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1 Introduction 

1.1 Purpose and Scope 
This document reports the key results and current state of the work in the CASCADAS work 
package 2 (Pervasive Supervision). It provides 

- an introduction to the current approach taken by WP 2 

- an extensive summary of the current State of the Art 

- an illustrative application example 

- a collection of requirements for pervasive supervision 

- a formal framework for model based supervision (in the companion document [34]) 

- a framework for the detection of and reaction to concept drifts 

- a software architecture for supervision pervasions. 

1.2 Reference Material 

1.2.1 Reference Documents 
[1]   Canfora, G., M. Di Penta, R. Esposito, and M. L. Villani, A Lightweight Approach for QoS-Aware Ser-

vice Composition, forum paper at ICSOC 2004, IBM Technical Report RA221 (W0411-084). 
[2]   Dietterich, T.; Ensemble Methods in Machine Learning, , In Proceedings of the 1st International Work-

shop on Multiple Classifier Systems. (pp. 1-10). LNCS, Vol 1857,  Springer-Verlag, 2000 
[3]   Park, J., P.Chandramohan, Static vs. Dynamic Recovery Models for Survivable Distributed Systems. 

HICSS’04 
[4]   Patterson, D., Recovery Oriented Computing (ROC): Motivation, Definitions, Techniques, and Case 

Studies. Technical report. 
[5] Aamodt, A., and E. Plaza, Case-Based Reasoning: Foundational Issues, Methodological Variations, 

and System Approaches, Artificial Intelligence Communications 7 (1994): 1, 39-52 
[6] Agrawal, R., and R. Srikant: Fast Algorithms for Mining Association Rules, Proc. Of the 20th VLDB 

Conference, Santiago, Chile, 1994 
[7] Agrawal, R., and R. Srikant; Mining Sequential Patterns; Proc. Of the Int’l Conference on Data Engi-

neering (ICDE); Taipei, Taiwan, March 1995. Expanded version available as IBM Research Report 
RJ9910, October 1994 
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[8] Agrawal, R., T. Imielinski, A. Swami; Mining Associations between Sets of Items in Massive Data-
bases; Int’l Conference on Management of Data; Proc. Of the ACM-SIGMOD; Washington D.C., May 
1993, 207-216. 

[9] Aha, D. W., D. Kibler, M. K. Albert, Instance-based learning algorithms, Machine Learning, 6(1), 1991, 
pp 37-66. 

[10] Ahmed, T. and A. Tripathi: 2003, ‘StaticVerification of Security Requirements in Role Based CSCW 
Systems’. In: In 8th ACM Symposium on Access Control Models and Technologies (SACMAT 2003). 
pp. 196–203. 

[11] Alur, R., D. L. Dill, A Theory of Timed Automata. Theoretical Computer Science, Col. 126, 1994, pp. 
183 - 235 

[12] An architectural blueprint for autonomic computing, Autonomic Computing White Paper, IBM, 2004 
[13] Andrews, T. et al. Business Process Execution Language for Web Services, v1.1, http://www-

106.ibm.com/developerworks/library/ws-bpel 
[14] Baresi, L., and S.Guinea, Towards Dynamic Monitoring of WS-BPEL Processes. ICSOC 2005, 3rd 

International Conference On Service Oriented Computing. Amsterdam, The Netherlands, December 
2005 

[15] Baresi, L., C. Ghezzi, S. Guinea, Smart Monitors for  Composed Services”, Second International Con-
ference on Service Oriented Computing, ICSOC04, 2004. 

[16] Barkley, J. F., A. V. Cincotta, D. F. Ferraiolo, S. Gavrila, and D. R. Kuhn: 1997, ‘Role Based Access 
Control for the World Wide Web’. In: Proc. 20th NIST-NCSC National Information Systems Security 
Conference. pp. 331–340. 

[17] Bauer, E. and R. Kohavi, An empirical comparison of voting classification algorithms: Bagging, Boost-
ing, and Variants.  Machine Learning, 36, 105-142, Kluwer, 1999 

[18] Beer, S. , The Brain of the Firm, 2nd ed., John Wiley & Sons, 1995   
[19] Beer, S. , The Heart of the Enterprise, John Wiley & Sons, 1994 
[20] Bettini, C., X. Wang, J. Lin, S. Jajodia, Discovering Frequent Event Patterns With Multiple 

Granularities in Time Sequences. IEEE Transactions on Knowledge and Data Engineering. 10 (2), 
1998. 

[21] Breiman, L. Bias, variance and arcing classifiers, Technical Report 460, University of California at 
Berkeley, (996. 

[22] Breiman, L.; Bagging Predictors. Machine Learning, 24:123-140,1996. 
[23] Breiman, L.; Stacked Regressions.  Machine Learning, 24, 49-64, 1996. 
[24] Brin, S., R. Motwani, J.D. Ullman, S. Trur, Dynamic Itemset Counting and Implication Rules for Market 

Basket Data. Proceedings of the ACM SIGMOD International Conference on Management of Data, 
pp. 255-264, Tuscon, Arizona, May 13-15 1997 

[25] Broadwell, P.,Sastry, N., and Traupman, J., FIG: A Prototype Tool for Online Verification of Recovery 
Mechanisms, In ICS SHAMAN Workshop 2002 

[26] Brown, A., A Recovery-Oriented Approach to Dependable Services: Repairing Past Errors with Sys-
tem-Wide Undo, Technical Report. University of California. 

[27] Brown, G. and  J. Wyatt, J., The use of the Ambiguity Decomposition in Neural Network Ensemble 
learning methods. In Proceedings of the 20th International conference on Machine learning, 2003 

[28] Carzaniga, A., D.S. Rosenblum, and A.L. Wolf, Design and Evaluation of a Wide-Area Event Notifica-
tion Service, ACM Transactions on Computer Systems, 19(3):332-383, Aug 2001. 

[29] CASCADAS project homepage, http://cascadas-project.org/ 
[30] Cholvy, L. and F. Cuppens: 1997, ‘Analyzing Consistency of Security Policies’. In: RSP: 18th IEEE 

Computer Society Symposium on Research in Security and Privacy. pp. 103–112. 
[31] Chomicki, J., Efficient Checking of Temporal Integrity Constraints Us- ing Bounded History Encoding. 

ACM Transactions on Database Systems, 20(2):149-186, June 1995 
[32] Dan, A., D. Davis, R. Kearney, R. King, A. Keller, D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and 

A. Youssef. Web Services on Demand: WSLA-driven Automated Management. IBM System Journal, 
Special Issue on Utility Computing, volume 43, Number 1, pages 126-158, IBM Corporation. 

[33] Deussen, P. H., “Supervision of Autonomic Systems”, International Conference on Self-Organization 
and Autonomous Systems in Computing and Communications (SOAS’2006), Erfurt, Germany, Sept. 
20, 2006. 

[34] Deussen, P. H., “Towards a Mathematical Framework for Pervasive Supervision”, Part of the 
CASCADAS Milestone Deliverable D2.1, available on SVN repository as “D2.1 – Mathematical 
Framework.pdf” 

[35] Deussen, P. H., G. Din, I. Schieferdecker: A TTCN-3 Based Online Test and Validation Platform for 
Internet Services. ISADS 2003: 177-184 

[36] Deussen, P. H., G. Valetto, G. Din, T. Kivimaki, S. Heikkinen, and A. Rocha, "Continuous On-Line 
Validation for Optimized Service Management" in EURESCOM Summit 2002. 

http://www-106.ibm.com/developerworks/library/ws-bpel
http://www-106.ibm.com/developerworks/library/ws-bpel
http://cascadas-project.org/dokuwiki/doku.php
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Deussen:Peter_H=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Schieferdecker:Ina.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/isads/isads2003.html#DeussenDS03
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[37] Deussen, P. H., I. Schieferdecker, H. Kamoda: A Methodology for Policy Conflict Detection Using 
Model Checking Techniques, FORTE 2004, 24th IFIP WG 6.1 International Conference on Formal 
Techniques for Networked and Distributed Systems, September 2004, Madrid, Spain. 

[38] Deussen, P. H., L. Baresi, M. Baumgarten, M. Mulvenna, C. Nugent, K. Curran; Towards Pervasive 
Supervision for Autonomic Systems; IEEE 2006 Workshop on Distributed Intelligent Systems; Prague, 
Czech Republic, June 2006. 

[39] Deussen, P.H., G. Valetto, G. Din, T. Kivimaki, S. Heikkinen, and A. Rocha, Continuous On-Line Vali-
dation for Optimized Service Management, in Proceedings of EURESCOM Summit 2002, Heidelberg, 
Germany, October 21-24, 2002. 

[40] Din, G., H. Akihiro, I. Schieferdecker, P. H. Deussen: An Auditing System for QoS-Enabled Networks. 
IEEE 3rd Intern. Workshop on Distributed Auto-adaptive and Reconfigurable Systems, Providence, 
Rhode Island, USA, IEEE Press, May 2003.  

[41] El-Hajj, A., and O. R. Zaïane, COFI-tree Mining: A New Approach to Pattern Growth with Reduced 
Candidacy Generation, in Workshop on Frequent Itemset Mining Implementations (FIMI'03) in con-
junction with IEEE-ICDM 2003, Melbourne, Florida, USA, 19 November, 2003 

[42] eTOM Overview, http://www.tmforum.org/browse.asp?catID=1648 
[43] ETSI European Standard (ES) 201 873-1 V2.2.1 (2003-02 Methods for Testing and Specification 

(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language 
[44] Eurescom, P1108 Workflow-based On-line Validation of Complex Component Based Internet Services 

- Project Conclusion and Exploitation Opportunity, 2002 
[45] Eurescom, P1108 Workflow-based On-line Validation of Complex Component Based Internet Services 

- Terminology, Basic concepts and Notation, 2001 
[46] Eurescom, P1108 Workflow-based On-line Validation of Complex Component Based Internet Services 

- Decentralized Work Flow Management System and Other Enabling Technologies, 2001 
[47] Eurescom, P1108 Workflow-based On-line Validation of Complex Component Based Internet Services 

- BT6.3 Evaluation Report - D6 Final, 2002 
[48] Exclusive Ore Inc., Association and Sequencing, 1998 – 2000 
[49] Ganek A. G. Autonomic computing: implementing the vision Keynote presentation at the autonomic 

computing workshop, (AMS 2003), Seattle, WA, 25th June 2003. 
[50] Garlan, D., Increasing System Dependability through Architecture-based Self-repair 
[51] Garlan, D., R.T.Monroe, and D.Wile, Acme: Architectural Description of Component-Based Systems. 

Foundations of Component-Based Systems. Leavens, G.T., and Sitaraman, M. (eds). Cambridge Uni-
versity Press, 2000 pp. 47-68. 

[52] Garlan, D., S. Cheng, A. Huang, B. Schmerl, P. Steenkiste, “Rainbow: Architecture-based Self-
adaptation with Reusable Infrastructure”, IEEE Computer, 37(10):46-54, Oct. 2004. 

[53] Hall, R.S., D.M. Heimbigner, A. van der Hoek, and A.L. Wolf. An Architecture for Post-
DevelopmentConfiguration Management in a Wide-Area Network. In Proceedings of the 1997 Interna-
tional Conference on Distributed Computing Systems, pages 269–278. IEEE Computer Soci-ety, May 
1997. 

[54] Hall, R.S., D.M. Heimbigner, and A.L. Wolf. A Cooperative Approach to Support Software Deployment 
Using the Software Dock. In Proceedings of the 1999 International Conference on Software Engineer-
ing, pages 174–183. Association for Computer Machinery, May 1999. 

[55] Hall, R.S., D.M. Heimbigner, and A.L. Wolf. Evaluating Software Deployment Languages and Schema. 
In Proceedings of the 1998 International Conference on Software Maintenance, pages 177– 185. 
IEEE Computer Society, November 1998. 

[56] Han, J., and J. Pei; Mining Frequent Patterns by Pattern-Growth: Methodology and Implications; ACM 
SIGKDD, Dec. 2000. 

[57] Han, J., J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. Hsu; FreeSpan: Frequent Pattern-Projected 
Sequential Pattern Mining. Int. Conf. Knowledge Discovery and Data Mining (KDD2000), Boston, 
2000, pp 355 - 259 

[58] Han, J., J. Pei, Y. Yin. Mining Frequent Patterns without Candidate Generation, Proc. 2000 ACM 
SIGMOD Int. Conf. on Management of Data (SIGMOD'00), Dallas, TX, May 2000 

[59] Hanemann, A, D. Schmitz, Service-Oriented Event Correlation—Workflow and Information Modeling 
Approached, Munich Network Management Team, Leibniz Supercomputing Center, 2004 

[60] Heimbigner, D., N.Arshad, and A.L.Wolf. A Planning Based Approach to Failure Recovery in Distrib-
uted Systems. WOSS 2004 

[61] Heimbigner, D., N.Arshad, and A.L.Wolf. Dealing with Failures during Failure Recovery of Distributed 
Systems. DEAS 2005 

[62] Horn, P. Autonomic computing: IBM perspective on the state of information technology, IBM T.J. Wat-
son Labs, NY, 15th October 2001. Presented at AGENDA 2001, Scottsdale, AR (available at 
http://www.research.ibm.com/autonomic/); 2001. 

http://www.tmforum.org/browse.asp?catID=1648
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[63] IBM, BEA, Microsoft, SAP, Sonic Software, and VeriSign, 2004. Web Services Policy Framework 
(WS-Policy), September 2004 (www6.software.ibm.com/software/developer/library/ws-policy.pdf)  

[64] ITIL & SERVICE MANAGEMENT PORTAL, http://www.itil-service-management-shop.com/index.htm 
[65] Jakobson, G. and M. Weissman. Real-Time Telecommunication Network Management: Extending 

Event Correlation with Temporal Constraints. Integrated Network Management IV, IEEE Press, 1995. 
[66] Jakobson, G., J. Buford, L. Lewis, Towards an Architecture for Reasoning about Complex Event-

Based Dynamic Situations, Technical Report, Altusys Corp, Southern New Hampshire University, 
USA, 2004 

[67] Joshi, N., J. Pilgrim, B. Subramanian, B. Topol, Use autonomic computing for problem determination 
Perform root-cause analysis with the Autonomic Management Engine and ABLE components,  
http://www-128.ibm.com/developerworks/autonomic/library/ac-able/ 

[68] Kaiser, G., J. Parekh, P. Gross, G. Valetto, "Kinesthetics eXtreme: An External Infrastructure for Moni-
toring Distributed Legacy Systems." Autonomic Computing Workshop -- IEEE Fifth Annual Interna-
tional Active Middleware Workshop, Seattle, USA, June 2003. 

[69] Kaiser, G., J. Parekh, P. Gross, G. Valetto, “Retrofitting Autonomic Capabilities onto Legacy Systems”, 
Journal of Cluster Computing, 2005 (in press) 

[70] Kephart J, Chess D. The vision of autonomic computing. IEEE Comput 2003;36:41–50.  
[71] Klinkenberg, R., Learning Drifting Concepts: Example Selection vs. Example Weighting. In Intelligent 

Data Analysis (IDA), Special Issue on Incremental Learning Systems Capable of Dealing with Concept 
Drift, Vol. 8, No. 3, pp 281-300, 2004.  

[72] Knight, J. C., D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P. Devanbu, M. Gertz, The Willow architec-
ture: comprehensive survivability for large-scale distributed applications, Intrusion Tolerance Work-
shop, The International Conference on Dependable Systems and Networks, Washington, DC, June 
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[73] Knight, J. C., K. Sullivan, M. Elder, C. Wang. "Survivability Architectures: Issues and Approaches" In 
Proceedings: DARPA Information Survivability Conference and Exposition. IEEE Computer Society 
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[74] Knight, J.,  D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P. Devanbum, “The Willow Survivability Ar-
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2002. 

[75] Konstantinou, A.V., Y. Yemini, “Programming Systems for Autonomy”, in Proc. IEEE Autonomic Com-
puting Workshop, Active Middleware Services (AMS 2003), Seattle, Wa., USA, pp. 186-196, 2003. 

[76] Konstantinou, A.V., Y. Yemini, and D. Florissi, “Towards Self-Configuring Networks”, in Proc. DARPA 
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[80] Lin, C., C. Yun, M. Chen, Utilizing Slice Scan and Selective Hash for Episode Mining; 7th ACM 
SIGKDD Int. Conference on Knowledge Discovery and Data Mining (KDD01), August 26, 2001, San 
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1.2.2 Acronyms 
ABLE Agent Building and Learning Environment 

ACE Autonomic Communication Element 

ADL Architecture Description Language 

API Application Programmer Interface 

APRM Agreement Protocol Role Management  

ASRM Agreement Service Role Management 

BPEL Business Process Execution Language 

BPEL4WS BPEL for Web Services 

http://www.fokus.gmd.de/web-dokumente/Flyer_engl/Autonomic-Communicatin.pdf
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/snmp.htm
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CBR Case Based Reasoning 

CDL Constraint Definition Language (Nestor) 

COLV Continuous On-line Validation 

Cremona Creation and Monitoring of Agreements 

CSM AP Customer Service Management Access Point 

DAP Directory Access Protocol 

DB  Data Base 

Dynamo DYNAmic Monitor 

EC Event Correlation 

eTOM Enhanced Telecom Operations Map 

GPS Global Positioning System 

GUI Graphical User Interface 

IDL Interface Definition Language  

IT Information Technology 

ITIL IT Infrastructure Library 

JVCL JOpera Visual Composition Language 

KX Kinesthetics eXtreme 

LWF Local Weighted Forgetting 

MAPE Monitor—Analyze—Plan—Execute 

MIB Management Information Base 

OCL Object Constraint Language 

Olives Online Validation Enactment System (Eurescom project P1108) 

PDA Personal Digital Assistant 

PDL Policy Definition Language (Nestor) 

PECS Prediction Error Context Switching 

PMB Policy Based Management 

PMML Predicative Model Markup Language 

PS Presence Server 

PT-DTL Past Time Distributed Temporal Logic 

PT-LTL Past Time Linear Temporal Logic 

QoS Quality of Service 

RDL Resource Definition Language (Nestor) 

RDS Resource Directory Server 

ROC Recovery Oriented Programming 

SC System Controller (Rainbow) 

SIP Session Invitation Protocol 

SLA Service Level Agreement 

SLM Sublevel Manager (self-managed systems) 
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SMS Short Message Service; also Self-Managed System 

SNMP Simple Network Management Protocol 

SOAP Simple Object Access Protocol 

TLM Top Level Manager (self-managed systems) 

TMF Telemanagement Forum, also Time-Windowing Forgetting  

TTCN-3 Testing and Test Control Notation (3rd Edition) 

VSM Viable System Model 

WF Manager Workflow Manager 

WP Workpackage 

WS Web Service 

WSDL Web Service Definition Language 

WSDM Web Services Distributed Management 

WSLA Web Service Level Agreement 

WSOL Web Service Offerings Language 

XML eXtendeble Markup Language 

XSAL XML Service Association Language 

XSRL XML Service Request Language 
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1.4 Document Overview 
The course of developments done in WP2 and their relationships can be visualized by means of the 
following Figure 1. 
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Figure 1 - Progress in WP2 

The conceptual set-up of the notion of supervision and supervision pervasions has been started with 
the employment of the Viable System Model (VSM) [18][19] (discussed in Section 2.3) as a 
reference model for supervision services for hierarchical organized systems. It provides a 
description of the functional blocks of such a service, their interrelationships, and their relation to the 
system that is under supervision. 

The VSM have been found its first application as a methodological reference to compare and to 
evaluate several general approaches for currently existing supervision systems – this work has been 
published in the Month 4 Milestone document on State of the Art (SotA). In parallel, a small case 
study has been performed to evaluate the basic ideas developed. From both activities, a number of 
requirements have been derived that provide cornerstones for the further activities in WP2. 
Currently, WP2 follows three main lines of work:  

1. Contract and model based supervision refers to the idea that supervision is essentially a 
service that is provided to ACEs or ACE configurations. The specific properties or invariants 
to be supervised form a supervision contract that is committed between the system configu-
ration under supervision and the supervision system. The contract is expressed in form of 
an operational model of the functions and abilities of the system under supervision.  

In order to express these ideas in a clear, unambiguous way, a formalization of a number of 
notions is required. In particular, it has to be justified what is meant by the terms like 
“systems”, “operational models”, “states”, “behaviours”, and so on. We therefore have 
developed a mathematical framework for the formal work with these concepts that bases 
on (not necessarily finite) distributed transition systems. Partially ordered mulitsets (i.e. sets 
of actions equipped with a notion of causality and operational independence) are used as 
operational semantics of those transition systems.  We have further defined a notion of 
system refinement, and of system composition, that leads to a theory of system models that 
are hierarchically organized according to their levels of abstraction. Operations have been 
defined to change between local abstraction levels, i.e. to “zoom” into a model to increase 
its degree of detail only for a given constitutive component. 

On the basis of these ideas, two supervision algorithms have been developed, a basic one 
to work with “flat” models (i.e. models that comprise just a single level of abstraction), and a 
hierarchical one.  

2. The second work line deals with long-term changes in the supervised system or its envi-
ronment. The need for such a more long-term oriented supervision approach is based on 
the fact that the real world model of individual services or the underlying data thereof are of 
a volatile nature and as such is likely to change constantly over time. Thus, continuously 
opening a gap between the actual model and the real world concept they were designed for. 
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This problem, referred to as concept drift, implies the constant adaptation of intelligent ser-
vices and their underlying models in order to achieve a stable state around some pre-
defined boundaries. In order to adapt to such changes effectively a supervision mechanism 
needs to incorporate a computational model of the real world problem they were originally 
designed for. Simplified, a concept of interest reflects the underlying model of a given ser-
vice or application in a machine readable format. Due to the fact that a concept of interest 
may depend on a hidden or very complex context it is often extremely difficult to design and 
implement them, let alone the modelling of the system that is intended to supervise it. 

Approaches dealing with concept drifts resemble the basic supervision cycle, i.e. the 
continuous observation of the system under supervision and its environment, the analysis of 
these observations, and the enforcement of reactions if their necessity is stated. In order to 
allow a system to evolve over time but at the same time assure the correctness of the 
underlying logic, advanced forecasting and prediction methods are required which allow the 
system to: 

• forecast the “direction” of a supervised system; 

• predict individual attributes based on past behaviour or on other attributes; 

• and finally, detect critical states before they actually occur. 

These issues obviously are also strongly related to the notion of Knowledge Networks 
(WP5) which provides the information necessary to perceive and to analyze the state of the 
environment of a system.  

3. Finally, a software architecture for supervision pervasions have been developed that is 
dedicated to realize the functions and relationships defined in the Viable System Model. It 
comprises of the following software components: 

• Sensors capture the data from ACEs, and the communications among them. They also 
send monitored data to the other components of the supervision system. 

• Correlators analyze the monitored data to construct a coherent picture of the super-
vised system. This component has a repository of collected information and a rea-
soner to extract important information from collected data. 

• Assessors create an abstract model of the system under supervision based on moni-
tored data and correlation analysis. It is also able to detect if the status of single or 
composed elements is ”suitable” or “admissible”. As soon as a problem is detected, the 
Assessor declares it. This means that it can detect both the status of a single element 
under supervision and problems with the environment of the system under supervision. 

• Planners elaborate the set of actions that must be executed on the supervised system 
when the Assessor declares a problem. It uses the data received from both the Correla-
tor and the Assessor. 

• Effectors translate planned recovery actions into executable actions and messages 
that are then sent to the supervised components. 

• Predictors retrieve information from the Sensors, Correlators, and Planners to predict 
the likely effect of planned recovery actions. 

The document is structured as follows: Section 2 explains the general vision of contract based su-
pervision. Section 3 provides an overview of the current State of the Art. The material of this section 
matches that on the M4 report of WP2, its presentation however is improved. Section 4 deals with 
an application example for pervasive supervision, namely a simplified version of the Behavioural 
Advertisement Example. Requirements are discussed in Section 5. Section 6 is basically a place-
holder for the accompanied document [34] which describes the mathematical framework for model 
based supervision, and discusses also basic supervision algorithms for non-hierarchical and central-
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ized as well as for hierarchical and distributed supervision. The notion of concept drift is introduced 
in Section 7, and basic mechanisms for its detection are discussed. A software architecture for ACE 
based supervision is described in Section 8.  The final Section 9 provides a summary and gives an 
outlook on integration activities with other work packages. 

2 Pervasive Supervision 
Consider a distributed environment comprising a number of components providing a catalogue of 
functions or atomic services. Linking of functions into a certain control structure or behavioural rule 
system results in composed services, relating the components by certain communication and 
coordination patterns yields a system configuration (or a system, for short). By supervision we mean 

1. the continuous monitoring of system configurations and the interpretation of monitored data ac-
cording to certain requirements (safety, functional correctness, consistency, performance, reli-
ability, etc.); 

2. and the enforcement of corrective measures if a violation of these requirements is detected. 
 

system under 
supervision

probeprobeprobe probeprobeactuator

evaluation reaction
computation

notification

 
Figure 2. Basic supervision architecture 

Let us start with a discussion of a paradigmatic architecture of a supervision system as shown in 
Figure 2. The basic organization of a supervision system is that of a closed control loop. Monitoring 
components gather information about the supervised system. Efficiency considerations require that 
probes perform event filtering and pre-analysis task of locally observed behaviour, since flooding the 
communication infrastructure with monitored raw data will result in an unacceptable communication 
overhead. Evaluation components perform global analysis and correlation tasks. If a problem in the 
behaviour of the supervised system configuration is detected, an appropriate reaction is computed 
and enforced in the supervised system using special actuator components.  

In the literature two principle approaches to define a supervision system can be found: 

The intrinsic approach defines supervision functions as a part of the supervised system itself, e.g. as 
special features of a middleware. This approach has the advantage that there is no technological 
distinction between the system under supervision and the supervised system, thus no additional 
management overhead occurs. Additionally, performance burdens caused by the supervision 
activities remain in reasonable limits. On the other hand, intrinsic solutions are often proprietary to 
specific problems and applications and provide no framework to define supervision tasks in a 
generic way. 

In opposite to that, the extrinsic approach defines the supervision system as a unit which is 
technological and conceptual separated from the system under supervision. The disadvantage of 
this approach is that it requires the operation and maintenance of two different systems resulting in 
increased management efforts and performance overheads. It allows however for the generic 
definition of arbitrary supervision tasks and appears—under this perspective—much more 
appropriate for systems which react autonomously and are able perform self-adaptation.      
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Catering the requirements of today’s and anticipated future, supervision has to take place on a large 
variety of levels (infrastructure, service execution, accounting, client’s profile) and in a 
heterogeneous technological environment, but also has to take into account various conceptual 
levels (e.g. reliability of financial transactions in opposite to technological restrictions of the security 
infrastructure). Therefore, neither the intrinsic approach is sufficient because of its lack of generality, 
not the extrinsic approach is because of its strong separation between the two system parts. 
Particularly, since the supervision system itself is vulnerable against malfunctions, the basic 
architecture described in Figure 2 does not provide a robust and self-healing solution. 

A supervision system must be understood as an integral part of the supervised system that cannot 
be separated architecturally, organizationally, or technologically from it. Supervision appears itself to 
be a composed, structural integrated service unifying the intrinsic and extrinsic paradigm. We refer 
to this unified approach to as pervasive supervision. 

2.1 Limitations of Current Approaches – The MAPE Example 
With the Autonomic Computing initiative, IBM introduced MAPE (monitor—analyze—plan—execute) 
as a control paradigm for autonomic systems; MAPE boils down to a feedback control loop that 
continuously perceives the state of a system and interacts with it. In this section, we are using the 
MAPE approach as a prototypical example to discuss limitations of current approaches.  

MAPE leaves open a number of questions. Consider for instance autonomicity. If MAPE is used as 
an architectural paradigm for the design of a system, and is the element that “adds” autonomicity to 
the very system, then the data to be gathered during monitoring, the analysis and planning 
algorithms, and the control functions to be executed can be defined in the development phase of the 
system. But if the controlled system itself is autonomic, then it is pretty unclear how to define a 
control loop that deals with a system that is essentially designed to operate without external control. 

Consider self-organization. Having a system that composes itself in an automatic way from a set of 
available (but not necessarily pre-defined) components (which might be itself complex, self-
organized ensembles), it is by no means clear which data are relevant for control purposes, how to 
evaluate (or even to define) their state, and how to interact with systems which are dynamically 
changes their inner composition. The crucial point here is that there is no a priory knowledge 
available to effectively define control purposes and tasks. As functions and structures of self-
organized systems emerge rather than follow a pre-defined “architecture”, associated control 
functions (and structures) have to co-emerge.  

We conclude that—despite of the impact of the IBM’s initiative on the current research addressing 
autonomic systems (resulting the equation “autonomicity = MAPE”)—that the closed control loop 
paradigm is not sufficient to exemplify autonomic systems.´ 

This report addresses supervision approaches that go beyond the MAPE paradigm. The basic 
methodology is first to analyze the relationship between the supervision system and the supervised 
system. For this, the notion of a supervision contract is defined and requirements concerning the 
capability of a system of being supervised are derived from this notion. We then employ a reference 
model which describes the structure of a supervision system and its structural relationship to the 
supervised system.  

2.2 Contract Based Supervision 
The CASCADAS project focuses (among other things) on the definition and development of a self-
organizing component-based service infrastructure. A ground concept is the so-called Autonomic 
Communication Element (ACE). An ACE is a building block for autonomic services which can be 
seen as embracing all essential characteristics that are required by autonomic services within a 
ubiquitous networked environment. A multitude of ACEs will exist with each type providing varying 
services and capabilities. The ACE concept builds a software abstraction of all components which 
will be developed in the project and thus will be a common terminological and technological 
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foundation of the issues addressed such as self-organization and self-aggregation of services, 
security issues for autonomic services, knowledge representation and distribution by means of 
common overlay network, and supervision as a generic hierarchical control paradigm. Thus, if we 
talk about a “system under supervision”, “supervision system” or “supervision pervasion”, we always 
mean a configuration or aggregation of ACEs (or – in the most elementary case – a single ACE). 

2.2.1 Supervision Contracts 

Supervision is basically a service, i.e. an activity which is performed by some entity (namely: the 
supervision system) by executing a certain activity (e.g. improved fault tolerance, SLA validation) on 
a supervised system (the object of the activity; hence: the supervision system is the subject of the 
activity) for some other entity (the owner of the activity) which has a certain benefit from employing 
(and might pay for) this supervision service. Supervision is always performed to ensure the 
effectiveness and quality of some other service—called the target service. There are several classes 
of supervision contracts. 

Class 1: The service user (which might be an automated entity) of the target services is interested 
e.g. to validate the quality of this service, and to enforce adaptive measures if the provided quality is 
insufficient. Thus the “contract” is between service user and service provider and includes—to 
certain extends—the permission to supervise the service execution. 

Class 2: The owner of a service might be aware that its implementation can be mal-functional, 
malicious, non-optimal, etc. (probably because the service makes use of 3rd party components), and 
a supervision service is required to ensure operation and the advertised service level. Now the 
contract is between the service owner and the supervision system.  

Class 2 contracts may be viewed as enrichments or refinements of Class 1 contracts by service 
specific information. The Class 1 part defines the requirements for the usage of the target service, 
while the Class 2 part explains how the service is realized and thus how the validation of the user 
requirements has to be performed. 

Class 3: Consider a service composed out of available resources and functions which are—or are 
provided by—autonomic entities. In order to supervise such a composite service, the supervision 
system has to reference monitoring and actuation functions of the sub-services of the composition. 
We now have an interesting situation: The owner of the composed service appears to be the user of 
its sub-services, thus we have a contract of Class 1 between these entities. It might be however also 
the case that the contract is not between the owner of the composed service and the sub-services, 
but—assuming that there is a Class 2 contract between the several sub-services and associated 
supervision sub-systems—between the supervision system for the composed service and the 
supervision sub-services contracted by the sub-services.  

user owner SV sys

owner SV sys owner SV sys owner SV sys

imp imp imp

class 1 class 2 class 3

implementation

 
Figure 3. Types of contracts 
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Class 3 contracts may therefore be viewed as delegations of Class 1 contracts; Class 1 contracts 
may be composites of Class 3 contracts. This relationship reflects the idea to define supervision 
pervasions as recursive structures aligned with the (probably emerging) architecture of the service 
providing systems under supervision. It defines a transitive relationship between supervision 
components on different levels based on abstraction and concretization. The reflexive version of this 
relationship leads to self-application of supervision as a Class 1 contract between supervision 
systems. 

2.2.2 What Makes A Supervision Contract? 

The ability of being supervised (i.e. being perceivable and controllable) is an integral property of a 
system that is able to commit supervision contracts, an ability which has to be provided by all ACEs 
to a certain extend. A non-supervisable ACE may be regarded as non-trustable! An adaptable 
service configuration may refrain from invoking a non-supervisable ACE because its service level 
cannot be validated. But of course the extend to which an ACE is willing (allowed, designed) to 
disclose internals and permit external control depends on the ACE itself, its purpose, service model, 
security policies, etc. 

The generic nature (explained above) of the supervision pervasions to be developed requires novel 
mechanisms for system perception and actuation; in particular, there is no definite list of attributes 
that need to be perceivable and modifiable defining the contents of supervision contracts because of 
the autonomicity and self-organization abilities of supervised service configurations.  

Therefore, let us think in a different direction. In principle, service configuration 
(represented/symbolized by ACEs) need to be open in the sense that behaviour aspects are 
perceivable and controllable1. On the other hand, complete openness is not what is really needed 
as information on the level of concrete executions and concrete system states (variable values) are 
far too fine-grained for effective supervision. Thus the image that a supervision system maintains 
about the supervised service configuration is an abstraction, an operational model of it. Such a 
model describes the usage protocol (order of operations/messages, exceptions, states, etc.), the 
exchanged data and data types, constraints, etc. Concerning this, we may state:  

A supervision contract is about the validation of the system’s state and behaviour against its 
operational model and on the enforcement of consistency with this model.  

Note that in using this definition we do not assume that a model of a system actually is a correct 
description of the system—in fact, the need to have an additional supervision service is motivated 
by the opposite: models might be incorrect; systems may be selfish (and thus try to benefit form an 
idealized picture of themselves), they might get hacked, or might simply be faulty. 

The relationship between the several types of contracts already has been discussed in the previous 
section. Let us now apply the equation “contracts = models” to make these relations more concrete:   

2.2.3 What to Do With Supervision Contracts? 

We elaborate the idea of a model by looking at the usage of models for supervision: 

Monitoring: We assume that each ACE provides methods to query its operational model, further 
provides a mechanism to query the actual state in which is (e.g. by “pulling”), and events that occurs 
(by “pushing”, callbacks, or similar). Since it is not always clear that the ACE is aware of its own 
computational model (it might be faulty), it is further necessary to enhance dynamic information 
(state and events) by semantic information, i.e. data structures (e.g. as abstract data types) and 
data constraints for states, and information on the state transformation function of events. 

 
1 We are fully aware of the security issues raised with this requirement, we however have to insist that this does not concern 
the WP 1 — WP 2 relationship, but has to be discussed in the WP 1 — WP 2 — WP 4 triangle. 
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a conceptual level. To do so, we employ a metho

fford Beer [18][19] as a model 

vasions is given by the 

fluencing of the state and behaviour 

- 
ture events and the planning of suitable 

Simulation: Models are not only used to put monitored data into a certain context, but also to pro-
actively estimate the effect of the execution of some action by simulating the effect of this action 
within the model. This basically means that models have to be executable (at least in an abstract 
sense).  

Event Control: Further ACEs have to provide a “controlled mode” in which the execution of events 
(1) is impossible without explicit external permission, and (2) can be forced by external intervention. 
This controlled mode is activated by the supervision system if an ACE shows an unintended 
behaviour or enters a bad state. We cannot assume that all events are controllable by the 
supervision system. Timeouts, interrupts, (human) user or operator actions, etc. are examples of 
events which remain uncontrollable.  

Adaptation: We anticipate the need for mechanisms for the adaptation of the operational model of 
ACEs and ACE configurations:  

1. Depending on the self-organization mechanisms we foresee the necessity of directly influ-
encing the operational model of an ACE if the “emergent behaviour” is not the intended one.  

2. Further, since supervision is intended to be “pervasive”, the respective supervision compo-
nents appear to be an integral part of the supervised ACE configuration, thus have to be 
part of the operational model of this configuration. 

3. ACEs may cheat! Or may be non-informed! Or simply may be broken! We cannot rely in the 
model which is provided by a particular ACE. In fact, it has continuously validated against 
actual observations, and—in necessary—repaired. 

2.3 Reference Model 
In this report, we investigate the problem of finding a unified pervasive approach for supervision on 

dology which bases on a reference model for 
autonomic systems that is used as a conceptual 
framework which allows defining the borders of 
the supervision system and the supervised 
system, and the principal relationship of these 
systems. Furthermore, to solve the problem of 
self-supervision it is necessary to understand 
supervision systems itself as autonomic 
systems. The identified relationship “supervised 
system vs. supervisions system” then can be 
applied to the reflexive case.    

The Viable System Model (VSM) has been 
introduced by Ste
for the management of human organizations 
like enterprises, facilitating the inspiration of the 
(human) nerve system.   

The rationale to use the VSM as a reference 
model for supervision per
fact that the VSM already exhibits a number of 
aspects that are important in this context, 
namely: 

- Continuous perception and reactive 
in
of the supervised system; 

Pro-activity, i.e. the extrapolation of fu-
Figure 4. Viable System Model 
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measures to support or prohibit such events; 

- P ll instance mapp

- Algedonic stimuli play a paramount role in the sen  management entity only influ-
 obser-
at pro-

are required, be-

o 

urred 

The VS
the man
its auton  acting from 

- 

nagement (supervision) system on various organizational levels. 

The VS
homeos
embedd cipal system parts 

 
cts as the primary objective of 
mans. In the context of self-

urpose-orientation, i.e. an overa ing policies into concrete actions 

se that a
ences if a certain condition is meet. The VSM is not based on a continuous in-depth
vation of the managed entities, but uses a restricted set of signals and commands th
vide an abstracted view of the current state of the managed system. 

o Algedonic signals are used if the managed system enters a non-desirable state 
(e.g.  a failure state) or is in danger to enter such a state. Thus algedonic signals 
define a notification of the fact that external management activities 
cause the managed entity is not able to resolve the problem situation by itself. 

If an algedonic signal is received, the management system has issue a number of 
commands that lead the managed system back into a desirable state. Those com-
mands may not only addressed to the subsystem where the problem has occ
(or has been detected), but may also involve other parts of the system. 

M therefore leaves room for autonomy as long as no direct measures are required. If 
aged system (or system part) turns out to be unable to deal with a problem by itself, 
omy is restricted until the problem is resolved by a management system

global system perspective. 

The model is recursive and therefore allows a pervasive organization: Each VSM is con-
structed from various other VSMs. Thus it pervades the managed (or supervised, in this 
context) system with the ma

It should be noted that pervasiveness has also another, technological dimension that is not 
present in the theoretical VSM: In order to obtain an unified view on the couple 
supervised/supervision subsystem it is necessary that both subsystems uses the same 
technological basis and thus are manageable by the same technical means. Since the main 
purpose of autonomic communication (as well as of autonomic computing) is to integrate the 
complexity of a system into a comprehensive and coherent control and management 
approach, alleviating the technological complicity of a system with yet another (probably 
even more) complicated supervision system is like fighting fire with fire. 

M defines the structural parts and their relationships as necessary components of a 
tatic system, i.e. a system which is able to maintain its operation and stability when 
ed into a continuously changing environment. It identifies three prin

(compare Figure 4): Operational system(s) (ellipsoid), a meta-system (rectangle) which controls the 
operational parts, and the environment (cloud) of the system. These system parts (with the 
exception of the environment) are numbered as Systems One to Five (S1 to S5, for brevity, where 
the numbers 1 to 5 in Figure 4 refer to these subsystems).  

S1: Operation. This subsystem(s) provides the functions of the system, e.g. its productive units, 
computation routines, resources, etc. A VSM might comprise a large number of S1’s. 

The systems S2 to S5 compose the meta-system of a viable system.  

S2: Stability. This system is responsible for the overall stability and coordination of the activities of
the S1 units. The original VSM concentrates on the resolution of confli
S2 as the basic problems for self-organization of entities driven by hu
organized computer systems it is however appropriate to view S2 in general as a subsystem 
supporting the emergence of sustainable structures in large configurations.  

While the systems S1 and S2 work mainly on the basis of a local perspective relative to a single 
component or the interaction of a small set of components, the systems S3 and S4 maintain a 
global, system-wide view. 
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e of the S1 subunits is done by the generation of so-called algedonic 

teraction with its environment. 
 and changes in the system’s environment, the 

y to choose autonomously between several alternative (and 

intaining 

, 

situ
s  of those adaptations to  

cording the structural and functional adaptations of 

proh

he anticipated ability of autonomic systems to determine an appropriate course of action in 

e motivation to have a policy subsystem 
S5. But to distinguish e.g. desired from undesired states from the perspective of the system under 

S3: Regulation. The purpose of this system is to regulate the system’s activities on a global level, 
to identify system wide problems, but also to utilize possible synergies and to perform optimizations. 
The perception of the stat
signals, i.e. notifications about specific events like the occurrence of problems, unexpected 
situations, etc. Thus algedonics provide a conceptual way not to flood the S3 subsystem with 
information that is not needed. S3 furthermore comprises a “command channel” that allows 
restricting the autonomy of the S1 subsystems if a situation occurs that cannot be handled 
appropriate on the S1/S2 level but requires a system-wide solution.   

System S3 performs in tight cooperation with S4: 

S4: Adaptation. The subsystems S2 and S3 are concerned with the current internal structure and 
processes of a system. The system however maintains an ongoing in
In order to react appropriately on developments
current state of the surroundings of a system has to be perceived, and additionally, an extrapolation 
of these future changes is necessary. 

S5: Policy. Systems have a purpose (e.g. to provide a set of services). In current computer 
systems, this purpose is “hard-wired” in the execution code of the system. Future systems are 
however anticipated to have the abilit
probably contradicting) goals to achieve. Thus a system function is required to assign a value 
representing the “desirability” of a certain goal to enable the system to do this selection.      

One might have noticed that the S1 units shown in Figure 4 are drawn by an ellipsoid and a 
rectangle. The VSM is recursive in the sense that each of the S1 units is considered to be a viable 
system by itself comprising operational sub-units and a meta-system, and in particular ma
their own interactions with their environments. Concerning the recursive nature of the VSM, it is 
useful to establish the notion of a system-in-focus, i.e. a level of recursion being managed by a 
single meta-system (systems S2 – S5 and the associated S1 units viewed as atomic subsystems).  

Aligning the supervision architecture shown in Figure 2 with the VSM, the most obvious way is to 
identify the subsystem S3 with the supervision system.  

- S3 performs an ongoing monitoring of the S1 units and their interaction (S2) by the generation
perception, and interpretation of algedonic signals, thus represents the “observation” part” 
(probes, evaluation) of the supervision architecture. 

- The “command channel” of S3 which is activated in problem situations that cannot be resolved 
on the S1/S2 level corresponds to the “reactive” part of the architecture (reaction computation 
and enforcement). 

   
This identification is however only partial. Autonomic systems are supposed to be reactive to 

ational developments and to be adaptive to changes in their environments. The supervision 
tem has to be awaresy

- perceive the current situation to evaluate the appropriateness of the reactions of the system un-
der supervision to it; 

- align its own structure and functions to the ac
the supervised system; 

- anticipate future developments and problem situation for pro-active execution of supervision 
activities; pro-activity is in particular important if real-time reaction computation is not possible 
and has to be replaced by the deployment of pre-defined reaction patterns. 

 
The conclusion is that the supervision system has to define (at least from the point of view of 

ibiting problem situations) parts of the S4 subsystem. 

T
response to perceived situations and the associated necessity to assign “values of desirability” to 
those plans (or their outcomes) have been discussed as th
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 generators of algedonics and as management interfaces (command channel) which allow 

). The supervision system for this recursive level is thus able to 

SM structure. Thus the question arises whether 

he system under supervision 

ystem is to manage the distribution of control loops and the 

t of a corrective 

-  system has the capabilities to determine a sequence of actions 

 

supervision, the accompanied supervision system need to adopt the policies of the supervised 
system.  

The recursiveness of the VSM and the associated abstraction of concerns and task has to be has to 
be reflected by the supervision system. Each S1 unit therefore has its own supervision subsystem 
(comprising its local S3/S4/S5 subsystems). On the global level, these supervision subsystems 
appear as
the supervision system to interact with the operational units. Thus it is possible to perform 
supervision on an appropriate level of abstraction facilitating for more concrete, but more local views 
on the deeper level of the recursive system structure, and for a more abstract, but more global 
perspective at the higher levels. 

The alignment of the structure of the supervision system with the recursive structure of the system 
under supervision justifies the use of the term “supervision pervasion”. On a particular level of this 
recursion, the two systems appear to be separated and integrated by defined interfaces (algedonic 
signals and command channels
operate “in terms of this level”, i.e. at the same level of abstraction and conceptualization. From the 
perspective of the next higher recursive level, the system pair appears as “atomic” S1 unit, i.e. from 
this perspective, the supervision set-up is intrinsic.  

Within the currently defined relationship between supervision system and supervised system, the 
supervision system—although it “pervades” the supervised system—is conceptually still a separated 
entity. In particular, the problem of self-supervision exists still on conceptual level when the 
supervision system does not follow the described V
supervision pervasions do exhibit the basic block of viable systems.  

S1: The operational units of a supervision pervasion are given by the basic supervision components 
– probes, evaluators, reasoning engines to compute reactions, actuators, but also the S1 units of 
the supervised system which are generators of algedonics and receivers of commands sent using 
the command channel. Moreover, the Stability System (S2) of t
appears from the perspective of the supervision system as a S1 unit.  

S2 is given by the basic principles for composing the S1 units to form closed control loops. Note that 
the system S3 of the supervised system appears to be the part of the system S2 of the supervision 
system, the current system-in-focus.  

This “shift of the conceptual level” indicates that the supervision system operates on a higher level 
than the system under supervision, i.e. justifies its role as a part of a meta-system. 

S3: The purpose of the Regulation S
relationship of these loops. An interesting issue is the nature of the algedonic signals that the S3 
subsystem perceives.  Consider a control loop that gets activated because a certain problem 
situation occurs, and tries to resolve this situation by means of the enforcemen
measure. It might be successful or not. In either case, it sends a signal to the system S3 which 
allows evaluating the effect of the enforced reaction leading to the notion of the competence of the 
supervision system. Competence may be viewed from different angles. For instance: 

- Effectiveness refers to the ability of a supervision system to enforce countermeasures at all. 
Possible reactions to the lack of effectiveness are the deployment of additional actuator compo-
nents or the re-deployment of existing ones, the isolation and deactivation of system parts which 
cannot be affected at all, etc.   

- Timeliness is the ability to react in time. Decrease of resolution can be an appropriate remedy, 
i.e. the use of faster, but probably less precise evaluation and reaction computation algorithm. 
There seems to be a general trade-off between Timeliness and Appropriateness:   
Appropriateness means that the
that leads to the desired results. Improvements are possible be increasing the resolution, but 
also the replacement of algorithms. 
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os
com  

can be applied to measure the effectiveness, timeliness, 

r of questions: 

tract based supervision is by no means clear from the explanations 
ular, the following notions need to be justified:  

m, but on a notion of 

b. 

ment of system behaviour and in particular not into pro-active 

c. 

odels. 

contracts, the notion of a hierarchical model organized by 

2. On the 
that tak
hierarch

s 
on 

Note that on the level of self-evaluation (i.e. by means of a meta supervision system) the frequency 
th e reconfigurations performed by the S3 subsystem yields another possible measure for the 

petence of the supervision system.  

The responsibilities of the systems S4 and S5 and their relationships the other VSM subsystems are 
as described in above. Their rules within the “supervision system as meta-system” and the 
“supervision system as viable system” view coincide. Concerning S4, the notions related to the 
system’s competence elaborated for S3 
and appropriateness of environment perceptions and anticipations of future situations which provide 
the motivations and triggers for adaptations performed by S3.  

2.4 Questions 
The conceptions outline in the previous sections raise a numbe

1. How to perform con
given above. In partic

a. What is a model? We do not aim for a specific model formalis
model which is compatible with a large range of different formalisms. Using this 
approach, conflicts with the model formalisms used in other WPs (in particular that 
one defined in WP1) are avoided.  
The most basic notion of a model is that of a structure comprising a set of system 
states, a set of transitions between states defined by system actions, and—since 
we focus on distributed systems—a notion of parallel or concurrent execution of 
system actions. 

How to express suitable of system states and behaviour, i.e. how to define triggers 
for supervision activities? At the current stage, we use a somewhat simplified 
approach. We assign values of suitability only to system states (i.e. we do not look 
into the assess
supervision).  

Having metrics for the self-assessment of competence of the supervision system 
has to be considered as a first step towards a self-supervising system. So the 
question is how to define these metrics in terms of models and execution 
sequences of m

d. The notions of contracts of several classes and the idea of transitions between 
contract classes boil down to the questions of appropriate notions of system model 
refinement and composition. In particular, to understand the relationship between 
Class 2 and Class 3 
levels of abstractions as well as a mechanism to change between abstraction levels 
is necessary. 

basis of models and model contracts, how can a supervision algorithm be defined 
es into account the hierarchical structure of the VSM (and in particular the 
ical structure of the supervision model)? 

3. The VSM is not a software architecture. Such an architecture needs to be defined in term
of ACEs and compositions of ACEs and need to be harmonized in particular with the noti
of Knowledge Networks developed in WP5. 
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3 State of the Art 
This chapter intends to provide a State of the Art report on approaches, theories, and technologies 
which are important to the envisioned supervision approach. The compilation of a comprehensive 
report however is an almost impossible task: 

- Restricting to approaches that aims on the definition of a supervision platform in the style of 
Figure 2. Basic supervision architecture would leave us with a large variety of approaches 
which hides similar concepts behind different terminologies, architectural variations, and ap-
plication domain specifics. Apart form the problem of systematization such an approach is 
also likely to blind us against approaches from different research areas which are likely to 
give us useful additional methods and inspirations. 

- On the other hand, a comprehensive description of all relevant research areas (and the 
relevant approaches herein) is certainly impossible because of the amount and variety of 
relevant research areas which has to be considered, ranging from control theory to semantic 
modeling, from monitoring approaches in various types of systems and networks to artificial 
intelligence, from agent technologies to test theory, from formal methods to (software) sys-
tem engineering methodologies, from Web Services to management approaches for tele-
communication systems, just to mention a view topics which actually are considered  in this 
chapter.  

We thus have to restrict ourselves to a selection of topics. The selection is motivated as follows: 

- Firstly, it should define a starting point and a source or requirements for the research to be 
done in Work Package 2 not by listing all relevant approaches but those which are—from 
the experience of the WP 2 partners—are useful in the context of pervasive supervision. 

- Secondly, it should fairly reflect the interests as well as the expertise of the WP 2 partners. 

The chapter is structured as follows: Section 3.1 addresses general approaches. A number of exist-
ing supervision system architectures is discussed. The VSM is used as a reference to the compari-
son and evaluation of these approaches. The following Sections 3.2 to 3.5 address more specific 
aspects of system supervision. Section 3.2 deals with approaches for system monitoring; Section 
3.3 is concerned with the evaluation of monitored data, and in particular with the detection of prob-
lems. Section 3.4 addresses approaches for system repair, and the determination of corrective 
measures. With reference to the VSM, Sections 3.2 to 3.4 are thus concerned with the subsystem 
S3. The consideration and interpretation of observations of the system’s environment, and in par-
ticular the prediction of future (problem) situations, and the pro-active evolutionary adaptation of a 
system to those situations, is obviously a difficult task. Section 3.5 therefore addresses approaches 
to identify so-called “concepts of interests” and to detect and predict changes of those underlying 
concepts. In terms of the VSM, this section addresses the VSM subsystem S4. Finally, Section 3.6 
provides a summary and conclusions. 

3.1 General Approaches 
In this section we are going to summarize a number of approaches related to supervision 
techniques which are envisioned to be elaborated in the CASCADAS project. As we will see, all 
these approaches depart from the basic idea to employ feedback control loops that base on the 
continuous observation of a system and the selection and execution of appropriate actions. 
Concerning this general picture, in order to compare the several approaches we employ the Viable 
System Model (VSM) as a reference model that incorporates all the elements, structures, and 
functions that we consider to be necessary for a supervision system and explains various the 
relationship between the supervision system and the supervised system and the environment of 
both subsystems. 
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3.1.1 Comparison Summary 

The following Table 1 summarizes the comparison of the approaches described in detail in the 
following sections. Whenever it is not clear form the literature whether a certain property holds (Y) or 
not (N), we use a more precise quantification.  

Table 1 Comparison of the approaches with respect to the VSM 

 MAPE Rainbow Willow COLV Nestor 

Integration Extrinsic Extrinsic / 
partially 
pervasive 

Extrinsic Extrinsic Intrinsic 

System 3  Y Y Y Y Y 

System 4 Y Y Y Y Y 

System 4 
anticipates 
future  

N Potentially Potentially N N 

System 4 is 
adaptive 

N N N Considered 
in some 
instantiations 

Y 

VSM 
Subsystems 

System 5 N N Partially N N 

Potentially self-aware Y Y Y Y Y 

Potentially situation-aware N N N N Y 

Algedonic N Y Y Y N 

Self-applicable N N N N N 

 

Note that the approaches often deal with architectures for supervision systems, not with concrete 
instantiations those systems. Thus the question whether a certain realization of such an architecture 
has some property or not depends in may cases on the techniques and components specific to this 
realization. 

3.1.2 MAPE 

IBM has launched the Autonomic Computing initiative in 2001 as a general control paradigm. 
Autonomic Computing, as originally presented [49][62], is based on the idea to replace explicit 
system management by human operators by a number of feedback loops that altogether implement 
the analogy of an autonomic nervous system (in the biological sense). Although the idea is to mimic 
“unconscious reflexes” of living beings, the set-up of this basic reflex mechanism is quite heavy-
weighted. MAPE [12][70] (monitor—analyze—plan—execute) provides a reference architecture of 
an autonomic manager component which is responsible for the implementation of a control loop. 
The architecture dissects the loop into four parts that share knowledge: 

- The monitor part provides the mechanisms that collect, aggregate, filter, manage and report 
details (metrics and topologies) collected from an element.  



 

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on 
Pervasive Supervision

Bringing Autonomic Services to Life 

 

Page 24 of 78 

- The analyze part provides the mechanisms to correlate and model complex situations (time-
series forecasting 
and queuing mod-
els, for example). 
These mechanisms 
allow the autonomic 
manager to learn 
about the IT envi-
ronment and help 
predict future situa-
tions. 

- The plan part pro-
vides the mecha-
nisms to structure 
the action needed 
to achieve goals 
and objectives. The 
planning mecha-
nism uses policy in-
formation to guide 
its work. 

- The execute part provides the mechanisms that control the execution of a plan with consid-
erations for on-the-fly updates. 

Figure 5. MAPE Architecture [12] 

The MAPE approach combines the VSM subsystem 3 and partially subsystem 4. (The managed 
element is of course the VSM Subsystem 1 [Subsystem 2 is not explicitly mentioned].) Although 
self-awareness is enabled, situation awareness is not in the focus of MAPE because sensing and 
interaction is mainly directed towards the controlled element itself and not toward the environment of 
the system (in fact, an explicit notion of an environment is not present in the MAPE reference 
architecture). Situation dependent adaptation of the System 4 is not considered. 

Knowledge representation is by a set of deductive rules (including uncertainty and fuzzy logics). 
Decision making is driven by policies which are also considered as being part of the knowledge 
base, i.e. represented by deductive. Thus policies necessarily are related to technical control 
parameters (as there is no distinction between technical and non-technical rules); the step from non-
technical requirements and goals to their technical consequences is missing (or at least left implicit). 
We therefore tend to the conclusion that the VSM subsystem 5 is not represented in the MAPE 
approach.  

MAPE is designed as a general exclusive control paradigm. A combination with other approaches is 
not intended, thus for instance emergent self-organization of systems is not compatible with MAPE.   

3.1.3 Rainbow 

The Rainbow architecture [52][93] aims on the storage and restoration of configuration data in 
distributed autonomic systems. The basic idea is to use configuration snapshots to restore the 
configuration of a system that have been proved usefully within a given usage context of the system.  

Rainbow bases on two ingredients: A so-called autonomic configuration language named Neptune 
and the implementation framework Cloud: 

The Neptune Scripting Language enables axioms, norms, and governance rules to be symbolized 
within an introspective object framework, such that the individual constructs that comprise a logical 
statement or assignment can be both inspected and modified without recompilation at runtime In 
addition, Neptune scripts include an abstraction based on the separation of process flow and their 
underlying logical model. By linking forks expressed within the process flow with the logic 
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layer) and partially also 4 (architecture-layer) as reflection of the inner system structure is a basic 

determining the path through the model, the context of a decision can be provided by way of data 
association. 

 

 
Figure 6. Rainbow Architecture [47] 

The notion of a Cloud is a system with loose boundaries which can interact and merge with other 
such systems. A Cloud can be thought of as a federation of services and resources controlled by a 
system controller and discovered through a system space. In a distributed system, oftentimes 
services and dependencies can overlap with different configurations on different systems. Systems 
based on the Cloud framework can interact with each other, sharing and pooling resources for 
greater efficiency over a large deployment such as an enterprise. Neptune objects are executed on 
demand through an event model exposed by the Clouds architecture yielding a powerful extensible 
platform that is both wholly configurable at runtime, and that can be modelled at runtime.  

Clouds interact by means of a shared distributed data storage that acts as a dashboard to publish 
and to access information. At the centre of a Cloud is the System Controller (SC), a distributed 
service that controls access to and from the individual services and resources that are within the 
cloud. The SC brokers requests to services based on the system status and governance rules 
defined in Neptune Objects. 

The Rainbow architecture comprises the following elements: 

System-layer infrastructure. At the system layer, the necessary system access interfaces are 
defined. A system measurement mechanism, realized as probes, observes and measures various 
states of the system. The system information may be published by or queried from the probes. A 
resource discovery mechanism can be queried for new resources based on resource type and other 
criteria. An effector mechanism carries out the actual system modification. 

Architecture-layer infrastructure. At the architecture layer, gauges aggregate information from the 
probes and update the appropriate properties in the model. A model manager manages and 
provides access to the architectural model of the system. A constraint evaluator checks the model 
periodically and triggers adaptation if a constraint violation occurs. An adaptation engine determines 
the course of action and carries out the necessary adaptation. 

Rainbow provides an extrinsic additional control layer responsible for monitoring and context 
dependent restoration of system configurations. An explicit system model is used to interpret and to 
classify monitored information on the current system state and its configuration. These context 
should not be confused with situational information, as in the previous approaches, an explicit notion 
of the environment of a system is not given. Thus Rainbow realized the VSM subsystems 3 (system-



 

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on 
Pervasive Supervision

Bringing Autonomic Services to Life 

 

Page 26 of 78 

3.1.4 COLV — KX, Olives, and Relatives  

or challe nd Telecommunication Operators 

l of already 

service, by exerting reactive and proactive control 

element of the architecture, but does not provide situation awareness. Model (i.e. System 4) 
adaptation is not considered. As Rainbow is purposed to configuration restoration it does not 
implement any anticipation of future situations. As being an approach having a special purpose, no 
System 5 is present, but since the system organization is orthogonal to the restoration system, 
Rainbow acts algedonically. 

A maj nge on the current Internet Service Providers a
infrastructure is related to the capacity to organize and orchestrate distributed and heterogeneous 
software components by a multitude of actors resident over various kinds of networks.  

Continuous On-line validation (COLV) involves the monitoring and adaptive contro
deployed services during their operation, with the purposes of inspecting their impact on the network 
facilities and operation, investigating their interoperability, and ensuring their intended quality and 
performance levels at all times during operation. In practice continual validation will allow continual, 
run-time validation of critical system properties.  

COLV aims also at intervening on the run-time 
measures that keep the running service in check with respect to its nominal functionality. The 
aforementioned measures thus implement active validation policies, by dynamically adapting the 
running service, e.g. by modifying its configuration, or its operating parameters, or by installing 
functional patches on the fly, etc. The range of dynamic adaptation policies that can be applied to a 
service may be seen as a derivation of service specifications and each dynamic adaptation action 
that is taken is in itself a subject of on-line validation from that moment on. 

 
Figure 7. COLV Architecture [68]

The control loop variant of the C

 of code which get installed in 

-  from these probes, and generate semantic 

OLV approach is shown in Figure 7.  

- Probes are generally small, constrained, non-invasive pieces
or around the target application system—they may inject source code, modify byte codes or 
binaries, replace DLLs or other dynamic libraries, inspect network traffic, and/or perform 
other related tasks to collect this information; 

Gauges are responsible for interpreting data
events about the behaviour of the application—often operating in an effective hierarchy 
where higher-level gauges interpret aggregate events from lower-level gauges; 
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- Controllers receive analysis results from the gauges, and decide if and when to coordinate 
one or more effectors to attempt a repair. 

- Effectors apply reconfiguration or repair, usually tuning or replacing an individual compo-
nent, or spinning up a new component, as per the task(s) defined by relevant controllers. 

The COLV concept as such brings not too much new concepts with respect to the VSM based view, 
i.e. not to many Y’s in the table at the beginning of this section. It has however elaborated in various 
projects and works that add interesting specific elements to the proposed supervision approach.  

Kinesthetics eXtreme. What is of special interest on the Kinesthetics eXtreme (KX) approach 
[68][69][124] (among other things) is the employment of a very specific effector concept that bases 
on mobile code, called Workflakes: 

A Workflakes process unfolds according to a task decomposition strategy, which in the end 
generates, configures, activates groups of effectors, and coordinates them towards actuating the 
desired side effects onto the running controlled system. Worklets are code carrying agents that 
Workflakes selects as effectors, configures and dispatches onto the target system, as a side effect 
of process steps. Each Worklet carries Java mobile code snippets, and deposits them onto one or 
more target components, according to a programmable trajectory. Once deposited, the execution of 
Worklet code is governed by constructs that specify conditional execution, repetition, timing, priority, 
etc. The agent transport facilities and the code execution environment are provided by a Worklet 
Virtual Machines residing at all "stops" in a Worklet trajectory. 

Thus the KX approach provides us with a way to define intelligent, asynchronously acting actuators 
that—equipped with a general purpose (which might be encoded in the “payload“ code)—may adapt 
to situation and technology specific circumstances and thus allow distributed global activities. 

Auditing. The KX approach has been continued in the Olives projects [96] in various case studies 
[37], and further developed in [35] and [39] under the main keyword “system auditing”. What is novel 
in this work is the employment of testing technology—namely the test system definition language 
TTCN-3 [43] (which has been developed in the context of protocol performance testing) for the 
interpretation of monitored data and the classification of fault states.  TTCN-3 combined the 
classical notion of decision trees with interaction triggered branching with procedural elements for 
computations and data analysis. In particular, it defines means for the set-up distributed dynamic 
configurations for data correlation systems and thus provides means for self-adaptation of the 
auditing system. 

The Auditing approach to employ modern technologies for distributed testing thus equips us with 
means for the definition of adaptive procedural internal system representations (the VSM System 4) 
which are somewhere in between formal models as e.g. in Willow (Section 3.1.5), rule based 
approach as proposed e.g. by MAPE (Section 3.1.2), and the encryption of the image of the system 
(and environment) structure into code.   

3.1.5 Willow 

The Willow architecture [72][74] provides a comprehensive architectural approach to the provision of 
survivability in critical information networks, i.e. networks with large numbers of heterogeneous 
nodes that are distributed over wide geographic areas and that employ commodity hardware, and 
COTS and legacy software, and providing information distribution and access services for a variety 
of application level systems such as telecommunication systems, banking systems, etc. Damage to 
the information system will in many cases lead quickly to the loss of at least a large part of the 
service provided by the infrastructure application. Survivability refers to the ability of a system to 
continue to provide service (possibly degraded) when various faults occur in the system or operating 
environment. 

Willow is an example of a survivability architecture in the sense of [73]. The class of faults which are 
in the focus of a survivability architecture are characterized as non-local (i.e. effecting a probably 
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large number of nodes) and non-maskable (i.e. there is no [local] mechanism that hides the effect of 
the fault from the perspective of the global system). 

The basic architectural paradigm of survivability is that of a closed control loop that senses the 
controlled system and manipulates it on the basis of the perceived data. Furthermore, the following 
characteristics are elaborated: 

- decentralized, i.e. parts of the control system act autonomously on parts of the controlled 
system, 

- adaptive i.e. the control system provides its service in the face of changes to the controlled 
system and also to the control system 

- hierarchical, i.e. control actions are determined various levels in a hierarchical system, with 
low-level control system elements influencing and being influenced by higher levels of con-
trol. 

Knight et. all. [73] do not only collect requirements on the survivability control system but also 
analyze the necessary design characteristics of the controlled system: 

- Support for application reconfiguration, i.e. the controlled system has to provide means for 
dynamic run-time configuration and reconfiguration. This includes: 

- Start, suspend, resume, terminate, and delay. 

- Change process priority. 

- Report prescribed status information. 

- Establish recovery point, and discard recovery point. 

- Effect local forward recovery by manipulation of local state information (e.g., reset the 
state). 

- Switch to an alternate application function as specified by a parameter. 

- Database management services such as synchronizing copies, creating copies, with-
drawing transactions, and restoring a default state. 

- Design flexibility, i.e. the controlled system must exhibit a certain degree of functional and 
structural flexibility in order to be able to continue its execution in the presence of global 
faults. 

- Securing survivability mechanisms, i.e. the application of those mechanisms must not cause 
additional faults, corruption, system instabilities, etc. In particular, the survivability architec-
ture has to be secured against misuse and attacks. 

The Willow architecture is designed to enhance the survivability of critical networked information 
systems by: (a) ensuring that the correct configuration is in place and remains in place during 
normal operation; (b) facilitating the reconfiguration of such systems in response to anticipated 
threats before they occur (including security threats); and (c) recovering from damage after it occurs 
(including security attacks). 

Reconfiguration is understood in a very broad sense as to be applied to any situation that is outside 
of normal, “steady-state” operation. Thus, for example, initial system deployment is included 
intentionally in this definition as are system modifications, posturing and so on. The system 
reconfigurations supported by Willow are: 

- Initial application system deployment. 

- Periodic application and operating system updates including component replacement and 
re-parameterization. 

- Planned posture changes in response to anticipated threats. 
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llow architecture and its components. Sensors include reports from 

roach concludes with a mapping into the 

tegration model—although described as hierarchical—based on a clear technological 

- Planned fault tolerance in response to anticipated component failures. 

- Systematic best efforts to deal with unanticipated failures. 

Figure 8 illustrates the basic Wi
applications, application 
heartbeat monitors, intrusion 
detection alarms, or any other 
means of measuring actual 
network properties. From 
sensing events, independent 
diagnosis and synthesis 
components build models of 
network state and determine 
required network state 
changes. RAPTOR [72] is a 
formal-specification driven 
diagnosis and synthesis 
system that receives sensor 
events to analyze and 
respond with desired network 
changes, automatically and in 

bounded time. RAPTOR 
bases on sets of finite state 
machines that are used to 
keep track of the states of the controlled system and are driven by events emitted from the system 
sensors. The Administrative Workbench is an interactive application allowing system administrators 
to remotely monitor application conditions and adjust application properties. Additional diagnosis 
and synthesis components can be added by modification of the Willow specification input. Synthesis 
components issue their intended network changes as workflow requests. Nephele is a large-scale 
network workflow execution environment. It oversees coordination and arbitrates resource usage 
between independently synthesized work requests. Different workflows with differing intentions from 
different diagnosis and synthesis components might conflict, and Nephele maintains ordering of 
their operation to best meet the survivability goals of the application domain. When workflows are 
allowed to activate, workflow events are received by the Software Dock and result in local system 
state changes. The Software Dock infrastructure provides a single interface for universal actuation 
at application nodes across enterprise level networks [53][54][55]. Actuation completes the control 
loop cycle. All of the components of the Willow architecture interact via the Siena publish-subscribe 
communication system [28]. This allows efficient, scalable event-driven communication to Willow 
components throughout large-scale networks. In turn, the components of Willow provide efficient, 
scalable, well-defined, proactive and reactive network change capabilities. This enhances network 
application survivability, security, and manageability. 

The discussion of the Willow Survivability Architecture app

Figure 8. Willow Architecture [74] 

VSM: 

The in
separation of the supervision (i.e. the control) system and the supervised system. The VSM System 
3 is presented, System 4 is realized by the RAPTOR set of finites state machines that are used to 
interpret system events and to classify system states. It is not clear from the available sources 
whether these state machine models are used to make prediction on future system states (e.g. by 
simulation), but pro-activity is at least the potentially enabled. Adaptation of the System 4 is not 
considered. Thus we conclude that Willow provides self-awareness, but situation awareness is not 
maintained (or at least not discussed in the available literature). It is interesting that Willow has at 
least a rudimentary System 5: by employing a so-called resource manager/priority enforcer Willow is 
able to select between several high-level policies such as alleviating a security attack versus 
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3.1.6 Nestor 

 on the automation of dynamic configuration tasks in distributed 

ral technical challenges: 

atabases and repositories so that con-

- e knowledge of configuration consistency rules in a composable form, and en-

- ional configuration states, 

tates and states 

Data an  in the Nestor architecture. System models are 

DL) is a subset of MODEL [95][120], a language for 

CDL) is a declarative expression language for stating 

onfiguration model objects 

architecture. In the top layer, self-configuring Applications access a 

masking a minor fault effecting only a few system components. These decision models are 
implemented by (asynchronous) workflows which define a partial order on the reconfiguration tasks 
to be performed by the survivability system. Finally, Self-application is not considered. 

The Nestor architecture [76] aims
network structures like Active Networks. Nestor is not strictly a supervision system in the sense of 
this report, we nevertheless add a description since the approach concentrates on internal system 
state and structure representation and thus builds a complementation to the more process oriented 
approaches described so far. 

Nestor is concerned with seve

- How to unify access to heterogeneous configuration d
figuration management tasks can be programmed and executed by software rather than 
manually. 

How to cod
force these rules through configuration changes, 

How to support rollback and/or recovery of operat

- How to detect and handle emergent inconsistencies between configuration s
controlled by underlying built-in procedures. 

d semantic modelling play and important role
described using a variety of languages2: 

The Resource Definition Language (R
modelling network systems for event correlation. MODEL extends the CORBA Interface Definition 
Language (IDL) with support for instrumented and computed attributes, declaration of problems 
(events), and association relationships for modelling event propagation. Instrumented attributes are 
bound to values stored in the managed element, whereas computed attributes are bound to an 
expression that is evaluated dynamically. 

The Constraint Definition Language (
assertions over the valid values of objects in RDL. As an inherent language feature, statements in 
CDL cannot modify any attributes or relationships in the model and do not cause side effects. 
Constraints may be composed from restrictions on the configuration of component devices or 
services.  CDL is based on the Object Constraint Language (OCL) [97]. 

The Policy Definition Language (PDL) is used to assign values to c
based on the configuration of related objects and thus is used to define interrelationships and 
dependencies of model data. 

Figure 9 describes the Nestor 
unified semantic configuration model to discover the configuration of their environment and to export 
their own configuration state, operational constraints, and change propagation rules. NESTOR 
applications access the repository using the Directory Access Protocol (DAP), a remote interface 
permitting applications to execute either locally or remotely. NESTOR uses protocol proxies to 
interface with legacy dynamic configuration protocols. Existing configuration servers are wrapped by 
NESTOR protocol proxies. Clients connecting to the proxy server continue to receive the same 
service with the difference that changes are effected through the NESTOR repository.  

                                                      
2 Nestor provides also a plug-in mechanism using a programming language called JSpoon (a JAVA 
derivative). The authors of [75] claim that this language provides constructs for the programming of 
Autonomic Systems. 
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The Self-Configuration Management layer consists of a constraint and change propagation 
manager responsible for authorizing changes in the model, maintaining consistency through change 
propagation, and assuring that the composition of the change propagation rules does not lead to 
cyclical changes. The constraint and propagation manager subscribes for changes in the model and 
has the right to abort configuration transactions, or to effect additional changes. Its actions are 
controlled by CDL constraints and PDL rules.  

The Configuration Modelling layer is responsible for maintaining the model and supporting the 
advanced model operations. The Resource Directory Server (RDS) maintains an object repository 
that stores and controls access to model object instances. Repository objects reflect configuration 
settings at the real network elements plus meta-information that is supplied or inferred from multiple 
sources.  

The Protocol Adapter layer provides instrumentation for network elements that are not NESTOR-
enabled. Adapters are responsible for propagating information, forward and backward, between the 
RDS repository and the managed element or service. Use of protocol adapters separates the task of 
mapping the unified model attributes to the real element attributes, from the protocols realizing that 
mapping.  

 
Figure 9. Nestor Architecture [76]

As said above, Nestor is not a supervision system in the sense of this report but nevertheless, and 
identification of the VSM equivalents of the several components of the architecture is possible. 

Since Nestor is intended as a (generic) network node architecture, it is an example of the intrinsic 
integration of a control system with the system under control. The VSM System 3 is somewhat 
hidden behind various sensor and configuration functions provided both by the Application layer and 
the Network Element layer, and the continuous reflection of these data in the Configuration 
Modelling layer. System 4 is presented by the Configuration Modelling layer and the Self-
configuration management layer. Both layers provide a dynamically adapting model of the system 
which enables for self-awareness. Since the architecture is located on specific network elements 
which act as autonomic entities, the environment of these elements (namely, the rest of the network) 
is also represented in the modelling and self-configuration management layer. 

3.2 Monitoring 
This section surveys the main approaches to monitor the execution of software components. Many 
proposals deal with Web services, but we also address other types of software elements. Illustrated 
approaches are divided into two different classes: languages for monitoring contracts, and existing 
monitoring architectures. 
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3.2.1 Languages for the Description of Monitoring Contracts 

WSLA is a language defined by IBM; it stands for Web Service Level Agreement. WSLA is part of 
the on-demand [32] focus. WSLAs define agreements between a service provider and a service 
consumer. These agreements are represented as obligations for each party. Obligations for a 
service provider are to perform its service within parameters that represent, for example, availability, 
throughput, response time, etc. A parameter is an aggregation of metrics which detail what should 
be measured in the system and how (i.e. the algorithm). WSLAs also define the actions that should 
be executed in case of an obligation failure. This standard implies the monitoring of information like 
availability, throughput, response time, but is not limited to that and allows for constructing new 
monitoring information. The language offers mathematical functions to express new computations to 
help transform measurement into parameters. WSLA abstracts the measurement level and propose 
to express the computation of a parameter on top of a measurement directive, which is retrieve as a 
value from a web service. From the user perspective the WSLA language enables the declaration of 
composite metrics that allow constructing complex functions and the computation of non-trivial 
parameters. The user expresses the functions (that are defined as a library) to be applied on 
measurement directives and then produces a result. The declaration of obligations allows 
expressing the comparison of parameters value to threshold values that represent the failure. 

WS-Agreement [128] is a standardization effort being conducted in the Global Grid Forum. It is an 
XML language for specifying agreements between service providers and consumers, and also 
defines a protocol for the creation of agreements using agreement templates. WS-Agreement is 
very generic in the way that it can use any term of service descriptions, any condition specification 
language, and can be composed with various negotiation models. An agreement is composed of the 
definition of the parties (i.e. the context) and the terms of the agreement. The main part of an 
agreement – the terms - is divided into the service description terms and the guarantee terms. The 
service description terms define the functionality that will be delivered under an agreement. The 
service description terms are generic and their content itself is dependent on the particular domain. 
Guarantee terms define the assurance on service quality, associated with the service described by 
the service definition terms. WS-Agreement defines a two layers architecture which is composed of 
the service layer that represent the application-specific (i.e. the business service being provided) 
and the agreement layer that provides a Web service-based interface that can be used to represent 
and monitor agreements with respect to provisioning of services implemented in the service layer. 
From the user perspective the WS-Agreement specification defines a very generic framework for the 
description of agreement and guarantee. It relies on the definition of domain specific descriptions. 

In this context, we must also mention WS-Policy [63], which does not support monitoring directly, 
but it allows the designer to specify policies, which in turn might address monitoring. 

3.2.2 Monitoring architectures 

Cremona [81] proposes an architecture for the semi-automatic creation and monitoring of WS-
Agreements. It provides implementations of the WS-Agreement interfaces, provides management 
functionality for agreement templates and instances, and defines abstractions of service-providing 
systems that can be implemented in a domain-specific environment. In the Cremona Architecture 
(Creation and Monitoring of Agreements), two different layers of agreement management help in the 
runtime monitoring of the agreements. The Agreement Protocol Role Management (APRM) provides 
functions for agreement protocol roles. It is a middleware layer for creating agreements and for 
accessing agreement state at runtime. In particular, it provides the functions for discovering the 
state of service description and guarantee terms. On the other hand, the Agreement Service Role 
Management (ASRM) builds on the APRM and relates it to the service implementation or to the 
service-consuming system. In particular, for the service provider, the ASRM includes monitors for 
mapping the state of a service to a status for a guarantee term. 
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AgFlow3 [132][133] is one of the new middleware platforms motivated by service-oriented 
applications for the dynamic composition of services and guaranteeing the QoS parameters set or 
negotiated during the composition. AgFlow moves the problems of dynamic and QoS-aware 
composition from the application to the supporting infrastructure. The middleware platform considers 
five basic generic quality criteria: execution price, execution duration, reputation, successful 
execution rate, and availability, but also allows the designer to add special-purpose dimensions. The 
composition can be based on either local optimization or global planning. Local optimization can 
cause sub-optimal solutions if we consider aggregated services. This is why the second strategy 
(global planning) exploits a novel integer programming approach to select the best (global) set of 
operations for the given composition. Re-planning must be performed every time the platform 
signals a discrepancy between the negotiated QoS and the provided one, and also when a given 
service does not answer anymore. Since the middleware platform is in charge of supplying the 
agreed QoS, these quality dimensions must be monitored. The approach collects QoS information 
from service data published by the providers, execution monitoring, and requesters’ feedback. 
Moreover, the approach distinguishes between deterministic and non-deterministic QoS criteria. In 
the former case, the value is known and certain when the service is invoked (e.g., the execution 
price); in the latter case, values are not available when services are invoked. Non-deterministic QoS 
variables have a random value that follows a normal distribution with a certain mean and standard 
deviation calculated from the history of past executions.  Both classes of criteria need to be suitably 
monitored to ensure that there is no disagreement between agreed and measured values. 

CA WSDM tool [129] monitors Web Services traffic for a variety of metrics. Transaction driven 
metrics include Response Time, Request Size, Reply Size, Transaction Volume and Transaction 
Rate. Message driven metrics include SOAP Fault monitoring and a configurable Content Monitor 
which enables user defined observation and alerting based on specific message content. Real time 
alerts are generated upon violation of any monitor threshold.  All of these metrics can be monitored 
and deliver reports and alerts if this is deployed in a host based installation, inside the corporate 
firewall and enforcement points. However a majority of these metrics can be used to monitor web 
services that are consumed outside the firewall in a remote manner. This permits the users to 
monitor significant performance and availability metrics on web services that would normally be 
considered out of the user control. The metrics are gathered by observing the SOAP message 
stream. As such CA WSDM can be used by either the publisher, consumer or by a third party 
offering a service monitoring web services. CA set up an example of such a service called CA 
performance index, monitoring popular public web services. Monitoring results can be seen on the 
CA web site www.ca.com

JOpera [101] is, first of all, a toolkit for visual composition of services. It defines a proprietary Visual 
Composition Language (JVCL). This visual abstraction permits every service to be seen as a black 
box that takes a certain number of parameters in input and provides an output. The composition is 
achieved by mapping outputs to the inputs of subsequent services. JOpera can be used to compose 
web services, but it also can be used to compose components produced with other technologies. 
For example, mismatch between outputs and inputs of black-box operations are resolved by calling 
upon a piece of Java code. Monitoring in JOpera consists of a runtime overview of the execution of 
the composed process. A visual tool is provided. With this tool the single operations of the process 
are coloured accordingly to their state (running, completed, etc.). Throughout the execution it is 
possible to obtain the values of the inputs and outputs of the operations by simply looking at a 
sidebar that contains the operation’s run-time properties. A part from the values these inputs and 
outputs contain, it is possible to see, in the case of Web Services, the contents of the SOAP 
message that was sent to and received from a certain operation. Monitoring allows, in ultimate 
analysis, to keep an eye on the execution of a process. So, if a process is blocked by some 
erroneous service, it is possible to immediately discover which of the services is responsible. 
Furthermore, the contents of the input and output messages sent to it can be analyzed to try and 
understand where the problem lies. 
                                                      
3 Notice that the new system is now called self-serv. (It is unclear which new system is meant) 

http://www.ca.com
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Spanoudakis and Mahbub propose a framework for monitoring requirements for service-based 
systems [83][117]. Their framework assumes service based systems which incorporate a central 
process that co-ordinates the individual services deployed by them and which is expressed in BPEL 
[13]. In this framework, the requirements to be monitored include: (a) behavioural properties of the 
co-ordination process of the service based system, and (ii) assumptions about the atomic or joint 
behaviour of the services deployed by the system. Both these types of requirements are expressed 
in a requirements specification language which is based on event-calculus [114]. The behavioural 
properties to be monitored at run-time are extracted automatically from the specification of the co-
ordination process of a service-based system in BPEL while the assumptions to be monitored must 
be specified by the providers of the system. These assumptions must be specified in terms of: (a) 
events that can be observed at run-time and correspond to either operation invocation and response 
messages or the assignment of values to global variables used by the co-ordination process of the 
system, and (b) conditions over the state of the co-ordination process of the system and/or the 
individual services deployed by it. These restrictions ensure that requirements monitoring can be 
based solely on events, which are generated by virtue of the normal operation of the system without 
the need for instrumenting the individual services deployed by it. The requirements specification 
language that is used by this framework is a first-order logic language that incorporates special 
predicates to signify assertions about time and, to this end, it provides a very expressive framework 
for specifying functional requirements, which may include temporal characteristics. However, the 
language used by this framework does not support the specification of a full range of quality-of-
service requirements including, for example, requirements expressed in terms of aggregate 
measures of system functionality. At run-time, the framework deploys an event interceptor that 
catches events, which are exchanged by the different services and the co-ordination process of the 
system, and stores them in an event database. A requirements monitor that can detect different 
types of violations of requirements accesses this database. These types are: (i) violations of 
assumptions caused by the recorded run-time behaviour of the system, (ii) violations of behavioural 
properties of the co-ordination process of the system or assumptions made for specific groups of 
services deployed by it that would have occurred if the system was functioning according to the 
entire set of assumptions specified for it, and (iii) unjustified actions which the system has taken by 
wrongly assuming that certain pre-conditions associated with the undertaken actions were satisfied 
at run-time. The detection of these types of violations is fully automatic and is based on an algorithm 
that has been developed as a variant of algorithms for integrity constraint checking in temporal 
deductive databases [31]. The detection of requirement violations in this framework can happen only 
after a violation can occur. Thus violations cannot be prevented and need to be handled after they 
have occurred (reactive approach). It should, however, be noted that, in its current state of 
development, this framework does not support the handling of these violations. 

Dynamo (DYNAmic MOnitor) [14] proposes an assertion-based approach for monitoring BPEL 
process. A Visual Tool allows the process provider to define some assertions and associate them 
with the invocation of services. These assertions are written in WSCoL, a first order language part of 
the approach. The original BPEL process and defined assertions are passed through an 
instrumentation tool, called BPEL2 that creates an executable and monitored version of the process: 
this is still pure BPEL and it is executable on any BPEL engine. The instrumented version contains 
additional BPEL code inserted to call the Monitoring Manager, which conversely is in charge of 
interacting with external Web services that act as monitors. During process execution, Dynamo (the 
monitoring manager) works as a proxy; it checks the data exchanged between the process and 
called services against the desired behaviour described in WSCoL. If an assertion is violated, 
Dynamo communicates the problem to the BPEL engine, which can continue or throw an exception 
that signals that something has gone wrong. The exception is caught by a BPEL exception handler, 
which in turn might perform a graceful halt on the process, communicate the error to the client of the 
process and exit.  

University of Trento proposes a framework for associating business rules and client requests to 
business processes. It is capable of planning and executing a process that is compliant with the 
specified rules and requests. In this approach assertions (business rules) are classified along two 
dimensions: operational assertions and actor assertions. Assertions are classified along the 
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operational dimension on the basis of the operational context and complexity of the assertion. They 
are classified along the actor dimension on the basis of the ownership of the assertion. An 
operational assertion can be a simple assertion, a preservation assertion or a business entity 
assertion. The first is an assertion that must be true in a certain state in order to reach the next. The 
second is a condition maintained throughout all states reached during the execution of a process. 
The third is a property that applies to the evolution sequence of a process variable. An actor 
assertion can be a business process level assertion, a role level assertion or a provider level 
assertion. The first is applied to an entire business process. The second is valid for all the providers 
playing a certain role. The third is tied to a precise service provider. The framework is based on two 
languages: one for the definition of business assertions (XML Service Association Language, XSAL) 
[79] and one for the definition of client requests (XML Service Request Language, XSRL) [99]. Both 
predicate using terms from standard business processes provided by the market maker (domain 
maker). The system plans sequences of actions by reasoning on the combination of business level 
assertions, assertions provided by the client, and the business domain. This step can be iterated if a 
valid plan cannot be formulated and re-planning is necessary. Once execution commences the 
system can monitor the assertions. If violation occurs or extra information is acquired by the system, 
re-planning can also be undertaken. 

DIANA [113] proposes an algorithm for monitoring a distributed program's execution for violations of 
safety properties. The monitoring is based on formulae written in PT-DTL (Past Time Distributed 
Temporal Logic), a proprietary variant of PT-LTL (Past Time Linear Temporal Logic) capable of 
predicating on remote expressions and remote formulae without the use of global or shared 
variables. In this approach the, monitoring is performed locally at an actor’s site. In order to achieve 
this, the remote values necessary to the monitoring code are passed using a so-called Knowledge 
Vector (a set of remote values necessary for monitoring) that is constantly piggybacked on the 
messages flowing throughout the system. The Knowledge Vector is added to the message by 
whoever sends it. Each process keeps track of one Knowledge Vector. The size of this Knowledge 
Vector does not depend on the number of processes in the distributed system, but on the number of 
remote expressions and formulae. In fact, each entry in the vector contains the values stored within 
a certain process and the sequence number of the last event seen at that process site. The 
sequence number is useful for solving problems due to asynchronous messages arriving out of 
order. It is the case, in fact, that older values for expressions could overwrite the new ones if the 
sequence number is not taken into account. With DIANA, a distributed systems application 
development framework is provided. To use DIANA, a user must provide a distributed program and 
the safety properties he/she wishes to monitor. DIANA is capable of synthesizing the monitoring 
code and weaving the appropriate instrumentation code into the distributed system. 

Canfora et al. propose [1] another proxy services to perform monitoring. To effectively monitor QoS 
attributes and trigger re-planning, some information needs to be collected. The data on the actual 
QoS of each service are used to get more accurate QoS estimations for future executions of that 
service, possibly in the context of compositions, whereas the information on the workflow instances 
is used to predict the likelihood of each branch, and the number of iterations of each loop of the 
workflow, from which the overall QoS is computed.  Similarly to what proposed by Mandel [85], their 
proxy services receive invocations from composite services, as well as from any service-oriented 
system, and forward the request to the invoked service. At the same time, the proxy service has the 
responsibility of monitoring the service QoS: 

• by reading declared QoS attributes from the QoS description (expressed in any of the 
available languages, e.g. WSLA or WSOL - Web Service Offerings Language [122]) 
hyperlinked to the service WSDL; 
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• by directly performing some measures (e.g. checking availability, measuring response time 
or throughput using the Simple Network Management Protocol (SNMP) [116] possibly 
following the measurement specification indicated in the service QoS specification4. 

To monitor workflow executions, the BPEL description is probed with partner links to a service that 
collects structural information (such as paths followed), but also keeps track of the overall values of 
the QoS attributes of the composite service. In particular, service probes are placed on each loop 
and branch of the workflow, and after each service invocation.   

This permits service re-planning whenever the paths followed or the QoS values measured indicate 
that the workflow may not be able to meet the SLA. Several scenarios may happen: 

Once information related to which branch is executed in a conditional statement is known, the 
overall QoS can be re-estimated accordingly (the previous estimated was a weighted average of all 
branches QoS), and this new estimate could suggest that a re-planning is needed; 

Similarly, the monitoring may indicate that the estimated number of iterations of a while statement 
deviates from the actual value; 

Measured QoS attributes for a service can grossly deviate from the declared/estimated values; or 

A service may be not available. 

Although the proposed approach requires instrumenting a BPEL process description, there is no 
need for any intervention on the workflow engine, since measures are collected by the proxy 
services properly invoked by the probes. 

TILab has developed a set of facilities for service management for the new Telecom Italia service 
platform based on the Session Invitation Protocol (SIP [109] The monitoring feature, based on the 
standard SIP Event Framework [108], provides the capability to collect information about and 
inspect the state of entities within the network as they evolve over time The monitoring feature has 
been designed to support the collection of different kinds of data, tailored to different network 
elements and services residing on them. Monitoring information is XML-based to allow for 
extensibility, so that any kind of component can report its specific state information. The architecture 
envisions that a single network element may incorporate many monitoring components, each of 
them publishing different information, using different XML namespaces. In that context, basic node 
information common to all nodes of a certain type can be provided by a core component in that 
node. The subscription mechanism, furthermore, allows filtering the events in various ways, 
constructing multiple monitoring views that respond to different needs and can be directed to diverse 
recipients, ranging from human readable reports, to management consoles, to software agents, to 
decision support systems. To detect the unavailability of network or service entities, keep-alive 
mechanisms are used that require network elements to frequently refresh their information, so that 
the monitoring server could notify watchers in near real-time about unavailability, whenever a 
refresh information is not received in time. 

3.2.3 Conclusions 

All the described infrastructures and languages assume the presence of a contract between a 
provider and a consumer. In the CASCADAS environment, it is difficult to identify such roles, simply 
because the provider role can be fulfilled by a large number of elements that can change 
dynamically Furthermore, in the CASCADAS infrastructure, the supervision system must oversee 
the behaviour of a (probably large) set of distributed elements and, to the best of our knowledge, 
Diana is the only proposal that considers that the elements to oversee are distributed without any 
centralized controller. 

 
4 For example, WSLA provides information to indicate how some measures can be performed: 
Measurement directives define how the measurement is conducted and which information is needed 
for this purpose depends strongly on the particular system to which measurement is applied. 



 

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on 
Pervasive Supervision

Bringing Autonomic Services to Life 

 

Page 37 of 78 

3.3 Evaluation, Event Correlation, and Problem Detection 
A key feature for a self-managed system is to detect problems by itself, reducing the resolution time, 
rapidly identifying the root cause of a fault, in order to ensure properly service level agreement. 

Event correlation can be defined as the conceptual interpretation procedure of assigning a new 
meaning to a set of events that happen within a defined time interval [65]. Typically, in traditional 
communication networks, the analysis of events is characterized by a static environment with well 
defined messages with limited syntax. The strong causal relations between events and type of faults 
make the analysis the application of a sequence of predefined rules. 

In an autonomic communication environment we have to face new challenges due to the high 
dynamicity of the environment, the unpredictability of the events and their syntax, the heterogeneity 
of the information and of the event sources. 

Event correlation in such a complex and heterogeneous environment should be able to correlate 
events in order to identify symptoms. We can define a symptom as: 

“Perception resulting from an interpreted observation that indicates a possible problem 
or situation in the environment. Basically, symptoms are indications of the existence of 
more general or serious problems” 

From this definition we may use Symptoms as a way to identify possible problems from 
observations in order to undertake the right actions.  

In the following sections we describe different techniques for event correlations which consider the 
key aspects described above. 

3.3.1 Distributed Event Correlation and Self-Management System  

In [90], a distributed event correlation technique based on the hierarchical model and self-
management features is described. The paper mainly describes the impacts of introducing 
autonomous systems capable of taking independent corrective actions. In fact, the paper points out 
how this implies change in the organizational model, which in management architecture deals with 
the way different entities interacts and share the management work load. 

The need for distribution in event-correlation arises from the limits of the manager/agent paradigm 
applied to the management of systems supporting high available services. Such environment are 
typically characterized by managed object (application or device) which is serviced by an agent, 
which is responsible for updating information related to the managed object in a database known as 
the Management Information Base (MIB). The manager communicates with the agent to store data 
in the MIB (such as new configuration settings for the managed object) or to retrieve information 
from the MIB (such as current managed object status). Additionally, the agent can asynchronously 
signal the manager when an interesting event occurs. Centralized managers and static information 
format modelled by MIBs make this environment unsuitable for an extensible and unpredictable 
autonomic environment. 

The self-management feature is introduced in the system by adding a component, named SMS 
(self-managed system) into the management model. In highly distributed environments, centralized 
event correlation is not applicable, hence distribution techniques has to be adopted. In the proposed 
technique the distribution of the event correlation task takes place at the SMS level. Basically, the 
SMS tries to run the event correlation tasks as local as possible, limiting the needs to propagate 
events to higher level components (Top-Level-Manager TLM and Sub-Level-Manager SLM). 

The following figure shows the management model: 
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Figure 10:  management model 

3.3.2 Service-Oriented Event Correlation 

The authors of [59] describe the impacts on event correlation due to the shift from device-oriented to 
service-oriented management. 

An overview of the main IT process framework (ITIL [64] and eTOM [42]) is done in order to 
highlight how such frameworks cope with IT service management. Usually, such frameworks 
describe only high level process steps regarding fault management, problem detection, and other 
related tasks, not taking into account details on how to implement such processes. 

For example in eTOM three processes are defined for fault management: 

Problem handling deals with receive trouble from customer and solve them using Problem 
Management. 

Service Problem Management deals with customer-effecting service failure. Using the information 
provided by the problem handling process tries to find the root causes and the problem solution. It 
contains a subtask named “Diagnose Problem” which tries to find the root causes performing tests 
but no event correlation is explicitly mentioned. 

Resource Trouble Management performs the resource failure event analysis, alarm correlation 
and filtering. 

A service model is used allowing the definition of the dependences among the services described. 

The technique is based on a workflow which defines the steps needed to carry out event correlation 
taking into account service failures other then resource failures only. It is reached correlating the 
different kind of failure in order to avoid SLA violations and to identify the fault in a very short time. 

The workflow defined is the following: 
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Figure 11. Event correlation workflow 
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The key elements shown by the figure are the following: 

Customer Service Management Access Point (CSM AP) Intelligent Agent: The purpose of this 
element is to reduce the effort for the provider’s first level support, structuring the customer’s 
information about a service trouble. It basically uses a decision tree in order to dynamically adapt 
tests to customer answers. 

Resource/Service Active Probing: The aim of these activities is to react to problems before a 
customer notices them. Such activity may be periodically or triggered by the event correlators to test 
important services and resources in order to achieve more information if the current correlation 
result needs to be improved. A specific aspect which differentiates Active Probing respect to 
management tools and customers is that it notifies also positive events in order to have a wider view 
of the resources/services behaviour. 

Resource/Service Event Correlator: The most important aspects regard the dependencies between 
the services and resources usage. The result of this activity is a list of services/subservices which 
could contain a failure in the resource. The event correlation is carried out separately at resource 
level, where only relations between the resources are considered (e.g. caused by network topology), 
and at the service level, which considers relations among services and between services and 
resources. Information elaborated separately at these two levels is aggregated in the Aggregate 
Event Correlation.  

The figure shows some back arrows starting from event correlation boxes to the Resource Active 
Probing and the CSM: those arrows should improve the correlation results; in fact, going back to the 
fault detection phase it is possible to start the active probing to get additional events helpful to 
confirm a correlation result. 

3.3.3 Reasoning About Complex Dynamic Situations 

The document [66] describes an architecture that implements dynamic event-based situation 
analysis for application areas which involve awareness of complex unfolding scenarios such as 
homeland security. Such applications involve dynamic objects which change their state and are 
involved in complex relations with other objects. In order to manage such application it is important 
to understand the situation in which these objects are involved in order to undertake protective 
actions when a threat is recognized. Situation may be defined as states which have assigned time 
value. That definition emphasizes the time as a critical aspect of the event-correlation for situation 
analysis. 

The aim of this architecture is to fulfil the requirements of an environment with complex event-based 
dynamic situations. Such environments differ considerably with respect to traditional event 
management systems where usually (i) the topology of the operational environment is known, (ii) the 
environment is mainly static, and (iii) events are well defined and we have strong causal relations 
due to the propagation of faults through interconnected network components. 

On the contrary, the target environment for the proposed architecture is characterized by complex 
temporal/spatial relations which are formed by multiple complex ontologies, the operational 
environment is highly dynamic, events are very diverse in nature and contents, involving signal, 
textual, visual and other types of information; moreover, causal relations are typically weaker. 

The architecture is based on the combination of two approaches: Real-Time event correlation (EC) 
[65] and Case-Based Reasoning (CBR) [5]. CBR refers to a style of designing a system so that 
thought and action in a situation are guided by a single distinctive prior case (precedent, prototype, 
exemplar, or episode). It is interesting for an autonomic environment because it tries to address the 
following issues: 

- CBR does not require an explicit domain model and so elicitation becomes a task of gathering 
case histories, 
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- implementation is reduced to identifying significant features that describe a case, an easier task 
than creating an explicit model, 

- CBR systems can learn by acquiring new knowledge as cases thus making maintenance easier. 

The architecture proposed tries to make the CBR dynamic exploiting the EC capability. Therefore, in 
order to manage the dynamics of the situation changes the proposed architecture uses cases for 
describing situations and correlated events for determining situation transitions. An example of 
situation could be:  

- Spatial relations: s1 LOCATED_AT s2, s1 ABOVE s2, s1 CO-LOCATED s2,  
s1 NEAR s2 

- Administrative relations: s1 SUBORDINATE_TO s2, s1 DIRECTS s2 
- Structural relations: s1 PART_OF s2, s1 CONNECTED_TO s2 
 
The system recognizes dynamic situation using CBR. A case is a sort of template for generic 
situation. When a new event is generated in the system, it tries to compare the event with the 
available templates in order to recognize the most similar known situation. The integration with EC is 
realized in order to use significant events to select the case then raw events. In fact the events used 
to select the right situation template are events generated by the event correlator. Moreover, in the 
reverse direction, the case has the opportunity to suggest further information to the event correlator 
in order to strengthen some hypothesis. 

3.3.4 Root-cause Analysis  

The document [67] describes a framework with reasoning capability in order to perform root cases 
analysis in a self-managed environment. 

The framework is built by an Autonomic Management Engine which is basically used to filter and 
collect raw events and to make some basic correlation. ABLE [92], the reasoning module, is used to 
develop a rule set implementing a decision tree which supports the root case analysis. The module 
support both machine learning and reasoning, different kind of data reading and writing and 
inference mechanisms. 

Other interesting features of the ABLE module, interesting for an autonomic environment but not 
used in the proposed architecture are: 

1. A reflective property between the basic components which built the architecture which enables a 
box within a box scenario. Those mechanisms may be exploited in order to achieve dynamic 
adaptation by means of composition. 

2. The reasoning module implements different kinds of rule engines, allowing the adoption of the 
most suitable engine depending on the specific problems to tackle with. 

3. In order to avoid inflexibility due to the exclusive adoption of rule-based reasoning, learning ca-
pability is provided which embody neural networks. This feature provides support to build adap-
tive application. As far as event correlation is concerned, for example, learning may be used in 
order to recognize unpredictable symptoms. 

3.3.5 Symptoms Deep Dive 

In the definition of the autonomic elements specifying the architectural view for autonomic 
application developed by IBM [12] the monitor function collects the details from the managed 
resources, and organizes them into symptoms that need to be analyzed. The details can include 
topology information, metrics, configuration property settings and so on. This data includes 
information about managed resource configuration, status, offered capacity and throughput. Some 
of the data is static or changes slowly, whereas other data is dynamic, changing continuously 
through time. The monitor function aggregates, correlates and filters these details until it determines 
a symptom that needs to be analyzed.  
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The article [104] discusses a new autonomic computing symptoms format, which is an evolution of 
the current symptoms format [12] widely available in the autonomic computing toolkit under the Log 
and Trace Analyzer component. This article briefly addresses the following points: 

-  How knowledge in the autonomic computing context is defined; 

-  How symptoms are a form of knowledge;  

-  The various components of a symptom; 

-  The roles of a symptom in the autonomic computing architecture; 

The article relates symptom adoption not only to self-healing but considers it as suitable to deal with 
other kinds of problems such as self-protecting, self-optimizing, and self-configuring.  

A symptom is composed by metadata (generic part information), a schema (specific part 
information), and a definition, i.e. a piece of logic which is used to recognize a symptom. Practically 
the symptom definition specifies how events must be arranged in order to a symptom to be 
recognized. 

What is missing in order to make a symptom-based environment completely autonomic and 
adaptable is the capability to build new symptom definitions autonomously, i.e. to autonomously 
infer a new significant sequence of events that represents a new symptom definition. 

Some common IT scenarios that show how both users and IT personnel would benefit from a 
symptoms-based autonomic computing architecture are described in [105]. You'll also see how 
generic situations can be associated with relevant canonical symptoms to enable a higher degree of 
automation in IT processes. The scenarios include situations involving: security, service support, 
service availability, service continuity, business logic. 

For example for service availability the following symptoms are defined: 

Table 2. Example of service availability symptoms 

Symptom name Description 

Resource capacity met A given resource or set of resources is fully 
loaded and reached their maximum capacity 

Resource unavailable A given resource or set of resources is installed 
but not available 

Resource degraded A given resource or set of resources had its 
service level degraded 

Resource unreachable A given resource or set of resources cannot be 
reached 

Repeated availability problem A given resource or set of resources fails 
multiple times within a specific time period 

 

3.4 Repair and Corrective Measures 
This section surveys the main approaches to design recoverable applications and some research 
proposals in recovery oriented computing. We survey existing planning-based approaches, some 
architecture oriented towards dynamic changes, and a new vision in recovery computing. The last 
approach changes the viewpoint: a failure is considered a fact and a new goal consists in 
decreasing the time to repair it. 
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3.4.1 Planning-based approaches 

Mainly adapted for Artificial Intelligence problems, the Planning Domains and Definition 
Language (PDDL) is used to describe deterministic planning domains and problems.  In traditional 
AI planning, there are three artefacts to define a plan: a domain, an initial state, and a goal state. In 
order to standardize the planning terminology and to exchange results, the AI planning community 
has developed the PDDL language to define these three artefacts. Moreover, the AI community has 
constructed a number of planners that use different heuristics to compute a plan.  

A PDDL planning domain is described by hierarchically organized types, global objects (instances of 
types), variables, predicates, functions, and actions. Objects and variables are called terms and 
each term has a type. Predicates and functions permit the definition of respectively Boolean and 
numeric state variables; actions are used to define state transitions. A planning problem consists of 
a set of state variables V, a set of actions A, an initial state S0, a goal condition identifying a set of 
goal states, and an optimization metric that is typically a function of numeric state variables 
evaluated over a goal state. A state is simply an assignment of values to the set of state variables. 
In PDDL, a planning problem is always associated with a domain definition, and the definition of a 
planning problem includes a declaration of a set of problem-specific objects. The state variable for 
the planning problem are obtained from objects O, constraints C, predicates P, and functions F as 
type-consistent applications of predicates or functions to objects (including domain constants). The 
set A of actions is obtained similarly as type-consistent applications of action to objects. 

This language can be used as starting point for an ad-hoc language to describe recovery actions; in 
fact PDDL is useful to describe system states and rules that must be executed to reach a desired 
state. Heimbigner et al. [60] propose a planning based approach to failure recovery that used PDDL. 
The methodology follows a classic monitoring, analyzing, planning and executing mechanism that 
they call Sense-Plan-Act. An Architectural Description Language (ADL) describes the architecture of 
the system; the plan is defined by using a pseudo version of PDDL. Their approach automates 
recovery by capturing the state after a failure using the ADL description, defining an acceptable 
recovered state as goal, and applying a PDDL planning to get from the initial state (i.e. the state in 
which the system is right after the occurrence of the failure) to the goal state. 

Furthermore, in [61] Heimbigner et al. propose a methodology to analyze failures during recovery 
actions; they use the dynamic recovery model defined by Park and Chandramohan [3]. The 
approach is based on a three-phase model: Sense, Plan, and Execute. They assume that if a 
component has a fail-stop behaviour it does not start to work again; further, the recovery process is 
perfect and does not cause other failures. A dependency model, that is, a graph where nodes are 
components, describes the system and/or resources (Application Server, Databases) and arcs are 
dependencies between the components. They propose two kinds of dependency: hard and soft; a 
hard dependency represents actual functional dependency between components without which the 
dependent component cannot provide any real functionality; instead a soft dependency represents a 
use relationship between components. Furthermore, the state of a single node can be classified as: 
working, with no functionality, and with reduced functionality. The authors also show patterns of 
failure during recovery actions and propose some solutions to handle these failures.  

This research proposes interesting approaches to deal with failures in distributed systems, but there 
are no available prototypes that can be used to evaluate the approach. 

3.4.2 Architectures repair-oriented 

Wile [127] introduces a meaningful set of architectural patterns for self-management to design a 
self-repairing system or to adapt a system not previously capable of managing itself. This kind of 
patterns is useful to describe how a system can be structured to deal with recovery situations.  

A pattern called resource reallocation assumes that some probes watch the consumption of 
resources and gauges determine average usage and threshold violation. Then some decision logic 
determines how to reallocate resources, either by adding new resources to one process or removing 
resources already allocated to others.  
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Figure 12: Resource reallocation pattern 

The main goal of the pattern corruption resiliency is to bring the system back on track after 
discovering tampered resources.  

 
Figure 13: Corruption resiliency pattern 

The authorization pattern uses gauges to determinate that a particular action is being attempted; a 
threat modem decides if this action should be prevented or is allowed to proceed. If the decision 
cannot be made automatically, it is delegated to the user.  

 

 
Figure 14: Authorization pattern 
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The pattern model comparator requires the construction of two models of the system: the actual and 
simulated model. Environmental events are executed in both models and the system compares the 
results.  

 

 
Figure 15: Model comparator pattern 

The last pattern, progress measurement reports on the percentage the job that has been 
accomplished: the quantity of task to be made is “announced” by a module that can count 
elementary steps. 

 
Figure 16: Progress measurement pattern 

 

Another theoretical approach to design recoverable systems is proposed by Park and 
Chandramohan [3]. Their goal is to develop applications that can recovery during attacks, 
components failures, or accidents. They describe three different kinds of survivability models for 
distributed systems based on off-the-shelf components. The static recovery model is based on 
redundant servers located on the same machine or on different machines. Existing dynamic 
recovery actions can be simply associated with this model. In this model, possible recovery actions 
are based on two different modes: Restart mode through which client data are not stored and 
Continue mode where client states are stored when they reach a coherent state. In the dynamic 
recovery model, the components are replicated on the fly when a failure occurs. It is assumed that a 
component can be duplicated and deployed on any machine inside the network. In this way, there 
are not duplicated components. The last approach described is the hybrid survivability model that 
combines features of static and dynamic models. At the beginning, there is a set of redundant 
servers as in the static model; when a server fails, a new server is instantiated on the fly as in 
dynamic model. 

David Garlan et al. [52] propose another approach for failure recovery in distributed systems. 
Garlan’s approach reflects the Model Comparator pattern described above: it uses an ADL 
(Architecture Description Language) model of the system and compares it with its monitored 



 

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on 
Pervasive Supervision

Bringing Autonomic Services to Life 

 

Page 45 of 78 

                                                     

behaviour. The execution system is composed of many distributed machines and it is monitored to 
observe runtime behaviour. Monitored values are compared against an architectural model of the 
system: changing properties of the architectural model trigger architectural analysis to determine 
whether the system is operating correctly. Unacceptable operation causes repairs, which adapt the 
architecture, and architectural changes are propagated to the running system. The style used in this 
work to represent a system is composed of a system of types and a set of rules and constraints. The 
types are defined in ACME [51] a generic ADL language, instead rules and constraints are defined 
in Armani, a first order predicate logic, augmented with a set of architectural functions. To create a 
working prototype, the group has adapted a number of their existing software tools: AcmeStudio, 
xAcme, and AcmeLib5 are used to define architectures in the Acme language, AcmeStudio is a 
graphical design environment, xAcme is a set of XML schemas to translate architectures in the 
Acme language into XML files, and AcmeLib offers two different implementations (Java and C++) of 
a library to manipulate Acme architectures. The Gauge Infrastructure is a library that allows for the 
definition of gauges, gauge managers, and gauge consumers. Gauges are monitoring entities that 
are attached to a high-level model (in most cases, to an architecture); gauge managers control the 
lifecycle of gauges; gauge consumers listen to gauge values, and can display or analyze these 
values. Moreover, to monitor the runtime behaviour of architectures described in the Armani and 
Acme languages, there is DiscoTect [112], a run-time system capable of constructing an 
architectural view of the system by observing its behaviour at runtime. DiscoTect works in sequential 
steps; monitored events are filtered by a Trace Engine to select out the subset of system behaviour. 
The resulting stream of events is then fed to a State Engine. The heart of the recognition engine is a 
state machine designed to recognize interleaved patterns of runtime events and to output a set of 
architectural operations. Those operations are then fed to an Architectural Builder that incrementally 
creates the architecture, which can then be displayed to a user by architecture analysis tools. 

Building on previous experience gathered in the development of JOpera, Pautasso et al. [102] 
provide an autonomic reconfiguration component for their distributed service composition and 
deployment platform. It allows the system to automatically reconfigure its deployment strategy in the 
wake of QoS problems that can arise due to excessive workload. Recovery strategies are chosen by 
the autonomic controller according to a number of possible goals, such as minimizing resource 
allocation or response time. In practice, they consist of a modification of the number of nodes 
among which the deployment infrastructure is distributed. JOpera offers an open and flexible 
platform for service composition. It maintains a library of re-usable components, which can be 
dragged, dropped, and connected into data and control-flow diagrams. JOpera makes very few 
assumptions on the properties of these components, so that the user can freely choose to compose 
the most appropriate kinds of services in terms of performance, reliability, security, and 
convenience. Such components may represent the invocation of basic, remote services, but also, 
for example, job submissions to external resource management and scheduling systems, or the 
execution of local applications under a variety of operating systems. Additionally, composite 
services can be re-used in two different ways. On the one hand, computations can be decomposed 
hierarchically into different modules, which can be invoked and re-used independently. On the other 
hand, composite Grid services can define re-usable patterns of interaction between services, which 
can then be customized and tailored to specific applications. To do so, service interfaces are bound 
to actual sites providing compatible services at deployment or invocation time. 

3.4.3 Recovery Oriented Computing 

Recovery Oriented Computing (ROC) has a different point of view in recovery methodologies. In 
their manifesto [4], they consider faults, errors and bugs as facts. Their goal is to reduce the Mean 
Time to Repair rather than the Mean Time to Failure. The idea is to try to reduce the recovery time 
and thus to offer high availability.  

There are three projects developed by the group: 

 
5 This software and libraries are available at http://www.cs.cmu.edu/~acme/ 
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SWORD6 [98] is a scalable resource discovery tool for wide-area distributed systems. The SWORD 
project aims to explore techniques for specifying and evaluating resource discovery queries in wide-
area distributed systems. SWORD discovers nodes on which to deploy a service. Unfortunately, the 
code of the SWORD prototype is not available. The group provides a running application of SWORD 
on PlanetLab. Even if the code is not available, the authors provide three different interfaces to their 
prototype: two interfaces are web based and the last is based on a command-line client. SWORD 
collects reports about available resources on nodes, and answers queries from users requesting 
nodes matching user-defined criteria. These criteria may be per-node (e.g., load, free memory, or 
free disk space) or inter-node (e.g., inter-node latency). The nodes about which SWORD collects 
reports do not have to be the same nodes as those that are running SWORD, but for SWORD on 
PlanetLab, they are the same set of nodes.  

UNDO7 [26]. One of the key tenets of the ROC philosophy is that systems should provide undo 
functionality for their operators and administrators, to allow them to recover from human errors, as 
well as to recover from failed operations like software upgrades, installs, and configuration updates. 
Undo for System Administrators and Operators is a tool developed to achieve this goal. This 
approach explores system-wide undo via a framework based on the concept of spheres of undo, 
bubbles of state and time that provide scope to the state recoverable by undo and serve as a 
structuring tool for implementing undo on standalone services, hierarchically-composed systems, 
and distributed interacting services. 

The traditional undo tools usually lost information and data during the undo steps; e.g. consider a 
user that is writing a text and he wants to recuperate a paragraph he deleted in the past; through the 
traditional undo system, the user loses all the changes from the deletion to the last version of the 
document. The aim of the Undo research is to avoid these situations. 

Exploiting the concept of spheres of undo, this undo methodology works in three phases. In the 
Rewind phase, all state within the spheres of undo is rolled back in its entirety to a prior version, as 
recorded in the history. In the Repair phase, the system operator can optionally make any desired 
changes to the system. In the Replay phase: all rolled-back end-user interactions with the inner 
sphere of undo are re-executed against the repaired system. 

Through the classic concept of Undo operation, this kind of recovery strategy permits to recover a 
subset of the previous operation in the history of a tool without loosing any other operation made. 

One of the last studies considers Undo operation for distributed services. The source code of the 
UNDO prototype is available.  

FIG8 [25] is a lightweight extendible prototype for testing the recoverability of software packages 
against a variety of external errors. FIG is a tool for injecting errors and logging errors at the 
application/library boundary with minimal configuration and run-time overhead. FIG runs on UNIX-
like operating systems and operates by interposing a library between the application and other 
function libraries that intercepts calls from the application to the system. When a call has been 
intercepted, FIG then choose, based on testing directives from a control file, whether to allow the 
call to complete normally or to return an error that simulates a failure of the operating environment. 
In order to facilitate the dynamically adaptation to different application to test, FIG toolkit provides an 
automatic stub generator. The source code of FIG is available. 

3.4.4 Conclusions 

The approaches illustrated in the previous sections to recover faulty systems address two different 
supervision tasks in CASCADAS: the planning phase and the recovery phase. In fact, planning-

 
6 http://sword.ucsd.edu/ 
7 http://roc.cs.berkeley.edu/projects/undo/index.html 
8 http://roc.cs.berkeley.edu/projects/fig/ 
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based approaches face the problem by using a composition of possible corrective measures 
provided to the supervision system by the supervised system. They can be used during the planning 
phase of the supervision task. Following the architecture of self-repairing systems, supervised 
elements can easily change their structure.  

None of presented approaches considers the fact that the overseen system can be a black box 
element. All the approaches know the internal structure of the supervised system; so that the 
recovery strategies can change the intrinsic nature of the elements. In CASCADAS, the overseen 
group of elements can also be composed by black box components and, in this case, the only 
actions allowed to the supervision system are the tuning of some parameters. Partially, Heimbigner 
et al. consider the problem of the distribution of elements, but their approach consider as repair 
measures only the connections among elements; furthermore, in CASCADAS we also need to 
change the internal behaviour of the ACEs. 

3.5 Evolutionary Strategies 
Supervision methodologies and systems as discussed so far usually follow a closed control loop 
approach. Current analytics of such systems is often based on static rule or policy-based methods 
that react on individual changes. While static rule-based methods are sufficient for traditional 
applications working in non-distributed environments, future autonomic systems will require more 
dynamic, highly intelligent and fully automated services that are able to operate in distributed 
context aware environments and as such are able to not only adapt the system that is under 
supervision but, more importantly, the supervising system itself. For the above vision to be realized 
the rationale of the system to be supervised as well as the rationale of the supervising system need 
to be modelled and observed over time. While flexible and intelligent methods are required to 
analyze the resulting behavioural patterns, the success for future pervasive supervision systems will 
depend mainly on the ability to model underlying real world problems, scenarios and policies in a 
flexible yet fully comprehensive manner.  

We call any such reflections of real world processes a ‘concept of interest’, which will play a central 
role for future supervision mechanism enabling individual systems to evolve within the boundaries of 
the environment they operate in. Simplified, continuous observation of the system together with long 
term trend analysis allows for adaptations that can improve service and system performance on 
different levels of granularity that go beyond traditional introspective based learning approaches.  

3.5.1 The Concept of Interest 

The need for advanced long term supervisions, independent of the environment they are applied to, 
is based on the volatile nature of the underlying model of individual services, which are likely to 
change constantly over time. In order to adapt to such changes effectively any supervision 
mechanism needs to incorporate a computational model of the real world problem they were 
originally designed for. This so-called concept of interest and the real world problem it reflects are 
therefore of paramount importance to enable autonomic services to self evolve in context aware 
environments [38]. Simplified, a concept of interest reflects the underlying model of a given service 
or application in a machine readable format. Therefore, a concept of interest provides the 
“boundaries” a system can evolve in without violating its general purpose. Consequently, the 
principal task for a learning system is to incrementally learn about changing contexts without being 
explicitly informed about them [77]. 

The concept of interest for any real world service or scenario often depends on a hidden or very 
complex context [123] which makes it extremely difficult to design and implement let alone model 
the concept of interest that is intended to supervise it. Typical examples include almost any type of 
forecasting scenarios where individual models have to be built or adapted constantly to adapt to 
changing conditions, e.g., seasonal or geographical specifics.  

Currently, there are no standards to model individual concepts of interests and no specific language 
has yet been developed that enables the description of real world scenarios in a domain 
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independent manner. Nevertheless, established XML based mark-up languages such as PMML 
(see http://www.dmg.org/pmml-v3-0.html) do provide features that allow the modelling of specific 
models stemming from the data mining arena. Another general problem in this area is the handling 
of the often large amount of properties that are required to reflect even relatively small concepts of 
interests and, furthermore, the implementation, adaptation and constant supervision of relationships 
among individual properties can be particular difficult.  

3.5.2 Concept Drifts 

As mentioned, advanced long-term supervision is based on the specific nature of the underlying 
concept of interest of individual services and their environments, which are likely to change 
constantly over time. Continuously changing conditions can open a gap between an actual concept 
of interest, implemented for a given service, and the real world concept they were designed for. This 
problem, referred to as concept drift, implies the constant adaptation of intelligent services and their 
underlying models.  
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Figure 17: Concept Drift Supervision Architecture (schematic) 

Figure 17 illustrates the basic supervision cycle to accommodate for the analysis of concept drifts. 
Similar to more general supervision architectures it incorporates the concept of interest in order to 
analyze changing behaviour within the boundaries set out through the concept of interest. In 
essence, individual context specific attributes are observed and compared to past concepts and 
experiences in order to identify differences between them. Based on those differences specific 
reactions may be triggered to adjust the system towards its original concept of interest. 

Individual changes of a system or the underlying concept are often concealed by the complexity of 
the context they are used in, which makes it difficult to predict the impact of any changes made to 
the target concept. One of the important features of a concept drift based supervision system is 
therefore formed by its ability to track and react on individual changes as quickly as possible without 
being explicitly informed of them [126]. Another central problem for the observation of concept drifts 
is the handling of noisy data as a supervising system is initially doomed to react on any type of data. 
This problem can be particular hazardous as it may cause oversensitivity or insensitivity for the 
supervision systems with respect to their adaptability for changing conditions by erroneously 
interpreting noise as a type of concept drift (see [126]). 

For most scenarios only two types of concept drifts are relevant; continues concept drifts which may 
be further divided into slow and moderate drifts depending on the speed of change they follow [119] 
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and sudden concept drifts where abrupt and immediate visible changes occur. The literature [126] 
also differentiates between two different concepts of “concept drifts”, namely virtual and real concept 
drift. While virtual concept drifts only depend on changing operational data distributions, real 
concept drifts may also depend on any change of the underlying context. Whatever the case either 
one requires the update of the reflecting model.  

Relevant systems that deal with the problem of concept drift and hidden contexts include STAGGER 
[111], IB3 [9], and FLORA [126]. Based on the systems available three different approaches can be 
distinguished that deal with the problem of concept drift, namely; instance selection, instance 
weighing and ensemble learning techniques. Furthermore, traditional patterns discovery techniques, 
such as the extraction of associative, sequential and episodic patterns could be useful as such 
techniques have been used in the past to extract behavioural patterns and rules from stream based 
data. 

Instance Selection. Based on the fact that a given context changes over time instance selection 
utilizes only a certain number of “latest” contexts to be compared against an original concept of 
interest. The set of latest contexts, also known as window of interest, is constantly updated with new 
contexts removing older context as they become obsolete. Those actions may trigger modifications 
to the supervised concept by constantly comparing the current window of interest with the original 
concept of interest. The original FLORA algorithm proposed in [126] implements this technique 
using a fixed window size. This concept has then be extended through FLORA2, FLORA3 and 
FLORA4 incorporating variable window size, past cases of distinct concept of interests to be used 
for comparison purposes and a more advanced noise handling mechanism. Other systems that 
implement a similar technique include FRANN [77] and TMF (Time-Windowing Forgetting) [110].  

Instance Weighting. Simplified, instance weighing techniques allocate specific weights to individual 
properties of the current concept of interest, which are then analyzed by distinct supervised learning 
methods such as that support the handling of weights. The way weighing takes place for individual 
properties may vary and can include various measures such as competence, update frequency and 
the relevance of individual properties with respect to the current context [71].  

Ensemble Learning. The purpose of ensemble learning is to build a learning model which 
integrates a number of base learning models, so that the model gives better generalization 
performance on application to a particular data-set than any of the individual base models [2]. 
Compared to the previous two approaches, ensemble learning provides a more effective technique 
to handle concept drift as it constructs and maintains a set of concept descriptions over different 
time intervals. Individual predictions thereof are later combined in order to select the most relevant 
description. 

Two basic types of learning approaches exist, incremental learning and batch learning. While the 
latter analyses large number of instances at once incremental systems evolve over time processing 
new instances as they arrive [123]. Systems handling concept drift normally use an incremental 
approach because of the fact that new instances need to be processed as quickly as possible in 
order to keep a learning model up to date. In essence, an incremental based ensemble method 
processes an incoming stream of concepts one at a time classifying them into positive or negative 
instances of pre-defined (or previously occurred) concepts. Any discrepancies between the occurred 
concept and the predicted concept may trigger modifications to the systems or the underlying 
concept of interest [126]. 

Several distinct learning algorithms, such as rule based, decision trees and instance-based 
algorithms, have been utilized for base models in ensemble learning systems in order to handle 
concept drift. Almost all of them implement an incremental learning approach in which ensemble 
members are dynamically created, deleted or modified in relation to the consistency of individual 
base models with respect to the data used. 

STAGGER [111] has been one of the first systems which implemented an ensemble learning 
approach. It utilizes an initial set of properties as concept features and creates more complex 
variations thereof in an iterative fashion using feature construction [123]. Based on the relevance to 
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the current data set the most appropriate features are selected and further processed. The 
approach described in [125] divides the original data sets into sub-sets of equal size building an 
ensemble system based on those sub-sets. Alternatively, in [119] individual classifiers of different 
“age” were used to build an ensemble system. In a nutshell, each base algorithm only utilizes the 
latest instance rather than all available instances. The IB3 system proposed in [9] implements an 
instance based technique that calculates the percentage of successful classification attempts 
comparing it with the frequency of its class. Based on this, the system decides which cases to keep 
discarding obsolete and noisy cases. Other systems, such as LWF (Local Weighted Forgetting) 
described in [110] only remove old instance whenever a new relatively similar instance appears. 
PECS (Prediction Error Context Switching) represents another system which is able to store past 
instances for later use and also incorporates the accuracy of an instance [110].  

Patterns Discovery Methods. Patterns discovery has always been considered a challenging task, 
which has received great attention not only within the research community but also from various 
industry sectors. Pioneered by Agrawal et al. in [8] and [7] it has been an active research topic for 
more than two decades in which countless publications have been published and numerous 
algorithms where proposed. Multiple techniques have been introduced to extract such patterns and 
they were utilized for various domains, including telecommunication, life science, chemistry, drug 
testing, the World Wide Web, etc. Distinguishing between associative, sequential and episodic 
patterns temporal as well as non-temporal patterns and characteristics can be extracted from 
different types of data. 

Associations represent relationships of a set oriented structure, where the order of items within 
those patterns is irrelevant, e.g. (A, B) = (B, A). The area was pioneered by Agrawal et al. and most 
of the current research in that area is based on work presented in [8] and [6]. Some of the most 
popular methods are based on the apriori-algorithm proposed in [8], which has been later optimized 
[6] resulting in AprioriTID and AprioriHybrid. Other popular algorithms include the DIC algorithm 
proposed by Brin et al. in [24]; the DHP algorithm proposed by Park et al. in [100]; sampling based 
approaches as proposed in [121]; Eclat proposed by Zaki et al. in [130]; FP-growth proposed by Han 
et al. in [58] and the so called COFI-Tree mining approach proposed by Hajj et al. in [41]. 

Sequential patterns are similar to associative patterns but incorporate an additional dimension, 
usually that of time [48], where the order of items is relevant and cannot be ignored, 
i.e. (A, B) ≠ (B, A). The discovery of sequences can be thought of as association discovery over a 
temporal database [131]. This area, also pioneered by Agrawal et al. [7][118] has focused on the 
problem of predicting future events based on past events, where an event could be virtually 
anything. Naturally, most sequence discovery algorithms are extensions of algorithms that where 
designed to extract associations. Some of the most popular once are GSP proposed by Agrawal et 
al. in [7]; PSP proposed in [91]; FreeSpan introduced in [57] and [58]; PrefixSpan proposed by Pei et 
al. in [103] and Spade proposed by Zaki in [131]. 

Episodes represent another distinct patterns type combining associative and sequential patterns. 
First introduced by Mannila et al. in [87] and [88] they provide a powerful technique to analyze time 
series related data, such as error and status log files or behavioural patterns, which contain related 
items or in this case events. Examples are found in the telecommunications sector, fraud detection 
applications or stock market analyses. A number of algorithms and concepts were proposed to 
extract episodic patterns [11], [20], [56], [80], [86] and [87]. However most of them are based on the 
same concepts as used to extract associations and sequences. 

3.5.3 Visualizing Concept Drifts 

The visual presentation of information as well as the interactive exploration of data is an important 
and challenging task that allows for better understanding and interpretation of data and information. 

In [106], Pratt et al. propose an extension of parallel coordinate graphs called “brushed parallel 
histograms” in order to visualize concept drifts in data. Simplified, a parallel histogram graph is a 
parallel coordinate graphs with a histogram superimposed on each of its axis, describing the 
frequency distribution of points of the projected data set. Taking advantage of the fact that parallel 



 

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on 
Pervasive Supervision

Bringing Autonomic Services to Life 

 

Page 51 of 78 

histograms display axes side by side, rather than in a 3-dimensional orthogonal space, they allow 
visualization of data distributions in high dimensional feature space. Furthermore, advanced 
interaction methods allow the highlighting of individual values and their relevant links which enables 
interactive data exploration as well as the presentation of detailed information. In fact, brushed 
parallel histograms allow the visualization of change rather than state information in high 
dimensional space, which has been a long standing challenge [106]. 

3.6 Summary and Conclusions 
This report deals with various approaches and results related to Pervasive Supervision and provides 
a foundation for the further work of WP 2. In the first part, several general approaches have been 
analyzed and compared according to the implementation of the various subsystems of a reference 
model, the Viable Systems Model. It turned out that the low-level monitoring and actuation 
subsystem (VSM System 3) is present in all these approaches as the basic architectural paradigm 
employed by all compared approaches is that of a closed control loop.  The same holds for the 
analysis subsystem (System 4) that evaluated monitored data with respect to the actual situation of 
the environment of a system, as long as reactive behaviour is concerned. Only one of the analyzed 
examples claims that pro-active activities are performed (i.e. future situations are anticipated). None 
of the considered approaches consider self-adaptation.  

Purpose-orientation is represented in the VSM by a high-level system (System 5). We found that 
only one of the discussed approaches has a rudimentary higher-order policy subsystem. 

Pervasiveness, i.e. structural intervening with the supervised system, has to use the (self-organized) 
structure of the supervised system, but since this structure is considered either as a black box 
(extrinsic approaches) or as static (intrinsic, i.e. Willow node architecture), this aspect is not 
investigated in a satisfactory way in any of the considered approaches. Finally, situation-awareness 
is due to the concentration to the actually supervised system (ignoring its embedding into an 
environment), is also insufficiently elaborated. 

In the second part, we had a deeper look into specific aspects of interest. Monitoring has been 
mainly investigated from the perspective of advanced service architectures (exemplified by Web 
Services). We found large variety of the available results ranging from (standardized) monitoring 
and pre-evaluation approaches and tools. 

Event correlation and problem detection is—at least on a generic level—not so well elaborated. 
Most existing approaches are task and application specific and do not offer a generic systematic 
algorithmic methodology. However a number of structural and architectural approaches are 
available that can be exploited in the CASCADAS project. It is however foreseen that this topic will 
be one of the main research areas for the further work in WP2. 

There are a number of approaches concerning the recovery from errors and the determination of 
corrective measures (which closes the perception—evaluation—reaction control loop). Not only the 
exploitation of management interfaces (the usual way to interact with a system) is considered but 
also systematic structural approaches (patterns) and tools for planning are considered.  

Finally, we looked into strategies for the self-adaptation of supervision pervasions (in contrast to the 
self-adaptation of the supervised service configurations). A number of pioneering approaches 
revolving around the notion of “concept drifts” are available. How to concretize these techniques to 
work with ACE based service configurations is subject of further work in WP 2. 

4 Application Example 
To provide a concrete example for a supervision system, this following section describes an 
application scenario to illustrate the algorithms described in the following sections. The scenario 
describes a pervasive and distributed application called “Behavioural Advertisement”. In particular, 
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the scenario is chosen to illustrate the use of supervision models for system management, and to 
describe a basic supervision procedure. It is not intended or capable to capture all the concepts 
discussed so far: 

- The supervision model that is used is supposed to be the result of the negotiation of the 
system under supervision and the supervision system on a supervision service, i.e. it defines 
the supervision contract (of class 2, c.f. Section 2.2.1). At the current state of the project, the 
precise mechanisms of negotiation and contract construction have not been comprehensively 
investigated. The example therefore does not explain how this contract is obtained. 

- The exploitation of hierarchies in the supervised system to define levels of abstractions has 
been considered from a theoretical perspective (cf. the accompanied document [34]). In order 
to keep the example simple and to focus on the main ideas of the definitions of supervision 
cycles, the aspect of hierarchies is not presented. 

- We restrict ourselves to supervision activities related to the VSM subsystem 3. Proper 
mechanisms for the prediction of future situations and long-term system adaptations (cf. 
Chapter 7) will be considered in a later project phase.  

4.1 The Behavioural Advertisement Application 
Behavioural targeting is supposed to allow marketers to better grasp customers' needs and 
interests, by tracking and monitoring consumer behaviours. Currently, those techniques are mainly 
applied to WEB based applications. We propose to extend behaviour tracking to any communication 
context supported by Telecommunication operator services where user interests and needs can be 
grasped (e.g. tracking the preferred shops of a user by means of GSM-based localization services). 

 
Figure 18. Behavioral Advertisement scenario. 

 

Figure 18 shows an example of a Behavioural Advertisement application expressed as an ensemble 
of ACEs. Four different actors participate to the scenario: One telecommunication operator and 
three service providers. The service provider 3 is needed to start the scenario, sending a SMS to the 
user’s device. As soon as a Personal ACE (running on a mobile device) receive the activation SMS, 
it starts sending personal data. A Habits Data Base is used to determine the personal preferences of 
the user that owns the Personal ACE, and an Ads Images Data Base is responsible to select 
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images to be displayed on a window screen the proximity of the initiating device. A GSM based 
location service is available to identify the devices which are in the range of the screen. 

4.2 Supervision 
In order to highlight some specific supervision challenges to be addressed, let us consider the 
following simplified set-up. Consider a mobile device in the range of a localization service which 
sends data to a content server in order to select the contents to display in the digital ads screen. 
The ACEs that form the example application (i.e. the Personal ACEs of the mobile devices, the 
population aggregation, habits finder, and ads finder ACEs explained in Figure 18) form a distributed 
virtual blackboard (DVB), i.e. an ad-hoc networked structure that propagates personal data and 
contents toward the display service. This propagation function basically is the service that is in the 
focus of the supervision activities described below.  

Such an ad-hoc network is always in the danger to get congested. The main goal of the supervision 
task is therefore to keep a congestion level parameter (C) between specific thresholds and to 
ensure some reasonable values for the number of mobile in the range (N) and the advertising rate 
(R), which is the average to the advertisement rates (r) of the mobile devices. 

The figure below provides a detailed view of the scenario: 
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Figure 19. Simplified Scenario 

The parameter D in the picture above is the maximum distance of a mobile to consider in the range 
of interest and so that should be involved in the advertisement selection. Thus the targets of a 
supervision system may be expressed as the task to keep these values in a given range; in the 
scenario we therefore have two main objectives for the supervision system:  

• Cmin < C < Cmax. 

• Keep N and R in reasonable boundaries. 

Moreover, we allow the supervision system to make use of some additional knowledge related to the 
domain the supervision system has to operate, which might be obtained from the underlying 
Knowledge Network or can be part of the supervision contract. In the scenario we use the following 
knowledge: 

• N * R is proportional to C. 

• N = D * n (n is a suitable constant). 

• decreasing D (and thus N) has a stronger impact to C than decreasing R. 
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4.3 The Supervision Model 
As explained above, contract based supervision makes use of and operational model of the system 
or service under supervision that explains the ways in which this system can behave, what can be 
observed by the supervision system, and what can be influenced. To illustrate a possible formalism 
for those models, consider the following “extended finite state machine” that provides an operational 
model for a single mobile device (where we concentrate on the aspect of sending personal data, 
and operations to set the local advertisement rate r of the mobile.  

 

idle ?<start>
r := r0; t := 0;?<stop>

t >= r 
!<p_data>; t := 0

<tick> 
t := t + 1

?<set(x)>
r := x

sending
r, t 

 
Figure 20. Mobile device model 

 

The “timer” variable t is used to model the sending of the personal data <p_data> on a regular basis. 
The model exhibits the following actions: 

• ?<start> and ?<stop> to initiate and to suppress the sending of personal data. 

• ?<set(x)> to set the local advertisement rate r to x 

• !<p_data> to send personal data 

• <tick> is an internal action to model the event of a time tick. 

We now have three different types of actions:  

• ?<…> are actions which are controllable by some external entity (i.e. the supervision 
system) 

• !<…> are controlled by the mobile device, but are observable by an external entity 

• <…> are internal actions which are neither observable nor controllable 

Of course, this mobile device model cannot be used for supervision purposes directly: 

1. Firstly, in a real application example, an operational model would contain large a number of 
additional functions and thus would be much too large and to detailed. Moreover, we do not 
have a singe device, but probably a large number of those devices, and additional models 
for the other components of the advertisement service. Thus working with the composed 
model (which might be of exponential or even super-exponential sizes in terms of the 
number of components) is not feasible. 

2. The model does not express the relationships between the global parameters C, R, D, and 
N that define the supervision task. And it does not qualify a given state of the system as not 
suitable, thus it contains no information on when a supervision action is to be performed or 
not. 

We therefore use a different model for supervision as shown in the EFSM below. 
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?<start> N := N + 1;
?<stop> N := N - 1

?<set_D(x)> D := x
sending

N, D, R, C 
?<set_R(x)> R := x

?<set_C(x)> C := x
set by sensors

set by SVN

 
Figure 21. Supervision model 

We furthermore impose the following constraints on the set of legal “sending” states: 

• N = D * n 

• C = c * N * R 

(for suitable constants n and c). 

We how state the following hypothesis: 

The model shown in Figure 21 is an abstraction of an ensemble of N mobiles. An application 
of an appropriate concretization (or refinement) map should yield the model given in Figure 
20. 

We are currently not in the position to justify this hypothesis – this will be a work item for the 2nd 
project phase of CASCADAS. With the notions of “zooms” that are elaborated in the accompanied 
document [34] we however are able to present a step towards a general theory of automated 
abstraction mechanisms.  

Finally, we give the following notion of the suitability of a system state S = (N, D, R, C) by defining 

 V(S) := if C > Cmax or C < Cmin then 0 else a * N + b * R 

for suitable coefficients a and b. We furthermore say that the state S is suitable if V(S) is within 
certain thresholds (also conveyed with the supervision model).  

4.4 Supervision Procedure 
A supervision procedure is a sequence of steps which should ensure the proper implementation of 
the supervision tasks and that are triggered by defined states which need supervision. In our 
scenario for example we need to define a procedure which manages the values of D and R properly 
in order to keep their values into reasonable range. The procedure is the following: 

1. Check if current state is suitable 

2. if not, determine new values for D and/or R (to be refined) 

3. set new distance D 

4. call subsystems for mobiles to adjust local rates according to R  

5. Validate constraints (check and improve competence) 

6. If N deviates significantly from the expected value, adjust n 

7. If C deviates significantly from the expected value, adjust c 

Moreover such procedure should be based on suitable heuristics in order to adjust the values of the 
variables in a proper way. In our scenario some example may be: 

1. If the number of mobiles approaches the thresholds slowly then adjust R 

2. If the number of mobiles approaches the thresholds fast then adjust D 
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3. If C exceeds the thresholds then adjust D, and if this does now work, adjust R (panic mode) 

A problem to address in order to implement heuristics is the representation of this heuristics. A way 
to represent this heuristics may be using history information or include information on the success 
probability of a certain action into the model. 

4.5 Pervasive Supervision 
Each application of supervision activities to the target system requires specific extensions which of 
that target system or the underlying execution platform (e.g. actuators and sensors).  

These extensions are better achieved if already available 
functions of the target system can be exploited. For 
example the fact that an ACE should be able to interface 
specific features of the mobile handset where it runs, in 
the ACE architecture defined so far, is addressed by its 
“specific features” module. Moreover, the continuous 
detection of the congestion level can be done by the 
perception of the periodically signals sent by the ACEs 
that form the DVB, e.g. by monitoring of the GN-GA 
protocol messages defined in Work Package 1. Each ACE 
sends GA messages based on its capability until an ACE 
with a service profile matching the GA message (the “GN”) 
is reached. In our scenario we can implement the 
congestion signal as a GA received by an aggregator ACE 
which estimates the congestion level by the rate in which 
GA messages are received. The left hand side figure 
depicts a possible set-up that makes use of those 
correlation ACEs.   

Congestion signal aggregator 

Mobile handset ACE

The Figure 22  below summarizes the relationship of the supervision model (comprising states of 
the form S = (R, C, D, N)). The parameters N and D are directly received from the incorporated 
location service. The congestion level C and the average advertisement rate R are computed in a 
distributed way as illustrated above. For actuation, operations to set a new distance D are directly 
available to the supervision system, while the breakdown of the average advertisement rate R to the 
local advertisement rates r can be achieved in a distributed way similar employing e.g. the GN-GA 
protocol.  
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Figure 22. Relationship between supervision model and supervised system.  

5 Requirements 
In this section, we are going to provide a list of requirements that is to identify open issues and thus 
defines working tasks for Work Package 2. Before we present these requirements in a more detailed 
form, let us start with a more general discussion. 

In the initial discussion in Section 2.1 we pointed out that current approaches to define of autonomic 
systems in a way similar to the MAPE paradigm are not sufficient for self-management, as a number 
of aspects such as autonomy of the supervised system and self-organization are not adequately 
represented. The analysis of the state (Chapter 3) of the art showed that a large number of 
approaches that deal with specific aspects of supervision are currently available, but a coherent 
approach that combines all aspects has not yet developed. The preliminary ideas on contract based 
supervision (Section 2.2) and the application example (Chapter 4) indicates that a model based 
approach is an encouraging candidate to overcome current limitations. 

The following table details a number of high-level requirements of the comprehensive supervision 
approach that is in the focus of WP 2 and indicates how they are reflected in the currently available 
results. 

No Description Status 

1 Autonomic Supervision 

The supervision system should not rely on extensive operator 
configuration but has to infer the properties to be ensured and 
the appropriate tasks to be performed as much as possible from 
run-time information, i.e. by the communication with the ACE 
configuration to be supervised 

 

Concepts for contract 
based supervision 

2 Adaptive Supervision 

The supervision system has to be able to adapt itself 
dynamically to changes both in the system under supervision 

 

To be investigated. This 
requirement is related to 
the self-organization 
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No Description Status 

and its environment principles investigated in 
WP3 that define the 
dynamics of the system 
under supervision. 

3 Self-organized Supervision 

The supervision system has to be able to self-organize 
available components into control loops and accompanied 
additional functional blocks as defined  by the VSM. 

 

To be investigated. This 
requirement is obviously 
related to the self-
organization principles 
investigated in WP3. 

4 Pervasiveness 

The supervision system should be organized along the 
organization structure of the system under supervision. 

 

Addressed by employing 
the VSM as conceptual 
model, and concepts for 
hierarchical models 

5 Adequate Level of Abstraction 

The supervision system should perform its task on an 
appropriate level of abstraction avoiding global (non-scalable) 
views as much as possible 

 

Addressed by the 
developed concepts for 
hierarchical models 

6 Pro-activeness 

The supervision system should be able to predict future 
problem situations and to enforce appropriate reactions 

 

Addressed by the 
investigation of drifts in 
concepts of interests 

7 Self-application 

The concept of supervision has to be applicable to supervision 
systems itself (i.e. a supervision system can be considered as a 
system under supervision by itself) 

 

Addressed in principle, 
since the supervision 
system has been identified 
as an autonomic system 
(that will be realized by an 
ensemble of ACEs) and 
thus is a possible target for 
supervision. Details 
however need to be 
investigated 

8 Effectiveness 

If the system under supervision enters an unsuitable state or is 
in danger to do so, the supervision system has to be able to 
enforce a sequence of actions purposed to lead the system 
under supervision back into a suitable state 

 

Effectiveness is related to 
the contract that is 
committed between 
supervision system and 
system under supervision.  

9 Timeliness 

If the system under supervision enters an unsuitable state or is 
in danger to do so, the supervision system has to be able to 
enforce a sequence of actions purposed to lead the system 
under supervision back into a suitable state within suitable time 

 

Not addressed yet. 
Improvement of timeliness 
requires self-optimization 
features of the supervision 
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No Description Status 

limits (e.g. before the system state degrades further) system which are related to 
the ability to select proper 
(and fast) contingency 
plans. This aspect will be 
addressed in the next 
project phase.  

10 Appropriateness 

If the system under supervision enters an unsuitable state or is 
in danger to do so, the supervision system has to be able to 
determine an appropriate sequence of actions to lead the 
system under supervision back into a suitable state 

 

Not addressed yet. 
Improvement of 
appropriateness requires 
self-evaluation features of 
the supervision system 
which are related to the 
ability to assess the 
suitability of contingency 
plans. This aspect will be 
addressed in the next 
project phase. 

11 Lightwightness 

The supervision system should not add significant performance 
burdens to the system under supervision when it is working 
within suitable ranges.  

 

Addressed only by the fact 
that supervision pervasions 
are defined as ACE based 
configurations. Experiments 
with concrete systems are 
necessary. 

12 Self-assessment 

The supervision system has to be able to assess its own level 
of processing, and has do be able to optimize itself 

 

Addressed by the definition 
of a number of metrics for 
“system competence” (see 
[34]) 

6 Supervision Algorithms 
This section is concerned with: 

1. A generic definition of a system model providing for abstraction and composition 

2. Definition of supervision algorithms based on this notion 

Due to the mathematical nature of these issues and the overwhelming problems to typeset 
mathematical text with Microsoft Word, we decided to provide these deliverable parts in a separated 
document [34] (using the LaTeX text processor). Here, we are going to give a summary of the main 
results presented in this document. 

1. The term “model” made its appearance in several contexts through this report. We talked 
about the use of supervision models as contracts. The application example provided some 
examples of supervision models. Moreover, the ACE model currently developed in WP 1 
makes use of an explicit self-model that defines the possible behaviours and services of an 
ACE. We thus have to answer the question: “What is a model?” 
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2. The formalism that is used for models is currently under discussion in WP 1. The 
deliverable document D1.1 discusses a number of candidates. From a more generic 
perspective, all these formalism (and many others) are basically defined by a (not 
necessarily finite) set of system states and a set of transitions between states. We adopt an 
approach that uses this observation as definition of a generic notion of the term “system 
model”: A system is simply defined by a set of states and a set of transitions. 

3. State/transition systems do not expose (as they are) any build-in notion of composition of 
concurrent (e.g. distributed) system components, and in particular there is now explicit 
expression of concurrency or distributiveness. To overcome this problem, we use a special 
type of state/transition systems, namely those that are defined over so-called distributed 
alphabets. A distributed alphabet provides an alphabet of system actions together with an 
independence relation over actions. Independent actions are supposed to be executable 
in parallel, or in a distributed way. The complementary notion is that of dependence. 
Intuitively, dependent actions are executed on the same computer, use exclusive 
resources, or are causally dependent (as a send-receive pair for a given message). We 
furthermore introduce a special hidden action that is use to express the fact that a system 
or its environment performs an action that is not directly observable but only perceivable 
because it causes a change in the current state of the system or environment. 
State/transition systems with actions taken from a distributed alphabet that structurally take 
the independence of actions as well as certain conditions on hidden actions into account 
are called interpretations of distributed alphabets.  

4. The language of general state/transition systems, is usually defined in terms of words over 
system actions as “letters”. For interpretations of distributed alphabets, a more attractive 
notion of language is available, namely that of partially ordered multisets (pomsets). A 
pomset is basically a set of system events that expresses the fact that a certain system 
action has been executed together with a notion of causality between system events. 
Informally, occurrences of dependent actions have to be in causal relationship.  Events that 
are causally unrelated stand for the occurrence of independent system actions. Causal 
relations are mathematically expressed as anti-symmetric and transitive relations – as 
partial orders.  

We investigate a certain class of pomsets that are executable in a state/transition system, 
so-called weak pomsets. Intuitively, a weak pomset comprises only those causal 
relationships between system events that are really necessary to correctly express the 
dependence structure of the underlying distributed alphabet. It can be shown that the class 
of weak pomsets has the pleasant algebraic property of being a free monoid. 

5. What is still missing is a system of values that expresses the “desirability” or “suitability” of 
a given system state or system behaviour. In the current state, we restrict ourselves to 
assessments of systems states. Entering a non-suitable state means that the supervision 
system has to get active.  We again adopt a very generic perspective in defining those 
value systems as general partial orders (where intuitively, “greater” values are “better”). 
We are well aware that practically it might be a problem to set-up a relation of desirability 
between arbitrary system states (for instance, if a number of incomparable criteria are 
available). It is however necessary to unify the values of different states, even if they are 
not directly comparable with respect to the desirability order. Thus we stipulate the 
assumption that for each set of values, a greatest lower bound is available. Informally, a 
greatest lower bound is the best value that is still worse than any of the values in this set. It 
is thus the best pessimistic approximation of these values.  

6. Valued interpretations of distributed alphabets are now defined as interpretations 
equipped with a value structure, together with a state assessment function that assigns a 
value to each of the states of the interpretation, and an admissible predicate that defines a 
threshold of the desirability of a system state. 
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7. We now have a formal definition of the terms “system” and “system behaviour”, and 
“desirability” of system states, but we still have only a very vague idea of what it means that 
a formal system is a model of a real system, or is an abstraction of another model. At this 
point, we use the implicit assumption that for each real system there is some system model 
that expresses all the aspects of this system in each detail, i.e. is the most concrete model 
of this system. Thus, we only have to cope with the notion of abstractions between models. 

8. As already said, a system comprises of states and actions that define transitions. 
Abstraction thus needs to be defined in terms of these elements. For states, it has to be 
abstract away from structural details of those states. Abstraction simplifies states and 
identifies different concrete states. System actions are also identified by the abstraction 
process, but it is also possible that a certain concrete action has no expression on a more 
abstract level. Finally, the value structures of more abstract systems are expected to be 
more coarsely grained than their more concrete counterparts. 

9. Another concept is that of the embedding of a system into another. Informally, a system 
component is embedded into its environment. An embedded system appears as a part, or 
subsystem of the embedding system. As in the case of abstractions, the concept of 
embedding needs to be explained for states, actions, and values: The state information of 
the embedded system has to contribute to the state information of the embedding system, 
and for values hold a similar relationship. But of course all the values of the embedded 
system are still present in the embedding system.  

Abstraction and embedding are explained in terms of functions between actions, states, and 
values of valued interpretations of distributed alphabets. The mathematical branch that deals 
with this type of definitions in the most abstract way is category theory. The document [34] 
(although self-contained) uses extensively the language of commutating diagrams to express 
the relationship between abstraction and embedding maps (or “arrows”). 

10. What happens with a subsystem when it gets embedded into some larger system context? 
This context provides only a subset of all the stimuli to which the subsystem is capable to 
deal with, thus the embedded subsystem shows now only a subset of its possible 
behaviours. The resulting restricted system is called the image of a subsystem under an 
embedding. It turns out that the process of embedding can be understood as a 
concretization of the embedded system in the sense that the “un-embedded” subsystem is 
more abstract than its image. 

11. We finally introduce an important concept, namely that of zooms. Consider two systems, 
the first one is an abstraction of the second one. Suppose furthermore that the abstract 
system is embedded into some environment. The question we now are going to answer is: 
Can we use the embedding process that makes the abstract system a part of the 
environment also to embed the more concrete system into this environment? Is there a 
notion of local refinement, of decreasing the level of abstraction only for a certain area of 
an overall system model (the environment in this case). It turns out that the answer is 
positive. This result provides us with a way to set-up hierarchical models with respect to the 
level of abstraction, where the shift from a more abstract to a more concrete perspective is 
done by the application of appropriate zooms. 

12. Zooms have a “dual” counterpart, namely that of anti-zooms that provides us with a notion 
of local coarsening. This concept is not used yet, but we anticipate its usefulness when the 
automated construction of supervision contracts is considered. This is future work. 

The discussion of zooms and anti-zooms concludes the first part of the companion document. 
The second part is concerned with a first definition of supervision algorithms basing on the 
notion of models as defined in the first part. To relate this work to our reference model, we still 
remain in the functional domain of the VSM subsystem S3. 

1. We start the discussion with a further refinement of the notion of distributed alphabets. 
We assume that the actions alphabet is separated into several sets of actions: 
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a. Observable actions are those actions of the system under supervision which 
can be perceived by the supervision system. Not all actions may be directly 
perceivably by the supervision system, or are visible at all. This may not only 
have technical reasons but also may be related to the unwillingness of a 
system to disclose certain actions to the supervision service.   

b. Controllable actions are those which can be triggered, suppressed, or 
modified by the supervision system. We assume that if a problem occurs that 
triggers the supervision system, the system under supervision enters a 
“controlled” mode in which controllable actions are under the command of the 
supervision system. Of course, actions like system interrupts, timeouts, etc. are 
hardly controllable form externally. Moreover, certain management actions may 
not be desirable to be controlled by the supervision system e.g. because of 
security issues. 

2. State in distributed systems is not always a meaningful concept. We nevertheless can 
use “local states” (i.e. those of the sequential components of a distributed system) to 
validate whether a system has been successfully executed or not. 

3. We continue with the definition of a first supervision algorithm, i.e. a programmatic 
description of a basic supervision cycle. The cycle extends the basic MAPE-like 
approach by adding a validation function that assesses whether a certain corrective 
activity has lead to the desired results. 

4. From that, a number of metrics that assess the “competence” of the supervision system 
can be defined, namely: 

a. Effectiveness refers to the ability of a supervision system to enforce 
countermeasures at all.  

b. Timeliness is the ability to react in time.  

c. Appropriateness means that the system has the capabilities to determine a 
sequence of actions that leads to the desired results.  

5. A supervision algorithm based on hierarchical models is sketched. The concepts of 
zooms (and images) are used to explain the relationship between different levels of 
abstraction. 

6. An outlook on further work concludes the companion document. 

We finally give a brief summary of the state of this branch of research on WP 2. The presented work 
was motivated by the need to justify a number of terms that are used informally in the discussion of 
contract and model based supervision. A number of concepts have been elaborated, but the work is 
by no means completed. Its application to hierarchical and pervasive supervision is still to be 
investigated in more details, and application examples are missing yet.  

7 Utilising Concept Drift for Pervasive Supervision  
The work presented so far deals with functions that are mainly concerned with the definition of 
supervision cycles that relate to the “here and now” of the system, i.e. with its current state and 
structure. In this chapter we leave the VSM subsystem S3, and provide a first step in the definition 
of the functionalities of the subsystem S4, which is concerned with the “there and then”, the 
environment and the future of the system under consideration. 

There is strong motivation for new perspectives on generic supervision methodologies in order to 
provide more resilience in the face of ever more complex systems. In particular, future autonomic 
systems that ideally operate with no or only a limited user input require such advanced supervision 
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to control and adapt different variables of existing systems but more importantly to supervise the 
dynamic aggregation of individual autonomous working components as found in e.g. upcoming 
service oriented architectures or SOA. This research seeks to explore the requirements for a 
supervision mechanism that is capable of observing and analyzing complex and dynamically 
constructed models that reflect a real world service or computational system. Furthermore, the 
method proposed will be able to operate at different levels of granularity with respect to the model 
supervised and as such supports the methodological framework for pervasive supervision. 
Subsequent sections explore the requirements for different observation methodologies for 
distributed and network like knowledge structures, in particular exploring how such knowledge can 
be gathered, represented and what type of mechanism can be used to detect so called drift 
behaviour within the observed data.  

A secondary objective is formed by the problem of how such drift behaviour can be used to (a) 
adapt individual components of a supervised system and (b) achieve a stable state of more global 
oriented systems, which could then freely evolve within pre-defined boundaries that describe the 
functional correctness of the system under supervision. In particular, the use of a lower and upper 
bound as well as the so called ideal state of individual variables will be explored.  

7.1 Overall Architecture 
In general, state of the art supervision methodologies and systems mainly implement a closed 
control loop approach which implements the following three concepts. 

• Monitoring: Gathering of information from the system that is under supervision. Additional 
tasks may include correlation and translation activities in order to pre-process incoming 
information to improve the quality of the monitored data and to reduce information overhead. 

• Analytics: Dedicated methods testing for certain conditions, violations etc. that are of interest 
to the supervision process. Current analytical methods often implement a static rule- or 
policy-based methodology where individual rules or policies are “hard coded” for each 
system and as such are not dynamic and often difficult to adapt to changing conditions. 
While such methods are sufficient for traditional applications working in non-distributed 
environments, future autonomic systems will require more dynamic, highly intelligent and 
fully automated services that are able to operate in distributed context aware environments 
and as such are able to not only adapt the system but, more importantly, the supervising 
system itself. 

• Reaction: the reactive part of a supervision system closes the loop to actually achieve 
supervision. That is guiding a system within the boundaries it is allowed to operate in. The 
challenge for this part is not to realise and control the so called actuators which realise 
individual corrective measures on a supervised system. On the contrary the correlation of a 
given problem that has been detected with the correct countermeasures at different levels of 
granularity can be seen as the biggest obstacle for pervasive supervision. 

The same three concepts are also relevant for a more long-term oriented and evolutionary-based 
supervision principle as envisioned here. That is with one important extension. In order to allow a 
system to evolve over time but at the same time assure the correctness of the underlying logic, 
advanced forecasting and prediction methods are required which allow the system to: 

• forecast the “direction” of a supervised system; 

• predict individual attributes based on past behaviour or on other attributes; 

• and finally, detect critical states before they actually occur. 

For that to be realised, it is necessary to build up a history of all monitored attributes of the system 
that is under supervision. Dedicated forecasting and prediction methods could then be used to 
predict future states and events based on the past behaviour of the model that is under supervision. 
Specific reaction mechanism may then be linked to the monitored model in order to register 
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dedicated corrective measures to specific parts of the system under supervision. Figure 23 depicts 
schematically the general supervision architecture and highlights individual aspects for each part 
which will be discussed throughout this section. For convenience, individual monitor or actuator 
units as relevant for a complete supervision system are not shown in Figure 23. 

 
Figure 23: Schematic Supervision Architecture, Concept Drift 

7.2 Concept of Interest 
The need for such a more long term oriented supervision approach is based on the fact that the real 
world model of individual services or the underlying data thereof are of a volatile nature and as such 
is likely to change constantly over time. Thus, continuously opening a gap between the actual model 
and the real world concept they were designed for. This problem, referred to as concept drift, implies 
the constant adaptation of intelligent services and their underlying models in order to achieve a 
stable state around some pre-defined boundaries. In order to adapt to such changes effectively a 
supervision mechanism needs to incorporate a computational model of the real world problem they 
were originally designed for. Simplified, a concept of interest reflects the underlying model of a given 
service or application in a machine readable format. Due to the fact that a concept of interest may 
depend on a hidden or very complex context it is often extremely difficult to design and implement 
them, let alone the modelling of the system that is intended to supervise it. Another general problem 
within this area is the handling of noisy data (or even irrelevant attributes) as a supervising system is 
initially doomed to react on any type of data, relevant or not. This problem can be particular 
hazardous as it may cause oversensitivity or insensitivity for the supervision systems with respect to 
their adaptability for changing conditions by erroneously interpreting noise as a type of false 
behaviour. Finally the necessity to allow for virtually any type of data as well as structure forms 
another challenge. 

7.3 Modelling 
As mentioned, the dynamic modelling and population of individual concepts of interests can be very 
difficult. This is mainly due to the fact that the type and structure of the system under supervision is 
normally not known beforehand. Furthermore, as the system under supervision may change the 
underlying monitoring model has to change too. Another problem is the handling of the potentially 
very large amount of properties that are required to reflect even relatively small concepts of interests 
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and, furthermore, the implementation, adaptation and constant supervision of relationships among 
individual properties can be particularly difficult.  

Relevant requirements for a system suitable for the modelling of such concepts of interests can 
therefore be drawn upon the following criteria: 

Intrinsic / Extrinsic Supervision: The system as well as individual variables to be supervised may 
exist in a distributed rather than in a localised environment which calls for different mechanisms that 
are able to operate in a centralised as well as in a decentralised fashion. 

Cascading: The system should not be limited be any structural or conceptual boundaries in a way 
that it needs to be able to handle different type of variables, different relational concepts among 
them as well as different supervision goals at different levels of granularity. 

Attribute Correlation: Individual variables may be correlated into higher, more meaningful 
concepts that are more suitable for later evaluation. 

Context History: A history of the variables under supervision has to be created in order to analyse 
drift behaviour of different kinds. Algedonic signals such as heartbeats signals may be used to build 
up such a history given that a continuous stream of data can be provided.  

Overall Architecture: Although outside the scope of this section it has to be stressed that 
advanced configuration & feedback mechanisms are key to any supervision architecture.  

Within CASCADAS it is envisioned that the concept of knowledge networks as designed by WP5 is 
reused for the modelling of such concepts of interests. Figure 24 depicts such a modelling structure 
where individual variables are accessed via the concept of knowledge atoms thus feeding 
information into the supervision system. Linking individual atoms together via the concept of 
knowledge containers provides a flexible mechanism to correlate individual information into higher 
concepts and as such provide general supervision support at different levels of granularity based on 
the hierarchy of the supervised model. Finally, adding a dedicated service to each atom provides the 
functionality to build up a history of relevant attributes to be used by dedicated forecasting and 
prediction mechanism 

 
Figure 24: Monitoring Component for Concepts of Interests 

Utilising the concept of knowledge networks for the modelling of individual concepts of interests is 
based on two design facts of the overall CASCADAS framework but in particular the ACE model. 
Firstly, observable events or attributes for supervision may be extracted from the self-model or from 
the specific-model of individual ACE’s, see specification on ACE’s (WP1). Secondly, due to the fact 
that knowledge atoms (as well as other KN components) will be realised via ACE’s, both models 
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(the self or the specific) may expose the atom interface to publicise individual attributes that are of 
interest for a specific supervision task as identified via the supervision contract model outlined 
earlier. Therefore, once a contract is established between any number of ACE’s (or their underlying 
model) a dedicated and private knowledge network may be constructed which only serves the 
supervision contract it is created for. Simultaneously, standardised methods which are part of the 
general knowledge network toolkit may be registered to this network to provide additional 
functionality e.g. the logging of attributes to build up a history of past events. This will be made 
possible via the service handler concept (see WP5, Building Knowledge Networks) which allows one 
to dynamically extend the business logic of each network component. Thus specialised supervision 
mechanism developed within the scope of WP2 may be used via the network framework provided 
by WP5 and vice versa. 

7.4 Monitoring 
Independent of the technique used to monitor individual source the goal can be summarised as to 
collect (a) a pair ω = (α, t), where α is the observed value and t a timestamp referring to the time the 
value / event has been observed. As visualised in Figure 24, a registered history service is then able 
to build up a context history of the observed source such as θ = ω1, ω2, ω3, ... 

Despite the fact that internal knowledge network methods will be used to actually access relevant 
variables of individual concepts of interest’s three distinct monitoring mechanisms have been 
identified to be relevant. These are: 

• Event Based Monitoring: The observed source posts relevant information at pre-defined 
intervals or at certain events (e.g. the value of the observed attribute has changed) to a 
centralised monitoring unit. 

• Request Based Monitoring: A centralised monitoring unit requests at pre-defined intervals 
or at certain events (e.g. an outside alert) requests relevant values from observed sources. 

• Embedded Monitoring: Individual components provide the functionality to monitor 
themselves.  

Table 3 evaluates the three monitoring techniques based on a host of criteria that have been 
identified to be relevant for the CASCADAS framework as a whole but in particular for the 
supervision framework. As shown, none of the techniques can be identified as to be best suitable. 
While event-based and request-based monitoring techniques promote lightweight components and 
good attribute correlation, and are reasonably easy to control as well as configure, embedded 
monitoring allows for a decentralised system, a built in cascading mechanism, fast reaction times 
and basically no delay in monitoring whatsoever.  

Monitoring Technique  

Event Based Request Based Embedded 

Decentralised Monitoring No No yes 

Lightweight Components Yes Yes no 

Controllability & 
Configurability Medium Good difficult 

Time to React Slow Slow fast 

Monitor Delay Medium High none 

Complexity Medium medium high 
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Attribute Correlation Possible difficult 

Cascading No No Build-in 

Table 3: Summary, Monitoring Techniques 

7.5 Analytics for Concept Drift Detection 
As mentioned earlier, a concept of interest is a phenomenon that describes a real world model and 
is defined by underlying contextual information or raw data. By nature, it is likely to change over time 
which is referred to as concept drift. Drift may occur in the underlying concept of interest if it: 

• is not static e.g. dynamic models 

• can not be described in its entirety e.g. incomplete models 

• if its values are subject to change in any way e.g. changing context 

In general and for real world systems, concept drift can not be avoided and will occur in one way or 
the other. When dealing with concept drift the following considerations should be taken into account. 

• Batch learning is only useful for initialisation procedures or off-line analytics. 

• On-line learners are required for “working” systems. 

• Tracking concept drift on-line requires a learner to continually monitor the context defined by 
its “concept of interest” and ultimately adjust itself if necessary. Consequently, the principal 
task for such a learning system is to incrementally learn about changing contexts without 
being explicitly informed about them. 

• Finally, a higher oriented system needs to exist and be capable of realising reactive 
measures in order to compensate for drift behaviour. 

7.6 Types of Concept Drift 
For most systems two types of concept drifts are relevant, firstly continuous concept drift which may 
be further divided into slow and moderate drifts (also referred to as concept evolution) depending on 
the speed of change and secondly, so called sudden concept drifts where abrupt and immediate 
visible changes occur [123]. Furthermore, the literature also differentiates between two different 
concepts of “concept drifts”, namely virtual and real concept drift [126]. While virtual concept drifts 
only depend on changing operational data distributions, real concept drifts may also depend on any 
change of the underlying context. Whatever the case either one requires the update of the reflecting 
model and therefore the execution of some reactive part that adapts relevant components of the 
system under supervision.  

7.7 Detecting Drift Behaviour 
Based on the two types of drift behaviour identified above three distinct analytical methods have 
been identified. These are: 

Current State (Sudden drift behaviour): Analysing the current state of α with respect to its own 
value / state and / or with respect to pre-defined boundaries9 as specified by (β-, β=, β+). 

Forecasting (Visible, continues drift behaviour): Analysing IF and at what time t α reaches e.g. a 
critical state as specified by pre-defined boundaries. 
                                                      
9 See Section 7.7.1  Boundaries
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Prediction (Hidden, continues drift behaviour): Predicting α for time t + n based on: θ or more 
interestingly based on other variables that are correlated to a given α. 

7.7.1 Boundaries 

Identifying the general ‘path’ of a system and as such drift behaviour is a powerful method to identify 
if a system slowly but continually moves into a specific direction or towards an unwanted state. The 
system is indifferent to whether the state represents only an annoyance or more seriously a critical 
situation of the system under supervision. In order to (a) identify if a system is in an illegal state; (b) 
predict the time it takes to reach an illegal state; or (c) to self–organise it around an ideal state which 
is either pre-defined or the mean of its boundaries. Thus, the boundaries of a given concept of 
interest specify the states a system can evolve in without violating its general purpose.  

Lower and Upper Bound. As depicted in Figure 25, the lower and upper bound (β-, β+) define the 
borders a system can evolve (operate) in. Overlaid trends would then allow predicting long term 
directions so that out of bound violations could be identified at an early state. If a system violates the 
boundaries, as shown at the end of the time line, a possible alarm may be triggered or corrective 
measures may be induced. Note that individual lower and upper bounds do not need to be static. 
Depending on a changing context individual boundaries may change as well. 
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Figure 25: Lower and Upper Bound 

Ideal State. More interesting in the context of autonomic computing is the organisation of a system 
around a so called ideal state, β=, which is situation a system should attempt to achieve. For 
instance, an autonomic system regulating the temperature of a building has to react on a multitude 
of factors, e.g. outside temperature, number of people in the building, open windows, etc. 
Nevertheless, based on its configuration its ultimate goal could be as simple as “keeping the 
temperature at 27 degree Celsius”. In this case the ideal state of is reflected directly by its goal. 
Never mind the fact that it would be pretty hot in that building. 
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Figure 26: Ideal State 

Figure 26 extends Figure 25 with an ideal state threshold where a supervised system attempts to 
achieve a stable state around β=, which in this case is around 27 degrees Celsius. The main 
advantage for such supervision is that relevant countermeasures could be configured more 
precisely which is due to the fact that the difference between the current state and the ideal state is 
known. Considering any number of micro supervision systems that are capable of self-organising 
themselves around a stable state then the overall supervision system too should be able to operate 
around a stable state. 

7.7.2 Summary 

Table 4, shows a summary of the identified methods that can be used to detect drift behaviour. As 
seen each method is relevant for identifying either type of drift behaviour. For numerical values such 
behaviour can be detected using different mathematical and statistical methods. For symbolic 
values this may be more difficult, in particular if the complete set of symbolic values and their 
relationship to each other is not known beforehand. As for a predictive mechanism, a host of 
different techniques is available to analyse complex data structures. In particular neural networks, 
support vector machines, associative and sequential patterns discovery algorithms promise to be 
valuable when testing for drift behaviour in complex data structure. Nonetheless, the suitability of 
individual methods needs to be evaluated carefully and the selection thereof may depend on 
specific scenarios. 

 Current State Forecasting Prediction 

Sudden Concept Drift Relevant to detect Relevant to predict
Continues Concept 

Drift Relevant to detect Relevant to predict

History n/a Required 

Predictive features are 
relevant for complex 

structures 

Boundaries Useful but not required 

Numeric Values Mathematical Functions Statistical Methods Depending on the type 
of algorithm used 
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Symbolic Values Difficult (Set of initial values and ranking 
thereof is required) 

Complex Structures Difficult Difficult Difficult 

Table 4: Summary, Concept Drift 

7.8 Reaction 
Based on the closed loop approach, the reaction part of a supervision process is concerned with the 
identification, configuration and execution of relevant measures to counteract incorrect behaviour or 
to invoke a specific recovery mechanism. With respect to the discussed monitoring and analytical 
techniques discussed so far two possible reaction mechanisms are deemed relevant.  

• Direct Reaction: Corrective measures are invoked whenever an illegal state or violation is 
detected. This mechanism is particularly relevant for autonomous micro-supervision systems 
that are fully aware of what to supervise, how to supervise it and finally how to react if 
something goes wrong. 

• Descriptive Reporting: If a system is not able to react on an illegal state or violation or if a 
system is forced to invoke countermeasures on a more global aspect of a system then 
individual components may choose to report their current ‘health’ to conceptually higher 
oriented supervision components. Obviously, such a reporting mechanism should be as 
complete as possible containing information about the sender, the fault, possible reasons (if 
the fault already has been analysed locally) and if known, relevant corrective measures.  

Both mechanisms may be realised in a centralised way where possible corrective measures are 
identified and executed via a centralised system or, alternatively, in a decentralised system that is 
embedded, where individual components have full control to execute corrective measures. The 
latter obviously requires that each component is aware of the reactive measures it can invoke. 

7.9 Summary 
While the problem of concept drift is only one possible method to allow for long term supervision, the 
concept of interest and the real world problem they reflect are key to enable autonomic services to 
self evolve in context aware environments.  

The main problem in this area is that a system under supervision can, at different levels of 
granularity, contain any type of information. It is therefore not possible to create a generic evaluation 
function that is capable of evaluating any type of information. This is based on the fact that an 
evaluation value is likely to be meaningless rather than due to different types of information. Thus, it 
may be better to allow a system to try and self organise itself in a way that micro versions of the 
whole supervision system exist at different levels. If such micro supervision systems maintain a 
stable state, the overall system should be stable too. On the other hand, if this state changes in any 
way, a system may recognise this as odd behaviour and may react on this. Realising a current state 
analysis combined with more advanced forecasting and prediction mechanisms will allow the 
detection of sudden as well as gradual drift behaviour. If embedded in a virtual realisation of a 
system under supervision such drift behaviour could be detected at early stages and effective 
countermeasures or a fail back mechanism could be invoked.  

Within this section the requirements for such a system have been discussed and possible directions 
have been outlined. Subsequent steps will include the realisation of individual components in order 
to directly embed a supervision mechanism into individual components of a system under 
supervision. Finally the use of predictive methods will be explored in an attempt to predict critical 
states of important variables based on their own history or, more importantly, based on other 
variables altogether. 
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8 Reference Software Architecture 
In this chapter, we introduce the software architecture that implements the supervision approach 
discussed in Section 2. First of all, we introduce the software components that are needed for the 
supervision and the relations among them. Then, we show how to distribute the entire set of 
components onto the levels of the Viable System Model. We validate identified components and 
relations through a simple example, which is a simplified version of the case study on 
advertisements proposed by WP 6. The last part of this section describes a possible implementation 
for the proposed architecture based on the event-based paradigm. 

 

 
Figure 27. Components of the Supervision System 

8.1 Components and Relations 
The Sensors capture the data from ACEs, and the communications among them. They also send 
monitored data to the other components of the supervision system. The Correlator analyzes the 
history of monitored data to construct a coherent picture of the supervised system. This component 
has a repository of collected information and a reasoner to extract important information from 
collected data. The Assessor creates an abstract model of the system under supervision based on 
monitored data and correlation analysis. It is also able to detect if the status of single or composed 
elements is ”correct”. As soon as a problem is detected, the Assessor declares it. This means that 
it can detect both the status of a single element under supervision and problems with the 
environment of the system under supervision. 

The Planner elaborates the set of actions that must be executed on the supervised system when 
the Assessor declares a problem. It uses the data received from both the Correlator and the 
Assessor. The Effector simply translates planned recovery actions into executable actions and 
messages that are then sent to the supervised components. The Predictor retrieves information 
from the Sensors, Correlator, and Planner to predict the likely behaviour of planned recovery 
actions. Like the Assessor, the Planner is also able to raise future problems to the Planner 

Independently of the allocation of each component in the environment of the supervised system, the 
main relations among these components are:  

• The tasks of the Correlator, Assessor, and Predictor are based on monitored data 
provided by the Sensors.  

• Both the Assessor and the Predictor require correlated events from the Correlator and 
planned actions from the Planner.  
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• Starting from collected information, the Assessor informs the Planner that there is a 
problem and that a reaction strategy must be executed.  

• The Planner sends the actions that must be executed on the autonomic elements to the 
Effector. 

• The Predictor requires the results from the Planner to predict their effect.  

• The Predictor uses collected information to inform the Planner about a possible future 
problem and that a reaction strategy must be executed.  

8.2  Components and Viable System Model 
The components described in the previous section fully comply with the requirements of the Viable 
System Model (VSM). Figure 28 describes how each component can be associated with the 
different levels of VSM. 

Levels S1 and S2 define the autonomic system we want to oversee and are not presented in Figure 
2. Level S3 represents the structures and controls that are put in place to establish the rules, 
resources, rights and responsibilities of the system under supervision and to provide an interface to 
the upper level. This level comprises the capability of acquiring data (Sensor), the capability of 
detecting problems (Correlator), the capability of planning necessary recovery actions to deal with 
detected problems (Planner), and the capability of executing them (Effector). 

Level S4 is responsible for looking outwards to the environment to monitor how the federation of 
components needs to adapt to remain viable. It is crucial to understand that S4 has two main 
interfaces: the interface to S3, which provides information and actuation facilities concerning the 
inner structure of a viable system, and the interface to the environment. Furthermore, S4 is 
responsible for anticipating and pro-actively adapting to future situation. In the context of 
supervision, the ability to foresee and extrapolate future problems and requirements is of major 
importance since instantaneous reaction to problems on a global distributed basis is hampered by 
communication delays and by the complexity of data correlation and problem detection. The 
Predictor is the key S4 component. It retrieves data from S3 and it also informs S5 about the status 
that the system under supervision is likely to assume in the future. It also informs S3 about the 
future behaviour of the supervised system. This way, S3 is able to anticipate the problem by means 
of appropriate recovery strategies. 
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Figure 28. Supervision components and the VSM model 

 

S5 is responsible for policy selection on the system as a whole to balance the demands from the 
different parts of the system and steer the organization as a whole. These policies are considered 
being non-technical in the sense that they are not directly represented by rules related to adaptation 
and optimization parameters (those rules are part of S3 and S4), but they define the purpose of a 
system and its intended relation to other systems in terms of general requirements. Hence, S5 
comprises the Assessor, which analyzes the vision of the system under supervision provided by the 
other levels and assesses whether planned actions and their predicted results are within an 
acceptable range.  

8.3  Example Application 
The effectiveness of the software architecture must be validated through examples. In this case, we 
have chosen the case study about smart advertisements presented in Section 4.1. In this example, 
there is a supervision system that oversees the behaviour of the Advertisement System (ADV), 
which comprises a set of mobile devices and a screen; a Distributed Virtual Blackboard (DVB) is 
used as communication bus; it is an ad-hoc network that links all mobile devices; thus, the DVB is 
the composed service. 

The internal model of the supervised system comprises four different parameters: 

• D is the maximum distance of a mobile device that must send personal data. It is a 
parameter inside the DVB. 

• N is the number of mobile devices in the range D.  
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• R is the rate with which personal data are sent. A mobile device sends its personal data 
every R milliseconds. 

• C is the current congestion level. This parameter is derived from the other parameters by the 
formula C = c*N*R, where c is a suitable constant. 

The goal of the supervision system is to regulate R and D in order to maintain C between two 
thresholds (Cmin and Cmax). The system detects the value of N from the DVB by means of a sensor. A 
suitable mathematical model evaluates whether the system is viable or not. When an abnormal 
situation is detected by the supervision system, it regulates the value of variables C and R. 

Components. Figure 29 illustrates the data exchanged among the different components in the 
example application. This is a static view of the software architecture: here we identify the 
messages exchanged among the different components to carry out the scenario described above. 

A Sensor is inserted in the DVB: it detects the value of N (number of mobile devices) and sends it to 
the supervision system. Given the previous value of N and the time of arrival of this information, the 
Correlator detects the rate of change for this variable. Afterwards it sends this information to the 
Assessor and Predictor. The Assessor evaluates whether there is a problem in the system under 
supervision by analyzing the values of N and R that come from the Sensor and Correlator. In 
particular, it calculates the value of C and detects whether it is over the threshold; moreover it 
detects whether the number of mobile devices in the range D grows too fast. Planner receives the 
detected problem from Assessor and decides how to react. This component evaluates how to adjust 
the value of variables D and R.  Effector translates the planned decisions into an executable format. 
Therefore, Effector sends messages set(r) and set(d) to the DVB. Predictor uses relations 
N~n*D and C~c*N*R to predict the effect of planned reactions. 
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Figure 29. Communication diagram of supervision component for the example scenario 
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8.4  Possible Implementation 
Before describing the proposal for implementing the software architecture, we analyze the context 
where introduced components are supposed to operate. In the general vision of supervision, there 
are three different kinds of supervision tasks. (Figure 30):  

• Embedded supervision oversees the internal behaviour of each autonomic element; 

• External supervision addresses the behaviour of each autonomic element externally; 

• Coordinated supervision controls and coordinates the overall coordination of an autonomic 
system. 

 

 
Figure 30. Levels of supervision system 

  
These tasks do not really impact the software architecture. They mainly differ in the way sensors are 
deployed and oversee the behaviour of the different parts. More precisely: 

Embedded supervision controls the common functionality of an ACE, such as GA/GN protocol. 
Sensors are embedded in the Common Part of the Message Handler and get information about the 
common functionality of an ACE. A Sensor works like an intermediary between the Message 
Handler and the Reasoning Engine to intercept the communications between the two components 
and send these data to the supervision system. 

External supervision inserts sensors in the Specific Part of the Message Handler and thus provides 
data to supervision system about the behaviour of the specific parts of the ACE. This external 
supervision controls the lifecycle of ACEs. 

Coordinated supervision, differently from the two previous options, imposes that sensors collect: (a) 
information about messages exchanged among the ACEs, (b) the status of the supervision system, 
and (c) the status of controlled ACEs. Hierarchical supervision requires that sensors be placed in 
both the interfaces of the different ACES, and controlled supervision (sub)systems. 

8.5 A Solution Based on Knowledge Networks 
To accommodate the different supervision tasks presented in the previous section, and let them be 
organized hierarchically, the supervision infrastructure must be flexible enough to manage 
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information detected by the sensors both in the different ACEs and in the supervision subsystems. 
Furthermore, the relations among identified components show that different kinds of components 
require the same information: for example the Assessor, Correlator, and Planner require 
monitored data. To cope with these requirements, the supervision system is built on top of the 
Knowledge Network developed in WP5. 

The Knowledge Network provided by WP5 provides two different features exploited by WP2. First of 
all, a way to publish specific information to a virtual knowledge layer that is accessible by other 
ACE’s. This feature allows the construction of private sub-networks that (a) serve specific (local) 
supervision tasks, (b) allows other ACE’s to serve or retrieve information from this sub-network and 
as such enables task specific knowledge provisioning. 

The Knowledge Network acts as a request-driven architecture, but provides also functions (such as 
a push functionality) that can be exploited to define event-driven concepts. An event-driven 
architecture (EDA) defines a communication paradigm for designing and implementing software 
systems in which components are loosely coupled and their interactions are governed by 
exchanging events (messages) through an intermediary event manager. Event consumers 
subscribe to the intermediary event manager for the types of events they are interested in, and 
event producers publish their events onto this manager. When the event manager receives a new 
event, it forwards it to the consumers registered for receiving it. 

This kind of architecture allows certain degrees of freedom in the definition of the supervision 
system architecture.  All the components introduced above become data/event consumers and 
data/event producers. For example, the Sensor produces data/events for the Correlator, 
Assessor, and Predictor. The Planner produces data/events for the Predictor, Assessor, and 
Effector. This model allows us to easily federate different components by registering them onto the 
Knowledge Network. Similarly if the sensors deployed in a given supervision subsystem are 
attached to the Knowledge Network, we can easily create hierarchical supervision infrastructures.  

Figure 31 shows the interactions between WP2 components and the Knowledge Network in a 
reflective manner. The KN is seen as a set of features provided to the other components. Sensors 
can insert important sensed data about the System Under Supervision into the KN through the push 
functionality provided by the KN. This data can then be retrieved by the other components of 
supervision system A through the KN. In the same way, a Sensor of the Supervision System B 
senses the events dispatched in the Supervision System A; so that, all the important data 
dispatched in Supervision System A can be analyzed by the Supervision System B. 

 
Figure 31. Data and event dispatching among Supervision System components 
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9 Summary 
This report is necessarily about “work in progress”, as in the current state of the project final results 
cannot be provided or are even desirable. As described in the initial Chapter 1, we started from an 
initial vision of a pervasive supervision architecture as described in the Viable System Model. From 
that, three main work tasks have been defined:  

1. Supervision as a service. This idea leads to the use of supervision models as contracts 
between the system under supervision and the supervision system. We developed a formal 
framework for the mathematical work with models, abstractions, and embeddings. 

2. Prediction of future situations to detect possible problem situations and to perform pro-active 
system adaptation. We presented a framework based on concepts of interest. 

3. Software development. As a first step to an implementation of the theoretically elaborated 
concepts, a high-level software architecture has been developed.  

Now since all work packages in CASCADAS are able to present initial results, the integration of the 
WP 2 activities with that of other WPs becomes possible. The following list provides a road map for 
the further work of WP 2. 

1. What are the technological pre-requisites to build and to interact with supervision perva-
sions, i.e. which abilities are required from ACEs and ACE configurations to support (a) 
monitoring and interaction, but also (b) to model and to implement a supervision architecture 
using ACEs? This question demands a close cooperation with WP 1. 

2. Self-organization (WP 3) is one of the envisioned properties of service configurations, and—
following the pervasive supervision paradigm—supervision subsystems are thus (a pervad-
ing) part of such configurations. Thus they have to follow basically the same organization 
rules than the supervised subsystems. On the other hand, interaction and modification of 
service configurations by exploiting self-organization rules is a mean to interact with those 
configurations. 

ACE configurations will not be statically formed networks but base on dynamic and 
continuously changing interrelationships. Thus a major problem is how to identify and to 
build up an internal image of the actual configuration that is needed to correctly percept 
monitored data. An accompanied question is how to define long-term trends in such an 
environment and to support pro-active self-adaptation of the supervision pervasion. 

3. From the perspective of security, supervision is of course a very critical approach. Thus co-
operation with WP 4 is required to perform supervision tasks in the presence of security 
demands. On the other hand, security modules and components are—as being software 
packages—error prone and might non-functional, add unacceptable performance bottle-
necks, etc. Thus security is by itself an application area for supervision techniques. Resolv-
ing this mutual relationship is another foreseen research topic for WP 2.  

4. Finally, as already noticed, situation-awareness is not reflected by the most existing super-
vision approaches. In CASCADAS, the concept of a knowledge network (WP 5) exists as a 
structure that intends to provide and to distribute the necessary information. How this net-
work can be exploited for supervision is yet another open issue to be investigated in more 
detail. 

5. The implementation work proposed by WP 2 has to be done in the context of one (or sev-
eral) of the application examples developed in WP 6. We will concentrate on the Behav-
ioural Advertisement example. 
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