈ Ev is an event, we write ẽ instead of λv(e) when-
ever it is clear from the context which labeling function λv is meant.

�

The next definition explains how pomsets can be executed in interpretations of dis-
tributed alphabets.

2.10. DEFINITION. Let I be a transition system over a distributed alphabet Σ. For each

pomset v ∈ Pom(Σ) we define a relation
v
−→I ⊆ SI × SI inductively as the smallest relations

which satisfies:
ε
−→I = idSI ,

v
−→I =

vdEv\{e}e
−−−−−→I ·

ẽ
−→I for some e ∈ max

<

(Ev).

For some state s ∈ SI we denote by

PomI(s) =df

{

u ∈ Pom(Σ) | (∃s′ ∈ SI)s
u
−→I s′

}

.

the pomset language of I at the state s. �

Clearly, the outcome of the execution of a pomset v depends on the order in which max-
imum events e are selected, thus it is not a partial function but a relation even for determin-
istic transition systems I. The following lemma shows that if I is an interpretation of the
underlying distributed alphabet and the hidden action τΣ is “locally deterministic” in the
sense that for each state that is reached during the execution of a pomset the firing of τΣ has
a unique outcome, then the transition relation for pomsets is a partial function. The lemma
follows directly from the diamond properties (c. f. Def. 2.3).

2.11. LEMMA. For each pomset v ∈ Pom(Σ) over a distributed alphabet Σ and each state s ∈ SI
of a well-formed interpretation I the following does hold: For all events e ∈ Ev labeled with ẽ = τΣ

assume that
∣

∣

∣

∣

vbec
−−→I (s)

∣

∣

∣

∣

= 1 ⇒

∣

∣

∣

∣

vdee
−−→I (s)

∣

∣

∣

∣

6 1.

Then

∣

∣

∣

∣

v
−→I (s)

∣

∣

∣

∣

6 1.

We now introduce two operations on the class of pomsets over a distributed alphabet,
namely weakening and weak sequential composition. By Definition 2.7 we found that if e1 and
e2 are events of a pomset v ∈ Pom(Σ) such that e1 cov e2 is true, then their labels have
to be independent, i. e. ẽ1 IΣ ẽ2 has to be true. The opposite is not required, events with
independent labels need not to be concurrent. This is correct as the dependence relation DΣ

is not transitive and thus does not express indirect dependencies. But now we find that if
v ∈ Pom(Σ), then all its sequentializations are also, i.e. Seq(v) ⊆ Pom(Σ). The question
arises whether there is a pomset u which comprises only the those dependencies which are
really necessary. Such a pomset v is a minimal element with respect to the sequentialization
relation 4 in the class Pom(Σ).

The following definitions explains how such a “weakest” pomset can be constructed
from a pomset v ∈ Pom(Σ).

Pervasive Supervision CASCADAS Deliverable 2.1

12 CHAPTER 2. MATHEMATICAL FRAMEWORK

2.12. DEFINITION (Weakening). Let Σ be a distributed alphabet. The operation 〈·〉Σ :
Pom(Σ)→ Pom(Σ) is define as

〈v〉Σ =df

〈

Ev, <′, λv

〉

,

where e1 <
′ e2 ⇔df e1 <v e2 ∧ ẽ1 DΣ ẽ2 :

〈v〉Σ is called the weakening of v. We put Pomw(Σ) =df {〈v〉Σ | v ∈ Pom(Σ)}. �

2.13. LEMMA. Pomw(Σ) = min4 Pom(Σ), i.e. Pom(Σ) =
⋃

{Seq(u) | u ∈ Pomw(Σ)}.

Once having the notion of weakening of a pomset, we may ask if there is a composi-
tion operation for pomsets that introduces only the necessary dependencies and leaving the
composite pomset as concurrent as possible. The following definition introduces the weak
sequential composition operation for pomsets. Readers familiar with Message Sequence Charts
(MSCs) [20] may note the similarity to the weak sequential composition operation for MSCs.

2.14. DEFINITION (Weak sequential composition). Let Σ be a distributed alphabet. The
operation ◦Σ : Pom(Σ)× Pom(Σ)→ Pom(Σ) is defined as

v ◦Σ w =df

〈

Ev ∪ Ew, (<v ∪<w ∪ R)∗ , λv ∪ λw

〉

where e1 R e2 ⇔df e1 ∈ Ev ∧ e2 ∈ Ew ∧ ẽ1 DΣ ẽ2,

and moreover, Ev ∩ Ew = ∅ is assumed. The pomset u ◦Σ v is called the weak sequential
composition of u and v. �

The following lemma explains the relationship of the operations 〈·〉Σ and ◦Σ.
2.15. LEMMA.

(1) Both 〈·〉Σ and ◦Σ are well-defined operations.
(2) v ∈ Seq(u)⇒ 〈v〉Σ = 〈u〉Σ.
(3) 〈〈v〉Σ〉Σ = 〈v〉Σ.
(4) 〈u ◦Σ v〉Σ = 〈u〉Σ ◦Σ 〈v〉Σ.

The structure 〈A∗, ·, ε〉 is generally used as a standard example for a for a monoid, where
A∗ is the set of all finite sequences of symbols from an alphabet A including the empty se-
quence ε, and · denotes the concatenation operation for sequences, i.e. v · w = vw. It is also
an example of a “free monoid”, i.e. the set A∗ can be completely characterized in terms of the
underlying alphabet A, ε, and concatenation. These pleasant algebraic properties make the
mathematical work with sequences very easy and appropriate as semantic structure to ex-
press system dynamics, in opposite to partial order semantics which seems to be much more
complicated to deal with. The following lemma however shows that this is not really true.
It states that the algebraic structure of weakened pomsets together with the empty pomset
and weak sequential composition as concatenation operations forms also a free monoid.

2.16. LEMMA. The structure 〈Pomw(Σ), ◦Σ, ε〉 is a free monoid over the alphabet A the dis-
tributed alphabet Σ = 〈A, τ, D〉. More precisely, the following properties are satisfied for u, v, w ∈
Pomw(Σ):

(1) ε ◦Σ v = v ◦Σ ε = v;
(2) u ◦Σ (v ◦Σ w) = (u ◦Σ v) ◦Σ w.

Moreover, Pomw(Σ) is the smallest set of pomsets satisfying

(1′) ε ∈ Pomw(Σ);

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 2. MATHEMATICAL FRAMEWORK 13

(2′) a ∈ AΣ ⇒ a ∈ Pomw(Σ) (where the first occurrence of a denotes a symbol and the second
one refers to the associated letter, c. f. Def. 2.9.(11));

(3′) u, v ∈ Pomw(Σ)⇒ u ◦Σ v ∈ Pomw(Σ).

The final lemma in this section states that the ◦Σ operation is compatible with the firing
relation for pomsets in interpretations of distributed alphabets Σ and thus provides the last
element of the justification of the usefulness of weakened pomsets as partial order semantics
for distributed systems.

2.17. LEMMA. Let I ∈ Int(Σ) for some distributed alphabet Σ, let u ∈ Pom(Σ), and let
a ∈ AΣ. Then

u◦Σa
−−→I =

u
−→I · a
−→I

does hold.

4. Valued Interpretation

In this section, we are going to extend the notion of “systems” used in this report by a
further element, namely that of values. The main motivation for the introduction of a mecha-
nism to assess the suitability of states is given by the usage of transitions systems as a model
structure for supervision. The supervision algorithms presented in Chapter 4 base on the
notion of an admissible system state. If admissibility is violated, supervision activities are
triggered. The explicit representation of those triggers in the model structure enables for a
fully generic supervision approach that uses models as contracts.

We start with the definition of value structures. The most obvious choice for such a struc-
ture would be that of a finite linear order of values, for instance “bad @ acceptable @ good @

excellent”, or “error @ initial @ intermediate @ final”. For concrete models, appropriate value
structures will in almost all cases readily at hand, as the designer of a system model are sup-
posed to have a pretty good idea on the semantics and hence on how to assess the suitability
of the states of system she is working on.

We however foresee the need to have in some cases more expressive value structure
than finite total orderings. If we deal with systems and system states comprising a number
of quantitative parameters over infinite domains, a (finite) total order might be difficult to
define, while in general a partial order still might be available.

2.18. DEFINITION (Value Structure). A value structure 〈X,v〉 comprises of

(1) X, a set of values,
(2) v ⊆ X × X, a partial order on values expressing the assumption that if x v y, then

y is “better” or “more preferred” than x.
�

For the handling of values, it is necessary to recapitulate the notions of least upper
bounds and greatest lower bounds in partial orders.

2.19. DEFINITION. Let 〈X,v〉 be a value structure and let Y ⊆ X. Then lower bound of
Y is some x ∈ X such that x v y for all y ∈ Y does hold. The element x is called a greatest
lower bound of Y if for all lower bounds z of Y we have z v x. The greatest lower bound
Y is denoted by

d
Y (provided such an elements do exist in X). A value structure is called

complete if for each subset Y ⊆ X a greatest lower bound
d

Y ∈ X exists. �

Pervasive Supervision CASCADAS Deliverable 2.1

14 CHAPTER 2. MATHEMATICAL FRAMEWORK

Complete value structures are of course nothing than lower complete lattices which are
fundamental in the theory of partial orders and lattices. A number of so-called “completion
operations” are available to extend an arbitrary partial order to a (lower) complete lattice.
We will not go into the details of these constructions here. The standard references for lattice
theory remain the classical works of Birkhoff [6] and Grätzer [17]. Another excellent source
is the text book of Dillworth and Crawley [12].

2.20. DEFINITION. A valued interpretation over a distributed alphabet Σ is an interpreta-
tion I of Σ together with a complete value structure 〈X,v〉, a mapping ξ : SI → X called
state assessment function, and an admissible predicate ϕ : SI → B. We furthermore assume

∨

s∈S

ϕ(s) ∧
l

s∈S

ξ(s) v
l

s∈S′

ξ(s) ⇒
∨

s∈S′

ϕ(s).(†)

for all subsets S, S′ ⊆ SI .
The class of valued interpretations over Σ is denoted by ValInt(Σ). If I ∈ ValInt(Σ),

then the additional component of I are denoted by XI , vI , ξI , and ϕI , respectively. Least
upper bound and greatest lower bound operations are denoted as

⊔I and
dI , respectively.

For further convenience, if I ∈ ValInt(Σ), we denote by Int(I) the “interpretation part” ofI, i. e.

Int(I) =df

〈

SI ,

{

a
−→I }

a∈AΣ

〉

.

�

The condition (†) requires some explanation. The predicate ϕI(s) assesses the admissi-
bility of a state s ∈ SI , and since values from the set X are used to express the the desirability
of a system state, it makes sense to assume

ϕ(s) ∧ ξ(s) v ξ(s′) ⇒ ϕ(s′).

(Note that the above condition follows from (†) by putting S = {s} and S′ = {s′}.) In the
following, we frequently will work with assessments of sets of states that share a common
property (thus for instance, that of being the concrete image of a more abstract state). To
work with those sets, we use the

d
operation to assess its collective desirability. To keep

the threshold defined by the predicate ϕ consistent with those collective assessments, the
stronger condition is needed.

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 3

Morphisms

In this chapter, we are going to define the notions of abstraction in Section 1 and em-
bedding in Section 2 firstly on the level of distributed alphabets, secondly on the level of
interpretations of distributed alphabets, and thirdly on value structures of interpretations.
Of further importance in the notion of the image of a subsystem under an embedding oper-
ation which basically describes what “is left” from this subsystem when it is embedded into
some environment. Images are used to establish the connection between abstractions and
embeddings.

Zooms (and anti-zooms) are presented in Section 3. Zooms provides us with an operation
for the local refinement of a system by means of an embedding of an abstract version of
subsystem into some environment, and an abstraction that related a more concrete version
of this subsystem to the abstract one. Zooming then means basically the replacement of the
abstract version of the subsystem in its environment by the concrete one.

The concepts introduced below are presented in a Category Theoretical fashion. Deep
knowledge of Category Theory is however not necessary apart from the a basic understand-
ing of so-called commutating diagrams. A commutating diagram comprises of a set of objects
(think of sets, algebraic structures, or in particular interpretations of distributed alphabets),
and a set of arrows or morphisms between objects (e.g. functions, homomorphisms, or, in the
present case, abstractions and embeddings). If A, B, and C are objects, and f , g, and h are
arrows, then the diagram

C

A B
f

gh

is said to be commutative if
f
−→◦

g
−→ =

h
−→, where ◦ is a concatenation (or composition) operation

on arrows (e.g. the usual composition operation for set function). More complex diagrams
commute if each involved triangle of the above form commutes.

The classical reference for Category Theory is the book by Saunders Mac Lane [19]. An-
other excellent introduction can be found in [15].

1. Abstraction

Figure 1 shows the general idea of the abstraction operation. Abstraction is modeled
by means of three mapping, namely α, which assigns an abstract actions to concrete ones, β,
which related concrete and abstract states, and γ, which is responsible of translating concrete
state assessments into their abstractions. The following three definitions are concerned with
these mappings.

15

16 CHAPTER 3. MORPHISMS

s1

s2

s3

s4

s4

s6

b c

s

s‘

d

β

β

α

FIGURE 1. Illustration of the concept of abstraction. Several states of the more
concrete system may mapped into one abstract state, as well as several con-
crete actions may have a single abstract counterpart. The abstraction mapping
α for actions may not be total.

Considering system actions, abstraction means that several actions of the more concrete
system might not be distinguishable on a more abstract level (and thus mapped into one
abstract action). It might moreover be the case that some concrete actions do not have an
abstract counterpart at all. Thus α is defined as a partial mapping. It is however not possible
to “invent” information during the process of abstraction. Thus in particular, the concrete
version of the hidden action τ has to be mapped into its abstract counterpart.

We already discussed that the independence relation on system actions provides knowl-
edge about the distribution of system components. Thus we stipulate the assumption that if
information on action independence exists on the abstract level, then it has to be available
already on the concrete level.

3.1. DEFINITION (Abstraction of actions). Let Σ1 and Σ2 be distributed alphabets. An
abstraction map is a partial mapping α : AΣ1

⇁ AΣ2
such that

α(a) IΣ2
α(b) ⇒ a IΣ1

b, and

α(τΣ1
) = τΣ2

.

We write abs 〈α〉 : Σ1 → Σ2 if α is an abstraction map. �

Now consider interpretations. We already discussed that we assume a mechanism to ob-
tain information on system states (e.g. by means of sensors). Since this mechanisms is always
in place (although it might deliver only void information), we assume that the abstraction
mapping for system states β is a total mapping. We moreover require that a concrete system
action can be executed at some state if its abstract image (if it exists) can be executed at the
abstract image of this state, or expressed in the opposite way, it is possible that an abstract
action is enabled at an abstract state even if none of the concrete versions of that actions are
enabled at the set of concretizations of this state. This means, that the process of abstraction
may be forgetful on the enabledness conditions of system actions. Finally, a concrete action

Deliverable 2.1 CASCADAS Work Package 2

pictures/abstraction.eps

CHAPTER 3. MORPHISMS 17

a that is not visible at the abstract level (i.e. α(e) is not defined) must not lead to any visible
state change. Note that the abstract action τ is still available to model the fact that an action
is not directly visible at the abstract level but is only perceived by a state transition.

3.2. DEFINITION (Abstraction of interpretations). Let I1 ∈ Int(Σ1) and I2 ∈ Int(Σ1) be
interpretations of the distributed alphabets Σ1 and Σ2, respectively. Then a pair of mapping
β, α is called an abstraction map if abs 〈α〉 : Σ1 → Σ2 is an abstraction and moreover, β : S1 →
S2 is a total mapping such that

s1
a
−→I1

s2 ⇒ α(a) is defined∧ β(s1)
α(a)
−−→I2

β(s2) ∨ α(a) is not defined∧ β(s1) = β(s2)

We write abs 〈α, β〉 : I1 → I2 in this case. �

3.3. DEFINITION (Abstraction of valued interpretations). Let I1 ∈ ValInt(Σ1) and I2 ∈
ValInt(Σ2) be valued interpretations of the respective distributed alphabets, and abs 〈α, β〉 :
Int(I) → Int(I2) an abstraction acting on the “interpretation parts” of I1 and I2. Let γ :
XI1
→ XI2

be a surjective mapping such that the following conditions hold true:

γ
(lI1

(ξI1
(S))

)

=
lI2

(ξI2
(β(S))) ;

for all S ⊆ SI1
, and moreover,

ϕI2
(s) ⇒

∨

s′∈[s]β

ϕI1
(s′)

Abstractions for valued interpretations are denoted by abs 〈α, β, γ〉 : I1 → I2. �

Thus the abstraction arrow I1 I2
abs〈α,β,γ〉

unfolds to three parallel arrows:

Σ1 SI1
XI1

Σ2 SI2
XI2

α β γ

It is moreover easy to check that the “continuity assumption”

γ
(lI1

(ξI1
(S))

)

=
lI2

(ξI2
(β(S)))

implies “monotonicity”, i.e.

ξI1
(s1) vI1

ξI1
(s2) ⇒ ξI2

(β(s1)) vI2
ξI2

(β(s2))

To see this, note that
dI1
{x} = x, and if x vI1

y, then
dI1
{x, y} = x; and of course, the

same is true for the value structure of I2. Thus the chain {x, y} is mapped to {γ(x), γ(y)},
its greatest lower bound to γ(x). Together, this implies γ(x) vI2

γ(y). It can moreover be
shown that both properties (continuity and monotonicity) are equivalent for finite value
structures.

Pervasive Supervision CASCADAS Deliverable 2.1

18 CHAPTER 3. MORPHISMS

3.4. DEFINITION (Reduced abstractions). An abstraction abs 〈α, β〉 : I1 → I2 is called
reduced if β is surjective. If abs 〈α, β〉 is reduced, then abstractions abs 〈α, β, γ〉 are also called
reduced. �

In general we assume throughout this report that abstractions are reduced. This assump-
tion is reasonable if we consider sets of abstractions of a real system (e.g. a hierarchy of mod-
els ordered by their degree of abstraction), but not if we consider the relationship between
the real system and the collection of its models. In general we do not have a way to deter-
mine whether the abstraction of a potential system state has a correspondence in the real
system. In the following we are however more concerned with the relationship of models, in
particular with refinement and abstraction operations. We thus consider all abstractions that
occur in this report as being reduced, if not stated differently.

The following lemma states that there is an identity abstraction, as well a composition
operation on abstractions. Thus, interpretations together with abstraction arrows form a cat-
egory.

3.5. LEMMA.

(1) Let I ∈ ValInt(Σ). Then abs 〈idAΣ
, idSI , idXI〉 : I → I is an abstraction.

(2) Let Ii ∈ ValInt(Σi) for i = 1, 2, 3. If abs 〈α1, β1, γ1〉 : I1 → I2 and abs 〈α2, β2, γ2〉 :I2 → I3 are abstractions, then also abs 〈α2 ◦ α1, β2 ◦ β1, γ2 ◦ γ1〉 : I1 → I3.

We now are going to investigate the relationship between abstractions and pomset lan-
guages of interpretations. For that, we firstly have to explain how a mapping on action sets
of distributed alphabets can be extended to pomsets over these alphabets.

3.6. DEFINITION. Let Σ1, Σ2 be distributed alphabets such that α : AΣ1
→ AΣ2

is a map-
ping. Then α is inductively extended to a mapping α∗ : Pom(Σ1)→ Pom(Σ2) as follows:

α∗(ε) =df ε;

α∗(u ◦Σ1
a) =df

{

α∗(u) ◦Σ2
α(a), if α(a) is defined;

α∗(u), otherwise;

for all u ∈ Pom(Σ2) and a ∈ AΣ2
. �

We continue with some sanity checking:

3.7. LEMMA. Let Σ1, Σ2 be distributed alphabets such that abs 〈α〉 : Σ1 → Σ2 is an abstraction.
Then α∗ is a well-defined mapping. Furthermore, if u ∈ Pomw(Σ1), then α∗(u) ∈ Pomw(Σ2).

The following lemma justifies the relationship of the notions of refinement and abstrac-
tion on distributed alphabets and interpretations by means of the pomset languages of inter-
pretations.

3.8. LEMMA. Assume abs 〈α, β〉 : I1 → I2 is an abstraction for I1 ∈ Int(Σ1) and I2 ∈
Int(Σ2) and let s1, s2 ∈ SI1

. Then

s1
u
−→I1

s2 ⇒ β(s1)
α∗(u)
−−−→I2

β(s2)

for each u ∈ Pomw(Σ2).

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 3. MORPHISMS 19

PROOF. The proof is carried out by induction. First assume u = ε. Then

s
ε
−→I1

s ⇒ β(s)
ε
−→I2

β(s).

For induction assume

s1
u
−→I1

s2 ⇒ β(s1)
α∗(u)
−−−→I2

β(s2),

and further suppose

s1

u◦Σ1
a

−−−→I1

s2.

for some a ∈ AΣ1
. Assume α(a) is not defined. Then

β(s1)
α∗(u)
−−−→I2

β(s2)

which is true by induction hypothesis. If, on the other hand, α(a) is defined, then we com-
pute:

s1

u◦Σ1
a

−−−→I1

s2 ⇒ s1
u
−→I1

·
a
−→I1

s2 (Lemma 2.17)

⇒ β(s1)
α∗(u)
−−−→I2

·
α(a)
−−→I2

β(s2) (Def.’s 3.2, 3.6)

⇒ β(s1)
α∗(u)◦Σ2

α(a)
−−−−−−−→I2

β(s2) (Lemma 2.17)

⇒ β(s1)
α∗(u◦Σ1

a)
−−−−−→I2

β(s2) (Def. 3.6)

which concludes the proof. �

2. Embedding and Image

The embedding operation provides us with a generic notion on how to understand a
system component as part of a larger system, or the relationship of a system with its envi-
ronment. Note that the composition of a number of system components can be understood
as the embedding of each of these components into the composed system. Therefore, em-
beddings give us also a generic notion of composition without assuming any specific com-
position operation such as synchronous or asynchronous communication.

As in the case of abstractions, the following three definitions concentrate on each of the
three aspects of a valued interpretation of a distributed alphabet, namely the underlying
alphabet, the transition system, and the value structure.

3.9. DEFINITION (Embeddings of distributed alphabets). Let Σ1 and Σ2 be distributed
alphabets and let f : AΣ1

→ AΣ2
be an injective mapping such that

f (a) IΣ2
f (b) ⇒ a IΣ1

b and

f (τΣ1
) = τΣ2

for all a, b ∈ AΣ1
. Then f is called an embedding of Σ1 into Σ2. We write emb 〈 f 〉 : Σ1 → Σ2

in this case. �

Hence, an embedding of a distributed alphabet into another one preserves the hidden
action of the embedded alphabet. Independence in the embedding alphabet has to be also

Pervasive Supervision CASCADAS Deliverable 2.1

20 CHAPTER 3. MORPHISMS

present in the embedded one, but since a system environment may create new dependencies,
the reverse implication is not necessarily true.

3.10. DEFINITION (Embeddings of interpretations). Let I1 ∈ Int(Σ1) and I2 ∈ Int(Σ2)
be interpretations of the distributed alphabets Σ1 and Σ2, respectively. Assume emb 〈 f 〉 :
Σ1 → Σ2 is an embedding. Let g : SI2

→ SI1
be surjective mapping. Then the pair f , g is

called an embedding of I1 into I2 if there are states s1, s2 ∈ SI1
such that

s1
f (a)
−−→I2

s2 ⇒ g(s1)
a
−→I1

g(s2)

We write emb 〈 f , g〉 : I1 → I2 in this case. �

Embedding of a system into another one means that the states of the embedded systemI1 contribute to the states of the embedding system I2 (think of these global states as vec-
tors of the states of the embedded components). Thus we use a mapping that extracts the
information specific to the states of the system I1 from the states of the system I2.

The embedding of the value structure of an interpretation is defined similar to the ab-
straction of value structures. The basic idea is that the embedding system may have a richer
(i.e. more fine grained) selection of assessments than the embedded one. Moreover, if a state
of the embedded system is not admissible then this non-admissibility manifests at all the
images of this state in the embedding system.

3.11. DEFINITION (Embeddings of valued interpretations). Let I1 ∈ ValInt(Σ1) andI2 ∈ ValInt(Σ2) be valued interpretations of the respective distributed alphabets, and
emb 〈 f , g〉 : Int(I) → Int(I2) an embedding acting on the “interpretation parts” of I1

and I2. Let h : XI2
→ XI1

be a surjective mapping such that the following conditions hold
true:

h
(lI2

(ξI2
(S))

)

=
lI1

(ξI1
(g(S))) ;

for all S ⊆ SI2
, and moreover,

¬ϕI1
(s) ⇒

∨

s′∈[s]g

¬ϕI2
(s′)

Embeddings for valued interpretations are denoted as emb 〈 f , g, h〉 : I1 → I2. �

Thus the embedding I1 I2
emb〈 f ,g,h〉

unfolds to two parallel arrows and an opposite arrow, i.e.

Σ1 SI1
XI1

Σ2 SI2
XI2

f g h

Again, we have to establish the fact that the class of valued interpretations over dis-
tributed alphabets and the class of embedding arrows between these interpretations form a
category.

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 3. MORPHISMS 21

3.12. LEMMA.

(1) Let I ∈ ValInt(Σ). Then emb 〈idAΣ
, idSI , idXI〉 : I → I is an embedding.

(2) Let Ii ∈ ValInt(Σi) for i = 1, 2, 3. If emb 〈 f1, g1, h1〉 : I1 → I2 and emb 〈 f2, f2, h2〉 :I2 → I3 are embeddings, then also emb 〈 f2 ◦ f1, g1 ◦ g2, h1 ◦ h2〉 : I1 → I3.

To understand the relationship between abstraction and embedding, it is useful to com-
pute the image of an interpretation under an embedding map:

3.13. DEFINITION (Image). Let I1 ∈ ValInt(Σ1) and I2 ∈ ValInt(Σ2) be interpretations
of the distributed alphabets Σ1 and Σ2, respectively. Assume emb 〈 f , g, h〉 : I1 → I2 is an
embedding. Then the image of I1 under emb 〈 f , g, h〉 is a transition system img 〈 f , g, h〉 (I1)
over a distributed alphabet Σ f with the following components:

(1) AΣ f =df AΣ1
, a IΣ f b⇔df f (a) IΣ2

f (b), and τΣ f =df τΣ1
;

(2) Simg〈 f ,g,h〉(I1) =df SI2
/g;

(3) [s1]g
a

−−−−−−−−→
img〈 f ,g,h〉(I1)

[s2]g ⇔df (∃s′1 ∈ [s1]g)(∃s′2 ∈ [s2]g)s′1
f (a)
−−→I2

s′2.

(4) Ximg〈 f ,g,h〉(I1) =df XI2
, with

(i) x vimg〈 f ,g,h〉(I1) y⇔df x vI2
y,

(ii) ϕimg〈 f ,g,h〉(I1)([s]g)⇔df
∨

s′∈[s]g
ϕI2

([s]),

(iii) ξimg〈 f ,g,h〉(I1)([s1]g) =df

dI2
ξI2

([s1]g).
�

For consistency, the following lemma is needed:

3.14. LEMMA. Let I1 ∈ ValInt(Σ1) and I2 ∈ ValInt(Σ2) be interpretations of the dis-
tributed alphabets Σ1 and Σ2, respectively. Assume emb 〈 f , g, h〉 : I1 → I2 is an embedding. Then
img 〈 f , g, h〉 (I1) ∈ ValInt(Σ2).

PROOF. To see that img 〈 f , g, h〉 (I) enjoys the diamond properties let [s1]g, [s2]g, [s3]g ∈
Simg〈 f ,g,h〉(I) and let a, b ∈ AΣ f such that a IΣ f b is true.

(1) To establish img 〈 f , g, h〉 (I) ∈ Int(Σ f), we only show that Def. 2.3.(2) is satisfied,
Def.’s 2.3.(1), 2.4, and 2.5 are proved in a similar way. We compute

[s1]g
a

−−−−−−−→
img〈 f ,g,h〉(I)

[s2]g
b

−−−−−−−→
img〈 f ,g,h〉(I)

[s3]g

⇒ s′1
f (a)
−−→I2

s′2
f (b)
−−→I2

s′3 for some s′i ∈ [si]g, i = 1, 2, 3 (Def. 3.13.(3))

⇒ (∃s4 ∈ SI2
)s′1

f (b)
−−→I2

s4
f (a)
−−→I2

s′3 for some s′i ∈ [si]g, i = 1, 3

(Def.’s 3.13.(1) and 2.3.(2))

⇒ [s1]g
b

−−−−−−−→
img〈 f ,g,h〉(I)

[s4]g
a

−−−−−−−→
img〈 f ,g,h〉(I)

[s3]g (Def. 3.13.(3))

(2) To prove img 〈 f , g, h〉 (I) ∈ Int(Σ f), we just have to show that ϕimg〈 f ,g,h〉(I)([s]g)
and ξimg〈 f ,g,h〉(I)([s]g) vimg〈 f ,g,h〉(I) ξimg〈 f ,g,h〉(I)([s

′]g) implies ϕimg〈 f ,g,h〉(I)([s]g) for

Pervasive Supervision CASCADAS Deliverable 2.1

22 CHAPTER 3. MORPHISMSI ′
img 〈 f , g, h〉 (I1) I2

I1

emb〈
f ,g

,h〉

emb〈 f ′,g ′,h ′〉

a
b

s 〈
α

,β
,γ
〉

img〈 f ,g,h〉

a
b

s 〈
α
′ ,

β
′ ,

γ
′ 〉

a
b

s 〈
α̂

,β̂
,γ̂
〉

FIGURE 2. Image of an embedding.

all states [s]g, [s′]g ∈ Simg〈 f ,g,h〉(I):

ϕimg〈 f ,g,h〉(I)([s]g) ∧ ξimg〈 f ,g,h〉(I)([s]g) vimg〈 f ,g,h〉(I) ξimg〈 f ,g,h〉(I)([s
′]g)

⇒
∨

s′′∈[s]g

ϕI2
(s′′) ∧

l

s′′∈[s]g

ξI2
(s′′) vI2

l

s′′∈[s′]g

ξI2
(s′′) (Def. 3.13)

⇒
∨

s′′∈[s′]g

ϕI2
(s′′) (Def. 2.20.(†))

⇒ ϕimg〈 f ,g,h〉(I)([s
′]g) (Def. 3.13)

�

Thus the image of an system I1 which is embedded into some environment I2 is de-
fined as those elements of I2 which are images of constituents of I1, and—for actions—are
allowed to take place in the context ofI2. Thus the image of a system under some embedding
is a behavioral restriction of this system to the embedding context. We already discussed the
fact that abstraction means to forget details, in particular enabledness conditions of system
actions. Since the embedding of a system into an environment adds those conditions (which
are presented in its image), it turns out that the a the embedded system is in fact an abstrac-
tion of its image, and moreover, it is the “most concrete” abstraction of its image that can be
embedded into the environment.

3.15. THEOREM. Let I1 ∈ ValInt(Σ1) and I2 ∈ ValInt(Σ2) be interpretations of the dis-
tributed alphabets Σ1 and Σ2, respectively such that emb 〈 f , g, h〉 : I1 → I2 is an embedding.
Then

(1) There is an abstraction abs 〈α, β, γ〉 : img 〈 f , g, h〉 (I1)→ I1, and moreover,
(2) If there is another interpretation I ′ ∈ ValInt(Σ2) such that emb 〈 f ′, g′, h′〉 : I ′ → I2 is

an embedding and abs 〈α′, β′, γ′〉 : img 〈 f , g, h〉 (I1) → I ′ is an abstraction for another

valued interpretation I ′ ∈ ValInt(Σ′), then there is an unique abstraction abs
〈

α̂, β̂, γ̂
〉

:I1 → I ′.
In other words, the arrow abs

〈

α̂, β̂, γ̂
〉

that makes the diagram shown in Figure 2 commute is unique.

PROOF. For (1), we construct the abstraction abs 〈α, β, γ〉 as follows:

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 3. MORPHISMS 23

(a) α =df f−1: since f is injective, f−1 is an injective partial function. We furthermore
have f−1(τΣ2

) = τΣ1
, and f−1(a) IΣ1

f−1(b) ⇒ a IΣ2
b by Def. 3.10. Thus abs 〈α〉 :

Σ2 → Σ1 is an abstraction.
(b) β([s]g) =df g(s); by Def. 3.13.(3) we have

[s1]g
a

−−−−−−−−→
img〈 f ,g,h〉(I1)

[s2]g ⇒ β([s1]g)
α(a)
−−→I1

β([s2]g)

whenever α(a) is defined; on the other hand there are no transitions labeled with
actions a in img 〈 f , g, h〉 (I1) such that α(a) is undefined. Note that β is in fact a
bijection.

(c) γ =df h: The required properties are just by Def. 3.3.

The proof of the part (2) of the Lemma is carried out as follows:

(a) By defining α̂ ◦ α =df α′ we get a uniquely defined partial function α̂ : AΣ1
⇁ AΣ′

preserving τΣ1
and IΣ1

.
(b) Since β′ : SI2

/g → SI′ is surjective, and β is a bijection, there is a uniquely defined

surjective function β̂ : SI1
→ SI′ defined by β̂ ◦ β =df β′.

(c) The last part, namely that γ̂ can be defined by γ̂ ◦ γ =df γ′, follows by the fact
that greatest lower bounds are unique. More precisely, suppose another mapping

q : XI1
→ XI′ such that makes the diagram in Figure 2 commute (i. e. abs

〈

α̂, β̂, q
〉

:I1 → I ′ is an abstraction). Then

q
(lI1

(ξI1
(S))

)

=
lI′ (ξI′ (β̂(S))

)

= γ̂
(lI1

(ξI1
(S))

)

by two applications of Def. 3.3.
�

From the proof of Theorem 3.15 we obtain the following notion of a canonical abstraction.
The value structure is not needed during the application of the canonical abstraction, thus
all elements concerned with values an value mappings are omitted.

3.16. DEFINITION (Canonical abstraction). If emb 〈 f , g〉 : I1 → I2 is an embedding, then
the pair abstraction abs

〈

f−1, g
〉

: I2 → img 〈 f , g〉 (I2) is called the canonical abstraction of
img 〈 f , g〉 (I2). �

The following corollary is a direct conclusion from Lemma 3.8 and Theorem 3.15.

3.17. COROLLARY. Let I1 ∈ Int(Σ1) and I2 ∈ Int(Σ2) be interpretations of the distributed
alphabets Σ1 and Σ2, respectively such that emb 〈 f , g〉 : I1 → I2 is an embedding. Then

g(s1)
(f−1)∗(u)
−−−−−→I2

g(s2) ⇒ s1
u
−→I1

s2

for all u ∈ Pom(Σ1).

Pervasive Supervision CASCADAS Deliverable 2.1

24 CHAPTER 3. MORPHISMSI1 I2

I3 I4 I5

emb〈 f ,g,h〉

a
b

s 〈
α

,β
,γ
〉

emb〈 f̂ ,ĝ,ĥ〉

a
b

s 〈
α̂

,β̂
,γ̂
〉

ab
s〈 α̃,β̃,γ̃〉emb〈 f ′,g ′,h ′〉

a
b

s〈α
′,β
′,γ
′〉

FIGURE 3. Zoom.

3. Zooming

We now consider the following situation. Let emb 〈 f , g, h〉 : I1 → I2 be an embedding
and let abs 〈β, α, γ〉 : I3 → I1 be an abstraction. The question arises whether we can use
the embedding process (described by emb 〈 f , g, h〉) also to embed the refined version of I1

into (a refined version) of I2? Such an operation would provide us with a magnifying glass, a
notion of local refinement or zooming. Of course, we are not looking for an arbitrary zooming
operation but for a universal one in the sense that the resulting refined system is the most
abstract one that embeds the interpretation I3.

3.18. THEOREM. Let Ii ∈ ValInt(Σi) interpretations for i = 1, 2, 3 such that emb 〈 f , g, h〉 :I1 → I2 is an embedding and abs 〈α, β, γ〉 : I3 → I1 is an abstraction. Then there is an in-

terpretation I4 ∈ ValInt(Σ4), an embedding emb
〈

f̂ , ĝ, ĥ
〉

: I3 → I4, and an abstraction

abs
〈

α̂, β̂, γ̂
〉

: I4 → I2 such that for all interpretations I5 and all embedings emb 〈 f ′, g′, h′〉 :I3 → I5 and abstractions abs 〈α′, β′, γ′〉 : I5 → I2 there is a uniquely defined abstraction
abs

〈

α̃, β̃, γ̃
〉

: I5 → I4. In other words, abs
〈

α̃, β̃, γ̃
〉

is the only abstraction arrow that makes
the diagram shown in Figure 3 commute.

PROOF.

(1) Σ4 is constructed as follows:
(i) AΣ4

=df (AΣ3
\ {τΣ3

}) +
(

AΣ2
\

(

f
(

f−1 (AΣ2)
)

∪ {τΣ2
}
))

∪ {τ}, where τ 6∈
AΣ2
∪ AΣ3

(recall that A + B = A × {0} ∪ B × {1}); with other words, the
0-labeled elements of the disjoint union are those actions of I3 (with the ex-
ception of τΣ3

), while the 1-labeled actions are actions of I2 which are not the
image of actions of I2 (which in turn are images of actions of I3), where τΣ2

is again excluded. To compensate the now missing hidden actions a new ele-
ment τ is introduced.

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 3. MORPHISMS 25

(ii) 〈a, m〉 DΣ4
〈b, n〉 ⇔df m = n ∧ (m = 0∧ a DΣ3

b ∨m = 1∧ a DΣ2
b), with

τ DΣ4
τ,

τ DΣ4 〈a, 0〉 ⇔ 〈a, 0〉 DΣ4 τ ⇔ a DΣ3
τ, and

τ DΣ4 〈a, 1〉 ⇔ 〈a, 1〉 DΣ4 τ ⇔ a DΣ2
τ

as special treatment for the newly inserted hidden action τ. Clearly, DΣ4
is a

symmetric, irreflexive relation.
(iii) Finally, τΣ4

=df τ;
(2) The transition system I4 comprises the following components:

(i) SI4
=df SI3

× SI2
is the state set of I4

(ii) Its transition relation is defined by

〈s1, s2〉
〈a,1〉
−−→I4

〈

s′1, s′2
〉

⇔df s1
a
−→I2

s′1 ∧ s2 = s′2,

〈s1, s2〉
〈a,0〉
−−→I4

〈

s′1, s′2
〉

⇔df s2
f ◦α(a)
−−−→I3

s′2 ∧ s1 = s′1,

〈s1, s2〉
τ
−→I4

〈

s′1, s′2
〉

⇔df s1
τI
−→I3

s′1 ∧ s2 = s′2 ∨ s2
τI
−→I2

s′2 ∧ s1 = s′1.

(3) The value structure of I4 is defined by
(i) XI4

=df XI3
× XI2

;
(ii) 〈x1, x2〉 vI4

〈y1, y2〉 ⇔df x1 vI3
y1 ∧ x2 vI2

y2;
(iii) ϕI4

(〈s1, s2〉) =df ϕI3
(s1) ∧ ϕI2

(s2);
(iv) ξI4

(〈s1, s2〉) =df 〈ξI3
(s1), ξI2

(s2)〉;

(4) The abstraction abs
〈

α̂, β̂, γ̂
〉

: I4 → I2 is defined by the following clauses:
(i) The mapping α : AΣ4

→ AΣ2
is given by

α̂(〈a, m〉) =df

{

f (α(a)), m = 0;
a, m = 1;

and

α̂(τ) =df τΣ2
;

α̂ is surjective, and also total in the current case.

(ii) β̂(〈s1, s2〉) =df s1;
(iii) γ̂(〈x, y〉) =df x;

(5) Finally, the embedding emb
〈

f̂ , ĝ, ĥ
〉

comprises the following mapping:

(i) f̂ (a) =df 〈a, 0〉 which is clearly injective
(ii) ĝ(〈s1, s2〉) =df s2

(iii) ĥ(〈x, y〉) =df y

Having these elements, we firstly have to validate that I4 ∈ ValInt(Σ4) is a valued
interpretation of Σ4. We only sketch some parts of the proof, as they are immediate from the
fact that I2 ∈ ValInt(Σ2) and I3 ∈ ValInt(Σ3) are valued interpretations of the respective
distributed alphabets.

To show that Int(I4) ∈ Int(Σ4) does hold we firstly to validate the diamond properties
for I4. Assume 〈a, n〉 DΣ4

〈b, m〉 for 〈a, n〉 , 〈b, m〉 ∈ AΣ4
. If n = m = 0 (n = m = 1), then

the diamond properties follow from the fact that I3 (I2) enjoys the diamond properties. If
n 6= m, then we note that 〈a, n〉 and 〈b, m〉 operate on different components of the states ofI4

Pervasive Supervision CASCADAS Deliverable 2.1

26 CHAPTER 3. MORPHISMS

and therefore, they do not influence each other. The cases where one of the action symbols
is the hidden action τΣ4

follow by similar arguments. I4 is clearly deterministic, because
Int(I2) ∈ Int(Σ2) and Int(I3) ∈ Int(Σ3) are deterministic, and by the same argument, τΣ4

is hidden in I4. To see that Int(I4) ∈ ValInt(Σ4), we have to prove that the implication
2.20.(†) does hold. We omit the straightforward details.

Now given the arrows abs 〈α′, β′, γ′〉 : I5 → I2 and emb 〈 f ′, g′, h′〉 : I5 → I3, we have
to construct a unique arrow abs

〈

α̃, β̃, γ̃
〉

: I5 → I4.

(1) α̃ : AΣ5
→ AΣ4

is chosen as

α̃(a) =df



















τΣ4
if a = τΣ5

〈

f ′
−1(a), 0

〉

if a = f ′(a′) for some a′ ∈ AΣ3
and a 6= τΣ5

otherwise

{

〈α′(a), 1〉 , if α′(a) is defined
otherwise undefined

(2) β̃ : SI5
→ SI4

is defined by β̃(s) =df 〈g
′(s), β′(s)〉.

(3) Finally, γ̃ : XI5
→ XI4

is given by γ̃(s) =df 〈h
′(s), γ′(s)〉.

It is now an straightforward but tedious exercise to validate that the mappings α̃, β̃, and γ̃
form an unique abstraction arrow. �

3.19. DEFINITION (Zoom). Let Ii ∈ ValInt(Σi) interpretations for i = 1, 2, 3 such that
emb 〈 f , g, h〉 : I1 → I2 is an embedding and abs 〈α, β〉 γ : I3 → I1 is an abstraction. Then

the pair
〈

emb
〈

f̂ , ĝ, ĥ
〉

, abs
〈

α̂, β̂, γ̂
〉

〉

as defined in proof of the previous theorem is called
a zoom.

The application of a zoom to the interpretations I1, I2, and I3 yielding the system I4 is

denoted by
〈

emb
〈

f̂ , ĝ, ĥ
〉

, abs
〈

α̂, β̂, γ̂
〉

〉

(I1,I2,I3). �

3.20. REMARK. Zooms are not pushouts in the sense of category theory, also the diagram looks
similar. The problem is that the abstraction arrows go into the wrong direction. If we however mod-
ify the category of interpretations, abstractions and embeddings to that of interpretations, refinement
and embedding pre-order, then zooms in fact form pushouts. More formally, this new category com-
prises of objects 〈Σ,I〉, where I ∈ ValInt(Σ), and two types of arrows:

(1) 〈Σ1,I1〉
6
−→ 〈Σ2,I2〉 is an arrow if there is an abstraction abs 〈β, α, γ〉 : I2 → I1, and

(2) 〈Σ1,I1〉
⊆
−→ 〈Σ2,I2〉 is an arrow if there is an embedding emb 〈 f , g, h〉 : I1 → I2.

It is easy to verify that these objects and arrows indeed form a category. Note that the dual of the

zoom concept, the anti-zoom as defined below, forms a pullback in this category. �

With help of the observations explained in Remark 3.20 we are able to state the following
theorem. It is an application of the pushout lemma of Category Theory (see e.g. [15], pp. 67,
here the “dual” pullback lemma is presented) translated in our terminology.

3.21. THEOREM. Consider the diagram shown in Figure 4. If the inner squares form two zooms,
then the outer rectangle is also a zoom. If the right hand side inner squares and the outer rectangle are
zooms, then the left hand side inner square is also.

The concept dual to that of a zoom is an anti-zoom. The idea here is that if we have
an embedding of a system component into some environment, and an abstraction of the
composite system, to extract the associated abstraction of the embedded component. Thus if

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 3. MORPHISMS 27I1 I2 I3

I4 I5 I6

emb〈 f1,g1 ,h1〉 emb〈 f2,g2 ,h2〉

emb〈 f3,g3 ,h3〉 emb〈 f4,g4 ,h4〉

a
b

s 〈
α

1
,β

1
,γ

1
〉

a
b

s 〈
α

2
,β

2
,γ

2
〉

a
b

s 〈
α

3
,β

3
,γ

3
〉

FIGURE 4. Composition of zooms.

the zoom can be used to step ”into” the system, the anti-zoom is to do one step back and to
look to the embedded subsystem from a more abstract perspective.

3.22. THEOREM. Let Ii ∈ ValInt(Σi) interpretations for i = 1, 2, 3 such that emb 〈 f , g, h〉 :I2 → I1 is an embedding and abs 〈α, β, γ〉 : I1 → I3 is an abstraction. Then there is an in-

terpretation I4 ∈ ValInt(Σ4), an embedding emb
〈

f̂ , ĝ, ĥ
〉

: I4 → I3, and an abstraction

abs
〈

α̂, β̂, γ̂
〉

: I2 → I4 such that for all interpretations I5 and all embeddings emb 〈 f ′, g′, h′〉 :I3 → I5 and abstractions abs 〈α′, β′, γ′〉 : I5 → I2 there is a uniquely defined abstraction
abs

〈

α̃, β̃, γ̃
〉

: I4 → I5. In other words, abs
〈

α̃, β̃, γ̃
〉

is the only abstraction arrow that makes
the diagram shown in Figure 5 commute.

The concept of anti-zooms are not needed at the present state of our investigations, there-
fore, the details of the necessary constructions are omitted. It will become of relevance when
we start looking into automated system composition and abstraction which is needed for
contract based supervision.

I5 I1 I2

I3 I4
emb〈 f ,g,h〉

a
b

s〈 α
,β

,γ
〉

emb〈 f̂ ,ĝ,ĥ〉

a
b

s〈
α̂

,β̂
,γ̂〉

abs〈 α̃,β̃,γ̃〉

em
b
〈

f ′,g ′,h ′〉

abs〈α ′,β ′,γ ′〉

FIGURE 5. Anti-zoom.

Pervasive Supervision CASCADAS Deliverable 2.1

CHAPTER 4

Supervision

In this chapter, we are going to investigate supervision algorithms (i.e. control loops). A
basic version is presented in the Section 1. Section 2 defines a number of metrics that measure
the competence of a supervision system (more precisely, of the supervision model in use) on
the basis of counters defined in the algorithm from Section 1. The final Section 3 addresses a
number of issues concerning hierarchical supervision.

1. Basic Supervision Algorithm

We assume that the system under supervision exposes its internal states and actions to
the supervision system, at least in an abstracted form, i.e. the supervision model may be
an abstraction of the execution model (or program) of the system under supervision. This
information on states and action is expressed in terms of the supervision model.

Supervision now means:

(1) Continuous observation of the current state of the system under supervision and
assessment of the admissibility of this state;

(2) If non-admissibility is assessed, some contingency plan, i.e. a pomset executable in
the supervision model, is computed. We assume that there is some suitable planning
algorithm in place, details have not been investigated yet. There is certainly a rela-
tionship to the assessment of the appropriateness or correctness of system behavior,
which can be used to select a suitable plan for a given problem situation. Thus plan-
ning is related to the assessment of system behavior, which is not yet considered in
Work Package 2.

(3) This plan is executed and its effectiveness is assessed.

1.1. Controllability and Observability. The execution and assessment of effectiveness
of plans requires that the system under supervision is able to control and to observe the
actions that the system under supervision performs, at least to a certain extend.

Let Σ be a distributed alphabet. We define several subsets of action from AΣ in the fol-
lowing way:

(1) Sets AΣ,c and AΣ,uc of controllable and uncontrollable actions, respectively. We as-
sume that AΣ,c ∩ AΣ,uc = ∅.

(2) Sets AΣ,o and AΣ,uo of observable and unobservable actions, respectively, where
AΣ,o ∩ AΣ,uo = ∅.

(3) We suppose that all actions of AΣ—with the exception of the hidden action τΣ—are
element of at least one of the sets described above, i. e. AΣ \ {τΣ} = AΣ,c ∪ AΣ,uc ∪
AΣ,o ∪ AΣ,uo.

29

30 CHAPTER 4. SUPERVISION

We do not require that all actions that appear in the supervision model are controllable
or observable. As the supervision system and the system under supervision are supposed
to commit a contract on supervision (which is basically given by the supervision model
together with a declaration of observable and controllable actions), insufficient observability
or controllability might result in non-effective (but still “contractual”) supervision.

1.2. Timing Issues. We need to understand that a concept of time is crucial when per-
forming supervision in a distributed environment. States are usually not “well-defined” in
the sense that there are always actions performed by the environment of a system which—
although probably not observable—alter states both of the system and its environment. This
means, if we observe an action a that occurs at some (abstract) state s, then it is not en-
sured that this action actually (more precisely, its concrete counterpart) has been performed
at some concrete system state s′ ∈ β−1(s), where β is of course a state abstraction mapping.

We thus establish the assumptions that there is a notion of time. At the current stage, a
global synchronized time is not required. We only stipulate the assumption that it is partic-
ularly possible to assign a time stamp T(a) to each occurrence of a monitored action a, and
similarly, a time stamp assigned to each state measurement that allows to access the state
measured at time t (which is unique only to the execution environment of the action a). Time
is linearly ordered (i.e. it is reasonable to take the set R to express points in time), and since
it is measured by a technical process of sampling, we consider a sequence of time stamps
. . . , t−1, t0, t1, . . . such that ti − ti−1 = c, where c ∈ R is a constant.

Of course this bears various simplifications and assumptions: Different sensors might
define different sampling rates, and sampling rates might not be constant but dependent of
uncontrollable (or even unknown) circumstances. Furthermore, by choosing the sequence of
time stamps unbounded both into the direction of negative and positive indices, we assume
that the supervision process has an “infinite memory” in the sense that it is able to access
state measurements that has been recorded arbitrarily in the past. By S(r) we denote the state
that the system assumes at time point r ∈ R. Hence, the states stored by the the supervision
systems at time point r are {S(ti) : i ∈ Z ∧ ti 6 r}. We however have to assume that the
sampling rate that our sensors can provide is high enough to register all “relevant” state
changes:

S(r1) 6= S(r2) ⇒ |r1 − r2| > c

The above implication defines an absolute performance limit for supervision. If it is not
valid, then effective supervision is logically impossible. Of course, even if the implication
is valid, the supervision system might still be to slow to enforce a controllable action in
time. Finally, by choosing a time stamp that indicates the point in time T(a) where an action
a occurs basically means that actions occur instantaneous. This assumption can be made
more weak (and realistic) is we use a start time stamp and an end time stamp assigned to
action occurrences. This however makes our approach neither more expressive nor more
problematic, but adds only complexity to its presentation, we thus refrain from going this
way.

By the assumptions presented so far it is however easy to define the validity of an action:

a is valid ⇔df S(T(a))
a
−→I S(T(a) + c).

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 4. SUPERVISION 31

SUPERVISE()
1 SENSE(s)
2 if ¬ϕI(s)

3 then compute s′ ∈ SI ; u ∈ Pom wI : s
u
−→I s′ and ϕI(s′)

4 EXECUTE(u);

FIGURE 1. Basic supervision procedure

1.3. Algorithm. The basic supervision algorithm is presented in the Figures 1 and 2, re-
spectively. The algorithm SUPERVISE makes use of a monitoring procedure SENSE(s) which
observes the current state of the system under supervision and detects a corresponding state
s in the supervision model I (thus the procedure SENSE provides us with an elementary
state abstraction mechanism β that translate from the “real” system to the abstract system
model). If this state is not admissible it calls a planning algorithms which computes a pom-
set u. The execution of u is supposed to lead the system under supervision back into an
admissible state.

4.1. REMARK. The exact definition of the planning algorithm has not been considered yet in the

CASCADAS project; this will be done in a later project phase. �

4.2. REMARK. The current formulation of the basic supervision algorithm uses a plan that does

not contain choices with respect to variation of the behavior of the system under supervision or its

environment. Decision trees are an attractive alternative to those static plans. Formally, those deci-

sion trees can be expressed as sets of pomsets that are ordered by the prefix relation 6 (compare Def.

2.9.(9)), or—equivalently—by means of event structures. Informally, event structures are pomsets that

comprise explicit choice points. Behavior that is executed after a choice point is passed in never uni-

fied again. Thus event structures expose a tree-like structure with branches defined by choice points.

This will also be considered in a later project phase. �

To simplify the presentation of the algorithm shown in Figure 2 we write a ∈ min v if
there is some e ∈ Ev such that ẽ = a and e ∈ min6a Ev. Note that by the definition of pomsets
v ∈ Pomw(Σ) the event e in question is always unique if it exists. For the same reason, the
operation

v \ a =df v

[

Ev \

{

e ∈ Ev | e ∈ min
6v

Ev ∧ ẽ = a

}]

that removes a single, minimal event e labeled with a from v if a ∈ min v is well-defined.
The procedure used a number of subroutines:

(1) VALIDATE(a) validates the execution of the action a in the system under supervi-
sion;

(2) ENFORCE(a) executed the action a in the system under supervision;

The action set Exp of expected actions contains those controllable and observable actions
which have been enforced by the supervision system but have not been monitored yes. A
timer is used to prevent from “starvation” in the case the that none of the expected events
happen in the system under supervision.

Pervasive Supervision CASCADAS Deliverable 2.1

32 CHAPTER 4. SUPERVISION

EXECUTE(v)
1 u : Pom w(Σ)← ε
2 pending : Bool← false
3 t : timer ← . . .
4 Exp : Set of AΣ ← ∅

5 N ← T ← E← A← 0;
6 while v 6= ε ∧ pending
7 do choice
8 alt monitor a⇒
9 N ← N + 1;

10 if a ∈ AΣ,o

11 then if VALIDATE(a) = NIL

12 then error “action not appropriate”;
13 A← A + 1;
14 if a ∈ min v
15 then v← v \ a
16 u← u ◦Σ a
17 if a ∈ AΣ,c

18 then if a ∈ Exp
19 then Exp← Exp \ {a}
20 if a DΣ b for some b ∈ Exp
21 then error “not in time”;
22 T ← T + 1
23 else error “unexpected event”;
24 A← A + 1
25 else error “unknown event”;
26 A← A + 1
27 alt select a ∈ min v : a ∈ AΣ,c ⇒
28 N ← N + 1;
29 if ENFORCE(a) = NIL

30 then error “action enforcement not effective”;
31 E← E + 1;
32 v← v \ a
33 if a 6∈ AΣ,o

34 then u← u ◦Σ a
35 else Exp← Exp∪ {a}
36 alt timeout t⇒
37 N ← N + 1; error “no progress”
38 A← A + 1;
39 pending← Exp 6= ∅

40 if pending
41 then error “unable to enforce actions”
42 E← E + 1;
43 SENSE(s)
44 if ¬ϕI(s)
45 then error “supervision not appropriate”
46 A← A + 1;

FIGURE 2. Procedure EXECUTE.

Deliverable 2.1 CASCADAS Work Package 2

CHAPTER 4. SUPERVISION 33

2. Metrics for Self-assessment

The algorithm presented in Figure 2 also makes use of a number of error notifications
which can be used to determine the “competence” of the supervision algorithm with re-
spect to its supervision tasks. The algorithm contains a number of counters that determine
the number of trials and failures to monitor or to enforce a certain actions. The counter N
contains the total number of those trials. We furthermore consider the following metrics:

2.1. Effectiveness 1−E/N. Refers to the ability of a supervision system to enforce coun-
termeasures at all. In the algorithm of Figure 2, the counter E in increased in the following
situations:

(1) Line 30: The enforcement of an actions fails, and the failure is directly observable by
the supervision system.

(2) Line 41: Some of the observable actions that have been enforced by the supervision
system could not observed.

2.2. Timeliness 1− T/N. Is the ability to react in time. Timeliness can only be detected
indirectly by the perception of an event a that impacts the enabledness of those events that
are expected (the counter T is increased in line 22). In our terminology, this is an event that
is dependent of one of the expected events in the set Exp. Note that the occurrence of a does
not necessarily prohibit from the execution of v in the supervised system but would lead to
a pomset which is not executable in the supervision model.

2.3. Appropriateness 1− A/N. Means that the system has the capabilities to determine
a sequence of actions that leads to the desired results. Non-appropriateness is detected in
several ways:

(1) Line 13: The validation of a monitored actions fails, i.e. the execution of the action
leads to a result that is different from that specified in the supervision model.

(2) Line 23: The observed event is—although specified in the model—not expected at
the current state.

(3) Line 25: The observed event is not specified in the model at all.
(4) Line 37: The system under supervision does not produce any event within a given

time frame (a timeout occurs), although the supervision model predicts such events.
(5) Line 45: The system under supervision ended up in a non-admissible state after the

execution of the plan v.

The metrics defined above are obviously not useful only for self-assessment of the com-
petence of the supervision system, but also for self-optimization. This topic has however not
yet been investigated.

3. Hierarchical Supervision

We are now turn to the issue of hierarchical supervision.

3.1. Model Trees. We now assume that supervision is not performed by means of a
“flat” interpretation but by means of a hierarchical organized models, i.e. a tree of interpre-
tations.

Pervasive Supervision CASCADAS Deliverable 2.1

34 CHAPTER 4. SUPERVISION

���� β

��α�� ���� β

��α�� ���� β

��α��	
��� ����� 	
��� ����� 	
��� �����
z
o
o
m

FIGURE 3. Illustration of the concept of compositions. Shown are three inter-
pretations that are embedded into some environment (upper gray ellipsoid).
Additional abstractions provide a means to embed more concrete versions of
these interpretations into the environment (i.e. to zoom into it), thus produc-
ing a more concrete overall interpretation (lower gray ellipsoid).

A composition C =
〈

J, {Ii}i∈J ,E,F〉

is given by a finite set of indices J, a finite family
{Ii}i∈J of interpretations (called components and defined over suitable distributed alpha-
bets) and an interpretation E (called environment, also defined over a suitable distributed
alphabet) such that there is a set of embeddings F = {emb 〈 fi, gi, hi〉 : Ii → E}i∈J . With
other words, all “abstract” systems that we consider are given by a number of components
that communicate with each other by means of their environment.

A model tree is a given by a set C of compositions together with a refinement relation→ ⊆
C × C that forms a tree (i.e. there is exactly one composition that has no predecessor w.r.t.
→, while any other interpretation in C has exactly one predecessor w.r.t.→), and moreover
the following is true:

(1) Each composition
〈

J, {Ii}i∈J ,E,F〉

has exactly |J| successors w.r.t→, such that we

can define a mapping succi :
〈

J, {Ii}i∈J ,E,F〉

7→
〈

Ji, {Ij}j∈Ji
,Ei,Fi

〉

that assigns to

a composition
〈

J, {Ii}i∈J ,E,F〉

its ith successor
〈

Ji, {Ij}j∈Ji
,Ei,Fi

〉

for each i ∈ J;

(2) If
〈

J′, {I ′ i}i∈J′ ,E′,F′〉 = succi(〈J,C,E,F〉), then there is an abstraction
abs 〈αi, βi, γi〉 : Ii → E′.

By the terminology provided in Section 2.3 the pairs 〈emb 〈 fi, gi, hi〉 , abs 〈αi, βi, γi〉〉
form a zooms for each “change of level” in the model tree; the refined model is then given
by

〈emb 〈 fi, gi, hi〉 , abs 〈αi, βi, γi〉〉 (I, succi(I),E).

Thus if a problem is detected in a system that corresponds to some subtree of the model tree,
then we are able to produce a dedicated refinement that considers “unproblematic” system
parts from a top level perspective, while effected parts can be arbitrarily refined.

It has to be noticed that—although a model tree separates different subtrees from each
other—the environments of the compositions within different subtrees that build the model
tree may be related to the same part of the concrete underlying system. They may “share”

Deliverable 2.1 CASCADAS Work Package 2

pictures/zoom.eps

CHAPTER 4. SUPERVISION 35

actions as well as state information. Thus the term hierarchical supervision does not actually
assume that the system under supervision is organized in a hierarchical, tree-like fashion. It
is the chosen structure of abstractions and embeddings which defines the tree.

3.2. Hierarchical Planning. We now address the question how model trees can be used
to perform hierarchical planning, i.e. how to refine a plan recursively according to the tree
structure. Of course it is not desirable to “flatten” the whole tree. We aim on producing a
model that is just as concrete as it needs to be.

As before we assume that there is a planning procedure working on interpretations. As-
sume that 〈C,→〉 is a model tree and let u be a pomset. A distribution of u is a mapping
∆ : C 7→ 〈s, v〉 for each composition C =

〈

J, {Ii}i∈J ,E,F〉

∈ C, such that s ∈ SE and
v ∈ PomwE (s), and moreover, if 〈v, s〉 = ∆(C), and ∆(succi(C)) = 〈v′, s′〉, then v = f ∗i (v′)
and s = βi(s′), where abs 〈 fi, gi〉 : E → img 〈 fi, gi〉 (Ii) is the canonical abstraction (recall
Def. 3.16), and f ∗i is the extension of the mapping fi to pomsets (recall Def. 3.6).

This somewhat complicated looking definition just expresses the idea that on each level
of the model tree, an appropriate concretization of the plan that is assigned to the root of the
tree is used.

3.3. Hierarchical Supervision Algorithm. We will not give an programmatic formula-
tion of this algorithm, as this formulation is pretty obvious. Each node of the model tree is
now “equipped” with a separate instance of the supervision algorithm, and all this instances
run in parallel. Planning in a flat model is now replaced by a plan distribution. Each “super-
vision node” receives the plan that is assigned to its node in the model tree. All these plans
are executed concurrently.

Supervision activities should start at the leaves of the supervision tree. If a problem is
not solvable on the most concrete level, the process has to be repeated on a higher level of
abstraction. Here, not only the actions of the local component where an non-admissible state
occurred can be taken into account, but also the actions of “neighbored” components that
cannot be controlled by the faulty component in question (and not by the local supervision
system). Thus supervision activities move upward the model tree (and the level of abstrac-
tion) until either the problem is solved (i.e. the system is in an admissible state), or the root
of the model tree is reached, and all supervision activities have failed.

Pervasive Supervision CASCADAS Deliverable 2.1

CHAPTER 5

Summary and Further Work

We have presented a framework for model-based hierarchical supervision that bases on
an abstract notions of the terms “system”, “behavior”, “abstraction”, and “composition”.
The framework have been presented in a “syntax-free” form, i.e. only with the weakest as-
sumption on the modeling formalisms that is used for concrete supervision models. The
approach is intended as a foundation and preparation of the further work on contract-based
supervision which will be performed in the CASCADAS Work Package 2.

Since the material we presented is far from being completed, a number of open issues
can be identified:

Firstly, at the current stage, supervision models are static in the sense that there is no
mechanism in place that adapts a model to according to observations of the system under
supervision and its environment. For that, we propose:

(1) The use of more advanced value structures that provide not only an assessment of
the suitability of states, but also an assessment of actions according to their effec-
tiveness, success probability and their costs.

(2) The use of the metrics introduced in Section 4.2 for the adjustment quantitative ad-
justment of probability and cost parameters of the advanced value structure.

(3) Investigation of ways of qualitative adjustment of the underlying supervision
model according to observations.

The notion of a hierarchical supervision algorithm is still a bit fuzzy. Of course, it is
strongly related to the hierarchical set-up of the Viable System Model (VSM) that is used as
a reference functional architecture of supervision pervasions. The precise justification of the
relationship of the VSM an the notion of model-based supervision will be investigated in the
further course of the CASCADAS project.

The notions of abstractions, embeddings, and zooms provide us with a framework to un-
derstand model hierarchies and changes of the level of abstraction. For contract-based super-
vision, we however need a mechanism to construct a common supervision model from the
operational models of the members of an ensemble of system components (either strongly
organized within an ACE or weakly set up as a self-organized community of ACEs). Of
course, a “magic” operation that gives us the right supervision model layered in a suitable
hierarchy of abstractions is very unlikely to be available. We however foresee the possibility
to work with standard mechanisms that solve the problem for a wide range of applications.

37

Bibliography

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors,
Handbook of Logic in Computer Science, volume 2 — Semantic Structures, chapter 1, pages 1 – 168. Clarendon
Prss, Oxford, 1994.

[2] M. Arbib and E. Manes. Arrows, Structures, and Functors: The Categorical Imperative. Academic Press, New
York, 1975.

[3] E. Badouel and P. Darondeau. Theory of regions. In W. Reisig and G. Rozenberg, editors, Lectures on Petri
Nets I: Basic Modells, number 1491 in Lecture Notes in Computer Science, pages 529 – 586. Springer-Verlag,
1998. Lecture Notes of the 3rd Advanced Course on Petri Nets, Dagstuhl (1996).

[4] L. Bernardinello. Synthesis of net systems. In Proc. of the Int. Conf. on Application and Theory of Petri Nets
(ICATPN’93), number 691 in Lecture Notes in Computer Science, pages 89 – 105. Springer-Verlag, 1993.

[5] E. Best and C. Fernández. Nonsequential Processes, volume 13 of EATCS Monographs on Theoretical Computer
Science Series. Springer-Verlag, 1988.

[6] G. Birkhoff. Lattice Theory. American Mathematical Society, Providence, Rhode Island, 3rd edition, 1967.
[7] G. Birkhoff. Lattice Theory, volume 25 of Colloquium Publications. American Mathematical Society, Provi-

dence, Rhode Island, 3 edition, 1967.
[8] P. Deussen. Algorithmic aspects of concurrent automata. In H.-D. Burkhard, L. Czaja, and P. Starke, editors,

Workshop on Concurrency, Specification & Programming ’98, number 110 in Informatik-Berichte, pages 39–50,
Berlin, 1998. Humboldt Univ. zu Berlin.

[9] P. Deussen. Concurrent automata. Technical Report 1-05/1998, Brandenburg Tech. Univ. Cottbus, 1998.
[10] P. Deussen. Improvements of concurrent automata generation. Technical Report I-08/1998, Brandenburg

Tech. Univ. Cottbus, 1999.
[11] P. H. Deussen. Analyse verteilter Systeme mit Hilfe von Prozessautomaten. PhD thesis, Brandenburg Technical

Univ. of Cottbus, 2001. In German.
[12] R. P. Dillworth and P. Crawley. Algebraic Theory of Lattices. Prentice-Hall, 1973.
[13] M. Droste. Concurrency, automata and domains. In M. S. Paterson, editor, Automata, Languages and Program-

ming, number 443 in Lecture Notes in Computer Science, pages 195 – 202. Springer-Verlag, 1990.
[14] A. Ehrenfeucht and G. Rozenberg. Partial 2-structures; part ii: State space of concurrent systems:. Acta In-

formatica, 27:348 – 368, 1990.
[15] R. Goldblatt. Topoi, the Categorial Analysis of Logic. North Holland Publishing Company, 1979.
[16] J. Grabowski. On partial languages. Fund. Inform, 4(2):427–498, 1981.
[17] G. Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel, 1978.
[18] E. Kindler. Modularer Entwurf verteilter Systeme mit Petrinetzen. Dieter Belz Verlag, Berlin, 1995.
[19] S. M. Lande. Categories for the Working Mathematics, volume 5 of Graduate Texts in Mathematics. Springer

Verlag, New York, 1977.
[20] S. Mauw and M. A. Reniers. Operational semantics for msc’96. In A. Cavalli and D. Vincent, editors, Tutorials

of the Eighth SDL Forum SDl’97: Time for Testing - SDL, MSC and Trends, pages 135–152, Evry, France, 1997.
Institut national des tlcommunications.

[21] A. Mazurkiewicz. Concurrent program schemes ant their interpretations. Technical Report DAIMI PB. 78,
Aarhus University, Aarhus, 1977.

[22] A. Mazurkiewicz. Introduction to trace theory. In V. Diekert and G. Rozenberg, editors, The Book of Traces,
chapter 1, pages 3 – 42. World Scientific, Singapore — New Jersey — London — Hong Kong, 1995.

[23] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains, Part I. Theoretical Computer
Science, 13:85–108, 1981.

39

40 CHAPTER 5. BIBLIOGRAPHY

[24] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Behavioural notions for elementary net systems. Distributed
Computing, 4:45 – 57, 1990.

[25] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Elementary transition systems. Theoretical Computer Science,
96:3 – 33, 1992.

[26] M. Nielsen and G. Winskel. Models of concurrency. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 4 — Semantic Modelling, chapter 1, pages 1 – 148.
Clarendon Press, Oxford, 1995.

[27] W. Penzek and R. Kuiper. Traces and logic. In V. Diekert and G. Rozenberg, editors, The Book of Traces,
chapter 1, pages 307 – 390. World Scientific, Singapore — New Jersey — London — Hong Kong, 1995.

[28] V. Pratt. Modelling concurrency with partial orders. International Journal of Parallel Programming, 15(1):33–71,
1986.

[29] V. Pratt. Debate’90: An electronic discussion on true concurrency. In D. A. Peled, V. Pratt, and G. J. Holz-
mann, editors, Proc. DIMACS Workshop on Partial Order Methods in Verification, volume 29 of DIMACS—Series
on Discrete Mathematics and Theoretical Computer Science, pages 359–403. American Mathematical Society,
1996.

[30] D. K. Probst and H. F. Li. Modelling reactive processes using partial orders. In Semantics for Concurrency,
Workshops in Coputing, pages 324 – 343, Leicester, 1990. Springer-Verlag.

[31] D. K. Probst and H. F. Li. Partial-order model checking: A guide for the perplexed. In Proc. of CAV’91,
number 575 in Lecture Notes in Computer Science, pages 322 – 331. Springer-Verlag, 1991.

[32] G. Rozenberg. Behaviour of elementary net systems. In W. Brauer, editor, Petri Nets: Central Models and their
Properties; Advances in Petri Nets; Proc. of an Advanced Curse, Vol. 1, number 254 in Lecture Notes in Computer
Science, pages 60–94, Berlin-Heidelberg-New York, 1986. Springer-Verlag.

[33] G. Rozenberg and J. Engelfriet. Elementary net systems. In W. Reisig and G. Rozenberg, editors, Lectures
on Petri Nets I: Basic Modells, number 1491 in Lecture Notes in Computer Science, pages 12 – 121. Springer-
Verlag, 1998. Lecture Notes of the 3rd Advanced Course on Petri Nets, Dagstuhl (1996).

[34] P. H. Starke. Processes in Petri nets. J. Inf. Process. Cybern. EIK, 17(8/9):389–416, 1981.
[35] P. H. Starke. Graph grammars for Petri net processes. J. Inf. Process. Cybern. EIK, 19(4/5):199–233, 1983.
[36] P. H. Starke. Multiprocessor systems and their concurrency. J. Inf. Process. Cybern. EIK, 20(4):207–427, 1984.
[37] P. H. Starke. Analyse von Petri-Netz-Modellen. G. B. Teubner, Stuttgart, 1990.
[38] P. S. Thiagarajan and J. G. Henriksen. Distributed versions of linear time temporal logic: A trace perspective.

In W. Reisig and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Modells, number 1491 in Lecture Notes
in Computer Science, pages 643 – 679. Springer-Verlag, 1998. Lecture Notes of the 3rd Advanced Course on
Petri Nets, Dagstuhl (1996).

[39] W. Vogler. Modular construction and partial order semantics of Petri nets. Number 625 in Lecture Notes in
Computer Science. Springer-Verlag, 1992.

Deliverable 2.1 CASCADAS Work Package 2

	COPERTINA.pdf
	D2.1 - Mathematical Framework.pdf
	Chapter 1. Introduction
	Chapter 2. Mathematical Framework
	1. Background Notations
	2. Distributed Alphabets and Their Interpretations
	3. Partial Ordered Multisets
	4. Valued Interpretation

	Chapter 3. Morphisms
	1. Abstraction
	2. Embedding and Image
	3. Zooming

	Chapter 4. Supervision
	1. Basic Supervision Algorithm
	2. Metrics for Self-assessment
	3. Hierarchical Supervision

	Chapter 5. Summary and Further Work
	Bibliography

