

IST IP CASCADAS “Component-ware for
Autonomic, Situation-aware Communications,

And Dynamically Adaptable Services”
Title of the document

D2.1 - Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 1 of 78

Deliverable D2.1 - Report on Pervasive Supervision
State of the Art, Basic Algorithms and Approaches, and
Basic Supervision Architecture

 Status and Version: Final Version

 Date of issue: 2007/04/10

 Distribution: Public

 Author(s): Name Partner

 Peter H. Deussen FOKUS

 Matthias Baumgarten UU

 Rosario Alfano TI

 Luciano Baresi DEI

 Marco Plebani DEI

 Checked by: Peter H. Deussen FOKUS

 Franco Zambonelli Unimore

 Luciano Baresi DEI

 Mathias Baumgarten UU

Table of Contents
1 Introduction 3

1.1 Purpose and Scope 3
1.2 Reference Material 3

1.2.1 Reference Documents 3
1.2.2 Acronyms 8

1.3 Document History 10
1.4 Document Overview 11

2 Pervasive Supervision 13
2.1 Limitations of Current Approaches – The MAPE Example 14
2.2 Contract Based Supervision 14

2.2.1 Supervision Contracts 15
2.2.2 What Makes A Supervision Contract? 16
2.2.3 What to Do With Supervision Contracts? 16

2.3 Reference Model 17
2.4 Questions 21

3 State of the Art 22

IST IP CASCADAS “Component-ware for Autonomic,
Situation-aware Communications, And Dynamically

Adaptable Services”
Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 2 of 78

3.1 General Approaches 22
3.1.1 Comparison Summary 23
3.1.2 MAPE 23
3.1.3 Rainbow 24
3.1.4 COLV — KX, Olives, and Relatives 26
3.1.5 Willow 27
3.1.6 Nestor 30

3.2 Monitoring 31
3.2.1 Languages for the Description of Monitoring Contracts 32
3.2.2 Monitoring architectures 32
3.2.3 Conclusions 36

3.3 Evaluation, Event Correlation, and Problem Detection 37
3.3.1 Distributed Event Correlation and Self-Management System 37
3.3.2 Service-Oriented Event Correlation 38
3.3.3 Reasoning About Complex Dynamic Situations 39
3.3.4 Root-cause Analysis 40
3.3.5 Symptoms Deep Dive 40

3.4 Repair and Corrective Measures 41
3.4.1 Planning-based approaches 42
3.4.2 Architectures repair-oriented 42
3.4.3 Recovery Oriented Computing 45
3.4.4 Conclusions 46

3.5 Evolutionary Strategies 47
3.5.1 The Concept of Interest 47
3.5.2 Concept Drifts 48
3.5.3 Visualizing Concept Drifts 50

3.6 Summary and Conclusions 51
4 Application Example 51

4.1 The Behavioural Advertisement Application 52
4.2 Supervision 53
4.3 The Supervision Model 54
4.4 Supervision Procedure 55
4.5 Pervasive Supervision 56

5 Requirements 57
6 Supervision Algorithms 59
7 Utilising Concept Drift for Pervasive Supervision 62

7.1 Overall Architecture 63
7.2 Concept of Interest 64
7.3 Modelling 64
7.4 Monitoring 66
7.5 Analytics for Concept Drift Detection 67
7.6 Types of Concept Drift 67
7.7 Detecting Drift Behaviour 67

7.7.1 Boundaries 68

IST IP CASCADAS “Component-ware for Autonomic,
Situation-aware Communications, And Dynamically

Adaptable Services”
Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 3 of 78

7.7.2 Summary 69
7.8 Reaction 70
7.9 Summary 70

8 Reference Software Architecture 71
8.1 Components and Relations 71
8.2 Components and Viable System Model 72
8.3 Example Application 73
8.4 Possible Implementation 76
8.5 A Solution Based on Knowledge Networks 76

9 Summary 78

1 Introduction

1.1 Purpose and Scope
This document reports the key results and current state of the work in the CASCADAS work
package 2 (Pervasive Supervision). It provides

- an introduction to the current approach taken by WP 2

- an extensive summary of the current State of the Art

- an illustrative application example

- a collection of requirements for pervasive supervision

- a formal framework for model based supervision (in the companion document [34])

- a framework for the detection of and reaction to concept drifts

- a software architecture for supervision pervasions.

1.2 Reference Material

1.2.1 Reference Documents
[1] Canfora, G., M. Di Penta, R. Esposito, and M. L. Villani, A Lightweight Approach for QoS-Aware Ser-

vice Composition, forum paper at ICSOC 2004, IBM Technical Report RA221 (W0411-084).
[2] Dietterich, T.; Ensemble Methods in Machine Learning, , In Proceedings of the 1st International Work-

shop on Multiple Classifier Systems. (pp. 1-10). LNCS, Vol 1857, Springer-Verlag, 2000
[3] Park, J., P.Chandramohan, Static vs. Dynamic Recovery Models for Survivable Distributed Systems.

HICSS’04
[4] Patterson, D., Recovery Oriented Computing (ROC): Motivation, Definitions, Techniques, and Case

Studies. Technical report.
[5] Aamodt, A., and E. Plaza, Case-Based Reasoning: Foundational Issues, Methodological Variations,

and System Approaches, Artificial Intelligence Communications 7 (1994): 1, 39-52
[6] Agrawal, R., and R. Srikant: Fast Algorithms for Mining Association Rules, Proc. Of the 20th VLDB

Conference, Santiago, Chile, 1994
[7] Agrawal, R., and R. Srikant; Mining Sequential Patterns; Proc. Of the Int’l Conference on Data Engi-

neering (ICDE); Taipei, Taiwan, March 1995. Expanded version available as IBM Research Report
RJ9910, October 1994

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 4 of 78

[8] Agrawal, R., T. Imielinski, A. Swami; Mining Associations between Sets of Items in Massive Data-
bases; Int’l Conference on Management of Data; Proc. Of the ACM-SIGMOD; Washington D.C., May
1993, 207-216.

[9] Aha, D. W., D. Kibler, M. K. Albert, Instance-based learning algorithms, Machine Learning, 6(1), 1991,
pp 37-66.

[10] Ahmed, T. and A. Tripathi: 2003, ‘StaticVerification of Security Requirements in Role Based CSCW
Systems’. In: In 8th ACM Symposium on Access Control Models and Technologies (SACMAT 2003).
pp. 196–203.

[11] Alur, R., D. L. Dill, A Theory of Timed Automata. Theoretical Computer Science, Col. 126, 1994, pp.
183 - 235

[12] An architectural blueprint for autonomic computing, Autonomic Computing White Paper, IBM, 2004
[13] Andrews, T. et al. Business Process Execution Language for Web Services, v1.1, http://www-

106.ibm.com/developerworks/library/ws-bpel
[14] Baresi, L., and S.Guinea, Towards Dynamic Monitoring of WS-BPEL Processes. ICSOC 2005, 3rd

International Conference On Service Oriented Computing. Amsterdam, The Netherlands, December
2005

[15] Baresi, L., C. Ghezzi, S. Guinea, Smart Monitors for Composed Services”, Second International Con-
ference on Service Oriented Computing, ICSOC04, 2004.

[16] Barkley, J. F., A. V. Cincotta, D. F. Ferraiolo, S. Gavrila, and D. R. Kuhn: 1997, ‘Role Based Access
Control for the World Wide Web’. In: Proc. 20th NIST-NCSC National Information Systems Security
Conference. pp. 331–340.

[17] Bauer, E. and R. Kohavi, An empirical comparison of voting classification algorithms: Bagging, Boost-
ing, and Variants. Machine Learning, 36, 105-142, Kluwer, 1999

[18] Beer, S. , The Brain of the Firm, 2nd ed., John Wiley & Sons, 1995
[19] Beer, S. , The Heart of the Enterprise, John Wiley & Sons, 1994
[20] Bettini, C., X. Wang, J. Lin, S. Jajodia, Discovering Frequent Event Patterns With Multiple

Granularities in Time Sequences. IEEE Transactions on Knowledge and Data Engineering. 10 (2),
1998.

[21] Breiman, L. Bias, variance and arcing classifiers, Technical Report 460, University of California at
Berkeley, (996.

[22] Breiman, L.; Bagging Predictors. Machine Learning, 24:123-140,1996.
[23] Breiman, L.; Stacked Regressions. Machine Learning, 24, 49-64, 1996.
[24] Brin, S., R. Motwani, J.D. Ullman, S. Trur, Dynamic Itemset Counting and Implication Rules for Market

Basket Data. Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 255-264, Tuscon, Arizona, May 13-15 1997

[25] Broadwell, P.,Sastry, N., and Traupman, J., FIG: A Prototype Tool for Online Verification of Recovery
Mechanisms, In ICS SHAMAN Workshop 2002

[26] Brown, A., A Recovery-Oriented Approach to Dependable Services: Repairing Past Errors with Sys-
tem-Wide Undo, Technical Report. University of California.

[27] Brown, G. and J. Wyatt, J., The use of the Ambiguity Decomposition in Neural Network Ensemble
learning methods. In Proceedings of the 20th International conference on Machine learning, 2003

[28] Carzaniga, A., D.S. Rosenblum, and A.L. Wolf, Design and Evaluation of a Wide-Area Event Notifica-
tion Service, ACM Transactions on Computer Systems, 19(3):332-383, Aug 2001.

[29] CASCADAS project homepage, http://cascadas-project.org/
[30] Cholvy, L. and F. Cuppens: 1997, ‘Analyzing Consistency of Security Policies’. In: RSP: 18th IEEE

Computer Society Symposium on Research in Security and Privacy. pp. 103–112.
[31] Chomicki, J., Efficient Checking of Temporal Integrity Constraints Us- ing Bounded History Encoding.

ACM Transactions on Database Systems, 20(2):149-186, June 1995
[32] Dan, A., D. Davis, R. Kearney, R. King, A. Keller, D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and

A. Youssef. Web Services on Demand: WSLA-driven Automated Management. IBM System Journal,
Special Issue on Utility Computing, volume 43, Number 1, pages 126-158, IBM Corporation.

[33] Deussen, P. H., “Supervision of Autonomic Systems”, International Conference on Self-Organization
and Autonomous Systems in Computing and Communications (SOAS’2006), Erfurt, Germany, Sept.
20, 2006.

[34] Deussen, P. H., “Towards a Mathematical Framework for Pervasive Supervision”, Part of the
CASCADAS Milestone Deliverable D2.1, available on SVN repository as “D2.1 – Mathematical
Framework.pdf”

[35] Deussen, P. H., G. Din, I. Schieferdecker: A TTCN-3 Based Online Test and Validation Platform for
Internet Services. ISADS 2003: 177-184

[36] Deussen, P. H., G. Valetto, G. Din, T. Kivimaki, S. Heikkinen, and A. Rocha, "Continuous On-Line
Validation for Optimized Service Management" in EURESCOM Summit 2002.

http://www-106.ibm.com/developerworks/library/ws-bpel
http://www-106.ibm.com/developerworks/library/ws-bpel
http://cascadas-project.org/dokuwiki/doku.php
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Deussen:Peter_H=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Schieferdecker:Ina.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/isads/isads2003.html#DeussenDS03

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 5 of 78

[37] Deussen, P. H., I. Schieferdecker, H. Kamoda: A Methodology for Policy Conflict Detection Using
Model Checking Techniques, FORTE 2004, 24th IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems, September 2004, Madrid, Spain.

[38] Deussen, P. H., L. Baresi, M. Baumgarten, M. Mulvenna, C. Nugent, K. Curran; Towards Pervasive
Supervision for Autonomic Systems; IEEE 2006 Workshop on Distributed Intelligent Systems; Prague,
Czech Republic, June 2006.

[39] Deussen, P.H., G. Valetto, G. Din, T. Kivimaki, S. Heikkinen, and A. Rocha, Continuous On-Line Vali-
dation for Optimized Service Management, in Proceedings of EURESCOM Summit 2002, Heidelberg,
Germany, October 21-24, 2002.

[40] Din, G., H. Akihiro, I. Schieferdecker, P. H. Deussen: An Auditing System for QoS-Enabled Networks.
IEEE 3rd Intern. Workshop on Distributed Auto-adaptive and Reconfigurable Systems, Providence,
Rhode Island, USA, IEEE Press, May 2003.

[41] El-Hajj, A., and O. R. Zaïane, COFI-tree Mining: A New Approach to Pattern Growth with Reduced
Candidacy Generation, in Workshop on Frequent Itemset Mining Implementations (FIMI'03) in con-
junction with IEEE-ICDM 2003, Melbourne, Florida, USA, 19 November, 2003

[42] eTOM Overview, http://www.tmforum.org/browse.asp?catID=1648
[43] ETSI European Standard (ES) 201 873-1 V2.2.1 (2003-02 Methods for Testing and Specification

(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language
[44] Eurescom, P1108 Workflow-based On-line Validation of Complex Component Based Internet Services

- Project Conclusion and Exploitation Opportunity, 2002
[45] Eurescom, P1108 Workflow-based On-line Validation of Complex Component Based Internet Services

- Terminology, Basic concepts and Notation, 2001
[46] Eurescom, P1108 Workflow-based On-line Validation of Complex Component Based Internet Services

- Decentralized Work Flow Management System and Other Enabling Technologies, 2001
[47] Eurescom, P1108 Workflow-based On-line Validation of Complex Component Based Internet Services

- BT6.3 Evaluation Report - D6 Final, 2002
[48] Exclusive Ore Inc., Association and Sequencing, 1998 – 2000
[49] Ganek A. G. Autonomic computing: implementing the vision Keynote presentation at the autonomic

computing workshop, (AMS 2003), Seattle, WA, 25th June 2003.
[50] Garlan, D., Increasing System Dependability through Architecture-based Self-repair
[51] Garlan, D., R.T.Monroe, and D.Wile, Acme: Architectural Description of Component-Based Systems.

Foundations of Component-Based Systems. Leavens, G.T., and Sitaraman, M. (eds). Cambridge Uni-
versity Press, 2000 pp. 47-68.

[52] Garlan, D., S. Cheng, A. Huang, B. Schmerl, P. Steenkiste, “Rainbow: Architecture-based Self-
adaptation with Reusable Infrastructure”, IEEE Computer, 37(10):46-54, Oct. 2004.

[53] Hall, R.S., D.M. Heimbigner, A. van der Hoek, and A.L. Wolf. An Architecture for Post-
DevelopmentConfiguration Management in a Wide-Area Network. In Proceedings of the 1997 Interna-
tional Conference on Distributed Computing Systems, pages 269–278. IEEE Computer Soci-ety, May
1997.

[54] Hall, R.S., D.M. Heimbigner, and A.L. Wolf. A Cooperative Approach to Support Software Deployment
Using the Software Dock. In Proceedings of the 1999 International Conference on Software Engineer-
ing, pages 174–183. Association for Computer Machinery, May 1999.

[55] Hall, R.S., D.M. Heimbigner, and A.L. Wolf. Evaluating Software Deployment Languages and Schema.
In Proceedings of the 1998 International Conference on Software Maintenance, pages 177– 185.
IEEE Computer Society, November 1998.

[56] Han, J., and J. Pei; Mining Frequent Patterns by Pattern-Growth: Methodology and Implications; ACM
SIGKDD, Dec. 2000.

[57] Han, J., J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. Hsu; FreeSpan: Frequent Pattern-Projected
Sequential Pattern Mining. Int. Conf. Knowledge Discovery and Data Mining (KDD2000), Boston,
2000, pp 355 - 259

[58] Han, J., J. Pei, Y. Yin. Mining Frequent Patterns without Candidate Generation, Proc. 2000 ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD'00), Dallas, TX, May 2000

[59] Hanemann, A, D. Schmitz, Service-Oriented Event Correlation—Workflow and Information Modeling
Approached, Munich Network Management Team, Leibniz Supercomputing Center, 2004

[60] Heimbigner, D., N.Arshad, and A.L.Wolf. A Planning Based Approach to Failure Recovery in Distrib-
uted Systems. WOSS 2004

[61] Heimbigner, D., N.Arshad, and A.L.Wolf. Dealing with Failures during Failure Recovery of Distributed
Systems. DEAS 2005

[62] Horn, P. Autonomic computing: IBM perspective on the state of information technology, IBM T.J. Wat-
son Labs, NY, 15th October 2001. Presented at AGENDA 2001, Scottsdale, AR (available at
http://www.research.ibm.com/autonomic/); 2001.

http://www.tmforum.org/browse.asp?catID=1648

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 6 of 78

[63] IBM, BEA, Microsoft, SAP, Sonic Software, and VeriSign, 2004. Web Services Policy Framework
(WS-Policy), September 2004 (www6.software.ibm.com/software/developer/library/ws-policy.pdf)

[64] ITIL & SERVICE MANAGEMENT PORTAL, http://www.itil-service-management-shop.com/index.htm
[65] Jakobson, G. and M. Weissman. Real-Time Telecommunication Network Management: Extending

Event Correlation with Temporal Constraints. Integrated Network Management IV, IEEE Press, 1995.
[66] Jakobson, G., J. Buford, L. Lewis, Towards an Architecture for Reasoning about Complex Event-

Based Dynamic Situations, Technical Report, Altusys Corp, Southern New Hampshire University,
USA, 2004

[67] Joshi, N., J. Pilgrim, B. Subramanian, B. Topol, Use autonomic computing for problem determination
Perform root-cause analysis with the Autonomic Management Engine and ABLE components,
http://www-128.ibm.com/developerworks/autonomic/library/ac-able/

[68] Kaiser, G., J. Parekh, P. Gross, G. Valetto, "Kinesthetics eXtreme: An External Infrastructure for Moni-
toring Distributed Legacy Systems." Autonomic Computing Workshop -- IEEE Fifth Annual Interna-
tional Active Middleware Workshop, Seattle, USA, June 2003.

[69] Kaiser, G., J. Parekh, P. Gross, G. Valetto, “Retrofitting Autonomic Capabilities onto Legacy Systems”,
Journal of Cluster Computing, 2005 (in press)

[70] Kephart J, Chess D. The vision of autonomic computing. IEEE Comput 2003;36:41–50.
[71] Klinkenberg, R., Learning Drifting Concepts: Example Selection vs. Example Weighting. In Intelligent

Data Analysis (IDA), Special Issue on Incremental Learning Systems Capable of Dealing with Concept
Drift, Vol. 8, No. 3, pp 281-300, 2004.

[72] Knight, J. C., D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P. Devanbu, M. Gertz, The Willow architec-
ture: comprehensive survivability for large-scale distributed applications, Intrusion Tolerance Work-
shop, The International Conference on Dependable Systems and Networks, Washington, DC, June
2002

[73] Knight, J. C., K. Sullivan, M. Elder, C. Wang. "Survivability Architectures: Issues and Approaches" In
Proceedings: DARPA Information Survivability Conference and Exposition. IEEE Computer Society
Press. Los Alamitos, CA, January 2000, pp. 157-171.

[74] Knight, J., D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P. Devanbum, “The Willow Survivability Ar-
chitecture”, Proc. 4th Information Survivability Workshop (ISW-2001), Vancouver, B.C., pp. 18 – 20,
2002.

[75] Konstantinou, A.V., Y. Yemini, “Programming Systems for Autonomy”, in Proc. IEEE Autonomic Com-
puting Workshop, Active Middleware Services (AMS 2003), Seattle, Wa., USA, pp. 186-196, 2003.

[76] Konstantinou, A.V., Y. Yemini, and D. Florissi, “Towards Self-Configuring Networks”, in Proc. DARPA
Active Networks Conference and Exposition, San Francisco, Ca., USA, pp. 143 – 156, 2002.

[77] Kubat M., and G. Widmer, Adapting to drift in continuous domains, Tech. Report ÖFAI-TR-94-27, Aus-
trian Research Institute for Artificial Intelligence, Vienna, 1994

[78] LaPadula, L. J. and D. E. Bell: 1973, ‘Secure Computer Systems: A Mathematical Model’. Technical
Report 2547, Vol. II, MITRE.

[79] Lazovik, A., M. Aiello, M. Papazoglou. Associating Assertions with Business Processes and Monitor-
ing their Execution, Second International Conference on Service Oriented Computing, ICSOC04.

[80] Lin, C., C. Yun, M. Chen, Utilizing Slice Scan and Selective Hash for Episode Mining; 7th ACM
SIGKDD Int. Conference on Knowledge Discovery and Data Mining (KDD01), August 26, 2001, San
Francisco, CA, USA

[81] Ludwig, H., A. Dan, and R. Kearney. Cremona: An Architecture and Library for Creation and Monitor-
ing of WS-Agreements. Second International Conference on Service Oriented Computing, ICSOC
2004

[82] Lupu, E. and M. Sloman: 1999, ‘Conflicts in Policy-based Distributed Systems Management’. IEEE
Transactions on Software Engineering — Special Issue on Inconsistency Management 25(6), 852–
869.

[83] Mahbub, K., and G. Spanoudakis. "A framework for Requirements Monitoring of Service Based Sys-
tems", Proceedings of the 2nd International Conference on Service Oriented Computing - ICSOC
2004

[84] Mandell, D.J., and S.A.Mcllraith. Adapting BPEL4WS for the Semantic Web: The Bottom-Up Approach
to Web Service Interoperation, in Proceedings of ISWC 2003, Lecture Notes In Computer Science,
Springer-Verlag, pp. 227-241.

[85] Mandell, D.J., and S.A.Mcllraith. Adapting BPEL4WS for the Semantic Web: The Bottom-Up Approach
to Web Service Interoperation, in Proceedings of ISWC 2003, Lecture Notes In Computer Science,
Springer-Verlag, pp. 227-241.

[86] Mannila, H., and H. Toivonen: Discovering generalized episodes using minimal occurrences. 2nd In-
ternational Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, Oregon, August
1996. AAAI Press, p. 146-151.

http://www.itil-service-management-shop.com/index.htm
http://www-ai.cs.uni-dortmund.de/auto?self=$Publication_1068097214272
http://www-ai.cs.uni-dortmund.de/auto?self=$Publication_1068097214272
http://www-ai.cs.uni-dortmund.de/auto?self=$Publication_1068097214272
http://www-ai.cs.uni-dortmund.de/auto?self=$Publication_1068097214272

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 7 of 78

[87] Mannila, H., H. Toivonen, A. I. Verkamo: Discovering Frequent Episodes in Sequences. First Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’95), Montreal, Canada, August
1995. AAAI Press, pp 210 – 215.

[88] Mannila, H., H. Toivonen, A.I. Verkamo. Discovery of Frequent Episodes in Event Sequences, Data
Mining and Knowledge Discovery, 1:259 289, 1997.

[89] Martin-Flatin, J. P., Distributed Event Correlation and Self-Managed Systems, CERN, IT Dept.
[90] Martin-Flatin, J.-P., Distributed Event Correlation and Self-Managed Systems, CERN, IT Dept.
[91] Masseglia, F., F. Cathala, P.Poncelet; The PSP Approach for Mining Sequential Patterns. 2nd Euro-

pean Symposium on Principles of Data Mining and Knowledge Discovery (PKDD98), France, 1998, pp
176 – 184

[92] Mever, M., The features and facets of the Agent Building and Learning Environment (ABLE),
http://www-128.ibm.com/developerworks/autonomic/library/ac-able1/

[93] Miseldine, P., A. Taleb-Bendiab, "Rainbow: An Approach to Facilitate Restorative Functionality within
Distributed Autonomic Systems", PGNet 2005, Liverpool, 2005

[94] Moffett, J. D.: 1998, ‘Control Principles and Role Hierarchies’. In: ACM Workshop on Role-Based Ac-
cess Control. pp. 63–69.

[95] Ohsie, D., A. Mayer, S. Kliger, and S. Yemini, "Event Modeling with the MODEL Language : A Tutorial
Introduction," SMARTS (System Management Arts), 14 Mamaroneck Ave., White Plains, New York,
10601, White Plains.

[96] OLIVES Home Page: www.eurescom.de/public/projects/P1100-series/P1108.
[97] OMG, "Object Constraint Language Specification," Object Management Group (OMG) ad/97-08-08

(version 1.1), September 1, 1997 1997.
[98] Oppenheimer, D., J. Albrecht, D. Patterson, and A. Vahdat. Design and Implementation Tradeoffs for

Wide-Area Resource Discovery. 14th IEEE Symposium on High Performance Distributed Computing
(HPDC-14), July 2005.

[99] Papazoglou, M., M. Aiello, M. Pistore, and J. Yang. XSRL: A Request Language for Web Services
(www.webservices.org).

[100] Park, J.-S., M.-S. Chen, P. S. Yu, Using a Hash-Based Method with Transaction Trimming for Mining
Association Rules, IEEE Trans. On Knowledge and Data Engineering, Vol. 9, No. 5, October 1997, pp.
813-825.

[101] Pautasso, C., and G. Alonso. Visual Composition of Web Services. Proceedings of the 2003 IEEE
Symposia on Human Centric Computinf Languages and Environments (HCC 2003), Auckland, New
Zealand, October 2003.

[102] Pautasso, C., JOpera: An Agile Environment for Web Service Composition with Visual Unit Testing
and Refactoring. VL/HCC 2005: 311-313

[103] Pei, J., J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, PrefixSpan: Mining Se-
quential Patterns Efficiently by Prefix-Projected Pattern Growth. In Proceedings of the 2001 Interna-
tional Conference on Data Engineering (ICDE'01), Heidelberg, Germany, April 2001.

[104] Perazolo, M., Symptoms deep dive, Part 1: The autonomic computing symptoms format Know thy
symptoms, heal thyself,
http://www-128.ibm.com/developerworks/autonomic/library/ac-symptom1/

[105] Perazolo, M., Symptoms deep dive, Part 2: Cool things you can do with symptoms Use common sce-
narios and patterns for increased autonomic computing,
http://www-128.ibm.com/developerworks/autonomic/library/ac-symptom2/

[106] Pratt, K. B., and G. Tschapek: Visualizing concept drift; Int. Conf. on Knowledge Discovery and Data
Mining KDD-2003; pp 735-740

[107] Ribeiro, C., A. Zuquete, P. Ferreira, and P. Guedes: 2000, ‘Security Policy Consistency’. In: Workshop
on Rule-Based Constraint Reasoning and Programming.

[108] Roach, A. B., Session Initiation Protocol (SIP)-Specific Event Notification, RFC 3265, June 2002
http://www.ietf.org/rfc/rfc3265.txt

[109] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M. and
E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, June 2002 http://www.ietf.org/rfc/rfc3261.txt

[110] Salganicoff, M., Tolerating concept and sampling shift in lazy learning using prediction error context
switching, AI Review, Special Issue on Lazy Learning, 11 (1-5), 1997, 133-155

[111] Schlimmer, J.C., and R. H. Granger, Incremental learning from noisy data, Machine Learning, 1(3),
1986, pp 317-354.

[112] Schmerl, B., Aldrich J., Garlan D., Kazman R., and Yan H., Discovering Architectures from Running
Systems. In IEEE Transaction on Software Engineering, Vol.32(7), July 2006.

[113] Sen, S., A. Vardhan, G. Agha, and G. Rosu. Efficient Decentralized Monitoring of Safety in Distributed
Systems, Proceedings of the 26th International Conference on Software Engineering, 23-28 May
2004, Edinburgh, Scotland, pages 418-427.

http://www.cms.livjm.ac.uk/taleb/Publications/05/PM_pgnet2005.pdf
http://www.cms.livjm.ac.uk/taleb/Publications/05/PM_pgnet2005.pdf
http://www.cms.livjm.ac.uk/pgnet2005
http://www.eurescom.de/public/projects/P1100-
http://www.webservices.org/
http://www-128.ibm.com/developerworks/autonomic/library/ac-symptom2/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tschapek:Gleb.html
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3265.txt

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 8 of 78

[114] Shanahan, M., The event calculus explained, In Artificial Intelligence Today, LNCS: 1600, 409-430,
Springer.

[115] Smirnov, M., “Autonomic Communication – Research Agenda for a New Communication Paradigm”,
Whitepaper, Fraunhofer Institute for Open Communication Systems (FOKUS), 2004, available at
http://www.fokus.gmd.de/web-dokumente/Flyer_engl/Autonomic-Communicatin.pdf.

[116] SNMP http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/snmp.htm
[117] Spanoudakis, G., and K. Mahbub. "Web-service requirements monitoring: Towards a framework

based on Event Calculus", Proceedings of the 19th IEEE International Conference on Automated
Software Engineering (ASE 2004), pp. 379-384

[118] Srikant, R., R. Agrawal; Mining Sequential Patterns: Generalizations and Performance Improvements,
5th Int. Conf. on Extending Database Technology (EDBT), France, 1996. Expanded version available
as IBM Research Report RJ 9994, 1995.

[119] Stanley, K.O., Learning concept drift with a committee of decision trees, Tech. Report UTAI-TR-03-
302, Department of Computer Sciences, University of Texas at Austin, USA, 2003

[120] System Management Arts, "MODEL Language Reference Manual," White Plains, NY 1996.
[121] Toivonen, H., Sampling large databases for association rules; 22th International Conference on Very

Large Databases (VLDB’96), 134 – 145, Mumbay, India, September 1996. Morgan Kaufmann.
[122] Tosic, V., W. Ma, B. Pagurek, B. Esfandiari, Web Services Offerings Infrastructure (WSOI) - A Man-

agement Infrastructure for XML Web Services. In Proc. of NOMS (IEEE/IFIP Network Operations and
Management Symposium) 2004, Seoul, South Korea, April 19-23, 2004, IEEE, 2004, pp. 817-830

[123] Tsymbal, A., The Problem of Concept Drift: Definitions and Related Work,
www.cs.tcd.ie/ publications/tech-reports/reports.04/TCD-CS-2004-15.pdf; 2004

[124] Valetto, G., G. Kaiser, “Using Process Technology to Control and Coordinate Software Adaptation”, in
Proc. Int. Conf. on Software Engineering (ICSE 2003), pp. 262 – 272, 2003.

[125] Wang H., W. Fan, P. S. Yu, J. Han, Mining concept-drifting data streams using ensemble classifiers,
Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining KDD-2003, ACM Press,
2003, 226-235

[126] Widmer, G., and M. Kubat, Learning in the presence of concept drift and hidden contexts; Machine
Learning 23 (1), 1996, pp 69-101

[127] Wile, D.S., Patterns of Self-Management, WOSS’04
[128] WS-Agreement specification http://www.gridforum.org/Public_Comment_Docs/Documents/Oct-

2005/WS-AgreementSpecificationDraft050920.pdf
[129] WSDM http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
[130] Zaki, M. J., Scalable Algorithms for Association Mining; IEEE Transactions on Knowledge and Data

Engineering, Vol. 12, No. 3, May/June 2000, pp 372-390.
[131] Zaki, M. J., SPADE: An Efficient Algorithm for Mining Frequent Sequences; in Machine Learning Jour-

nal, special issue on Unsupervised Learning (Doug Fisher, ed.), Vol. 42 Nos. 1/2, Jan/Feb 2001, pp
31-60.

[132] Zeng, L., B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng. Quality driven web service compo-
sition. Proceedings of WWW 2003. pages 411-421

[133] Zeng, L., B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng. QoS-Aware Middleware for Web
Services Composition. IEEE Transaction of Software Engineering 30(5), pages 311-327

1.2.2 Acronyms
ABLE Agent Building and Learning Environment

ACE Autonomic Communication Element

ADL Architecture Description Language

API Application Programmer Interface

APRM Agreement Protocol Role Management

ASRM Agreement Service Role Management

BPEL Business Process Execution Language

BPEL4WS BPEL for Web Services

http://www.fokus.gmd.de/web-dokumente/Flyer_engl/Autonomic-Communicatin.pdf
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/snmp.htm

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 9 of 78

CBR Case Based Reasoning

CDL Constraint Definition Language (Nestor)

COLV Continuous On-line Validation

Cremona Creation and Monitoring of Agreements

CSM AP Customer Service Management Access Point

DAP Directory Access Protocol

DB Data Base

Dynamo DYNAmic Monitor

EC Event Correlation

eTOM Enhanced Telecom Operations Map

GPS Global Positioning System

GUI Graphical User Interface

IDL Interface Definition Language

IT Information Technology

ITIL IT Infrastructure Library

JVCL JOpera Visual Composition Language

KX Kinesthetics eXtreme

LWF Local Weighted Forgetting

MAPE Monitor—Analyze—Plan—Execute

MIB Management Information Base

OCL Object Constraint Language

Olives Online Validation Enactment System (Eurescom project P1108)

PDA Personal Digital Assistant

PDL Policy Definition Language (Nestor)

PECS Prediction Error Context Switching

PMB Policy Based Management

PMML Predicative Model Markup Language

PS Presence Server

PT-DTL Past Time Distributed Temporal Logic

PT-LTL Past Time Linear Temporal Logic

QoS Quality of Service

RDL Resource Definition Language (Nestor)

RDS Resource Directory Server

ROC Recovery Oriented Programming

SC System Controller (Rainbow)

SIP Session Invitation Protocol

SLA Service Level Agreement

SLM Sublevel Manager (self-managed systems)

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 10 of 78

SMS Short Message Service; also Self-Managed System

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

TLM Top Level Manager (self-managed systems)

TMF Telemanagement Forum, also Time-Windowing Forgetting

TTCN-3 Testing and Test Control Notation (3rd Edition)

VSM Viable System Model

WF Manager Workflow Manager

WP Workpackage

WS Web Service

WSDL Web Service Definition Language

WSDM Web Services Distributed Management

WSLA Web Service Level Agreement

WSOL Web Service Offerings Language

XML eXtendeble Markup Language

XSAL XML Service Association Language

XSRL XML Service Request Language

1.3 Document History

Version Date Authors Comment

1.0 18/12/2006 P. H. Deussen, M.
Baumgarten, L. Baresi, M.
Plebani, R. Alfano

Compiled document,
harmonization of
contributions already done.

1.1 18/01/2007 P. H. Deussen, M.
Baumgarten, L. Baresi, M.
Plebani, R. Alfano

Reviewed version based on
comments from
F.Zambonelli, M.
Baumgarten, L. Baresi

1.2 10/04/2007 P. H. Deussen, M.
Baumgarten, L. Baresi, M.
Plebani, R. Alfano

Final adjustments according
to review comments

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 11 of 78

1.4 Document Overview
The course of developments done in WP2 and their relationships can be visualized by means of the
following Figure 1.

VSMVSM SotASotA

Math.
Framework

Math.
Framework

Case StudyCase Study R
equirem

ents
R

equirem
ents

Software
Architecture
Software

Architecture

Concept
Drift

Concept
Drift

Contracts and
model based
Supervision

Contracts and
model based
Supervision

MM

Figure 1 - Progress in WP2

The conceptual set-up of the notion of supervision and supervision pervasions has been started with
the employment of the Viable System Model (VSM) [18][19] (discussed in Section 2.3) as a
reference model for supervision services for hierarchical organized systems. It provides a
description of the functional blocks of such a service, their interrelationships, and their relation to the
system that is under supervision.

The VSM have been found its first application as a methodological reference to compare and to
evaluate several general approaches for currently existing supervision systems – this work has been
published in the Month 4 Milestone document on State of the Art (SotA). In parallel, a small case
study has been performed to evaluate the basic ideas developed. From both activities, a number of
requirements have been derived that provide cornerstones for the further activities in WP2.
Currently, WP2 follows three main lines of work:

1. Contract and model based supervision refers to the idea that supervision is essentially a
service that is provided to ACEs or ACE configurations. The specific properties or invariants
to be supervised form a supervision contract that is committed between the system configu-
ration under supervision and the supervision system. The contract is expressed in form of
an operational model of the functions and abilities of the system under supervision.

In order to express these ideas in a clear, unambiguous way, a formalization of a number of
notions is required. In particular, it has to be justified what is meant by the terms like
“systems”, “operational models”, “states”, “behaviours”, and so on. We therefore have
developed a mathematical framework for the formal work with these concepts that bases
on (not necessarily finite) distributed transition systems. Partially ordered mulitsets (i.e. sets
of actions equipped with a notion of causality and operational independence) are used as
operational semantics of those transition systems. We have further defined a notion of
system refinement, and of system composition, that leads to a theory of system models that
are hierarchically organized according to their levels of abstraction. Operations have been
defined to change between local abstraction levels, i.e. to “zoom” into a model to increase
its degree of detail only for a given constitutive component.

On the basis of these ideas, two supervision algorithms have been developed, a basic one
to work with “flat” models (i.e. models that comprise just a single level of abstraction), and a
hierarchical one.

2. The second work line deals with long-term changes in the supervised system or its envi-
ronment. The need for such a more long-term oriented supervision approach is based on
the fact that the real world model of individual services or the underlying data thereof are of
a volatile nature and as such is likely to change constantly over time. Thus, continuously
opening a gap between the actual model and the real world concept they were designed for.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 12 of 78

This problem, referred to as concept drift, implies the constant adaptation of intelligent ser-
vices and their underlying models in order to achieve a stable state around some pre-
defined boundaries. In order to adapt to such changes effectively a supervision mechanism
needs to incorporate a computational model of the real world problem they were originally
designed for. Simplified, a concept of interest reflects the underlying model of a given ser-
vice or application in a machine readable format. Due to the fact that a concept of interest
may depend on a hidden or very complex context it is often extremely difficult to design and
implement them, let alone the modelling of the system that is intended to supervise it.

Approaches dealing with concept drifts resemble the basic supervision cycle, i.e. the
continuous observation of the system under supervision and its environment, the analysis of
these observations, and the enforcement of reactions if their necessity is stated. In order to
allow a system to evolve over time but at the same time assure the correctness of the
underlying logic, advanced forecasting and prediction methods are required which allow the
system to:

• forecast the “direction” of a supervised system;

• predict individual attributes based on past behaviour or on other attributes;

• and finally, detect critical states before they actually occur.

These issues obviously are also strongly related to the notion of Knowledge Networks
(WP5) which provides the information necessary to perceive and to analyze the state of the
environment of a system.

3. Finally, a software architecture for supervision pervasions have been developed that is
dedicated to realize the functions and relationships defined in the Viable System Model. It
comprises of the following software components:

• Sensors capture the data from ACEs, and the communications among them. They also
send monitored data to the other components of the supervision system.

• Correlators analyze the monitored data to construct a coherent picture of the super-
vised system. This component has a repository of collected information and a rea-
soner to extract important information from collected data.

• Assessors create an abstract model of the system under supervision based on moni-
tored data and correlation analysis. It is also able to detect if the status of single or
composed elements is ”suitable” or “admissible”. As soon as a problem is detected, the
Assessor declares it. This means that it can detect both the status of a single element
under supervision and problems with the environment of the system under supervision.

• Planners elaborate the set of actions that must be executed on the supervised system
when the Assessor declares a problem. It uses the data received from both the Correla-
tor and the Assessor.

• Effectors translate planned recovery actions into executable actions and messages
that are then sent to the supervised components.

• Predictors retrieve information from the Sensors, Correlators, and Planners to predict
the likely effect of planned recovery actions.

The document is structured as follows: Section 2 explains the general vision of contract based su-
pervision. Section 3 provides an overview of the current State of the Art. The material of this section
matches that on the M4 report of WP2, its presentation however is improved. Section 4 deals with
an application example for pervasive supervision, namely a simplified version of the Behavioural
Advertisement Example. Requirements are discussed in Section 5. Section 6 is basically a place-
holder for the accompanied document [34] which describes the mathematical framework for model
based supervision, and discusses also basic supervision algorithms for non-hierarchical and central-

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 13 of 78

ized as well as for hierarchical and distributed supervision. The notion of concept drift is introduced
in Section 7, and basic mechanisms for its detection are discussed. A software architecture for ACE
based supervision is described in Section 8. The final Section 9 provides a summary and gives an
outlook on integration activities with other work packages.

2 Pervasive Supervision
Consider a distributed environment comprising a number of components providing a catalogue of
functions or atomic services. Linking of functions into a certain control structure or behavioural rule
system results in composed services, relating the components by certain communication and
coordination patterns yields a system configuration (or a system, for short). By supervision we mean

1. the continuous monitoring of system configurations and the interpretation of monitored data ac-
cording to certain requirements (safety, functional correctness, consistency, performance, reli-
ability, etc.);

2. and the enforcement of corrective measures if a violation of these requirements is detected.

system under
supervision

probeprobeprobe probeprobeactuator

evaluation reaction
computation

notification

Figure 2. Basic supervision architecture

Let us start with a discussion of a paradigmatic architecture of a supervision system as shown in
Figure 2. The basic organization of a supervision system is that of a closed control loop. Monitoring
components gather information about the supervised system. Efficiency considerations require that
probes perform event filtering and pre-analysis task of locally observed behaviour, since flooding the
communication infrastructure with monitored raw data will result in an unacceptable communication
overhead. Evaluation components perform global analysis and correlation tasks. If a problem in the
behaviour of the supervised system configuration is detected, an appropriate reaction is computed
and enforced in the supervised system using special actuator components.

In the literature two principle approaches to define a supervision system can be found:

The intrinsic approach defines supervision functions as a part of the supervised system itself, e.g. as
special features of a middleware. This approach has the advantage that there is no technological
distinction between the system under supervision and the supervised system, thus no additional
management overhead occurs. Additionally, performance burdens caused by the supervision
activities remain in reasonable limits. On the other hand, intrinsic solutions are often proprietary to
specific problems and applications and provide no framework to define supervision tasks in a
generic way.

In opposite to that, the extrinsic approach defines the supervision system as a unit which is
technological and conceptual separated from the system under supervision. The disadvantage of
this approach is that it requires the operation and maintenance of two different systems resulting in
increased management efforts and performance overheads. It allows however for the generic
definition of arbitrary supervision tasks and appears—under this perspective—much more
appropriate for systems which react autonomously and are able perform self-adaptation.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 14 of 78

Catering the requirements of today’s and anticipated future, supervision has to take place on a large
variety of levels (infrastructure, service execution, accounting, client’s profile) and in a
heterogeneous technological environment, but also has to take into account various conceptual
levels (e.g. reliability of financial transactions in opposite to technological restrictions of the security
infrastructure). Therefore, neither the intrinsic approach is sufficient because of its lack of generality,
not the extrinsic approach is because of its strong separation between the two system parts.
Particularly, since the supervision system itself is vulnerable against malfunctions, the basic
architecture described in Figure 2 does not provide a robust and self-healing solution.

A supervision system must be understood as an integral part of the supervised system that cannot
be separated architecturally, organizationally, or technologically from it. Supervision appears itself to
be a composed, structural integrated service unifying the intrinsic and extrinsic paradigm. We refer
to this unified approach to as pervasive supervision.

2.1 Limitations of Current Approaches – The MAPE Example
With the Autonomic Computing initiative, IBM introduced MAPE (monitor—analyze—plan—execute)
as a control paradigm for autonomic systems; MAPE boils down to a feedback control loop that
continuously perceives the state of a system and interacts with it. In this section, we are using the
MAPE approach as a prototypical example to discuss limitations of current approaches.

MAPE leaves open a number of questions. Consider for instance autonomicity. If MAPE is used as
an architectural paradigm for the design of a system, and is the element that “adds” autonomicity to
the very system, then the data to be gathered during monitoring, the analysis and planning
algorithms, and the control functions to be executed can be defined in the development phase of the
system. But if the controlled system itself is autonomic, then it is pretty unclear how to define a
control loop that deals with a system that is essentially designed to operate without external control.

Consider self-organization. Having a system that composes itself in an automatic way from a set of
available (but not necessarily pre-defined) components (which might be itself complex, self-
organized ensembles), it is by no means clear which data are relevant for control purposes, how to
evaluate (or even to define) their state, and how to interact with systems which are dynamically
changes their inner composition. The crucial point here is that there is no a priory knowledge
available to effectively define control purposes and tasks. As functions and structures of self-
organized systems emerge rather than follow a pre-defined “architecture”, associated control
functions (and structures) have to co-emerge.

We conclude that—despite of the impact of the IBM’s initiative on the current research addressing
autonomic systems (resulting the equation “autonomicity = MAPE”)—that the closed control loop
paradigm is not sufficient to exemplify autonomic systems.´

This report addresses supervision approaches that go beyond the MAPE paradigm. The basic
methodology is first to analyze the relationship between the supervision system and the supervised
system. For this, the notion of a supervision contract is defined and requirements concerning the
capability of a system of being supervised are derived from this notion. We then employ a reference
model which describes the structure of a supervision system and its structural relationship to the
supervised system.

2.2 Contract Based Supervision
The CASCADAS project focuses (among other things) on the definition and development of a self-
organizing component-based service infrastructure. A ground concept is the so-called Autonomic
Communication Element (ACE). An ACE is a building block for autonomic services which can be
seen as embracing all essential characteristics that are required by autonomic services within a
ubiquitous networked environment. A multitude of ACEs will exist with each type providing varying
services and capabilities. The ACE concept builds a software abstraction of all components which
will be developed in the project and thus will be a common terminological and technological

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 15 of 78

foundation of the issues addressed such as self-organization and self-aggregation of services,
security issues for autonomic services, knowledge representation and distribution by means of
common overlay network, and supervision as a generic hierarchical control paradigm. Thus, if we
talk about a “system under supervision”, “supervision system” or “supervision pervasion”, we always
mean a configuration or aggregation of ACEs (or – in the most elementary case – a single ACE).

2.2.1 Supervision Contracts

Supervision is basically a service, i.e. an activity which is performed by some entity (namely: the
supervision system) by executing a certain activity (e.g. improved fault tolerance, SLA validation) on
a supervised system (the object of the activity; hence: the supervision system is the subject of the
activity) for some other entity (the owner of the activity) which has a certain benefit from employing
(and might pay for) this supervision service. Supervision is always performed to ensure the
effectiveness and quality of some other service—called the target service. There are several classes
of supervision contracts.

Class 1: The service user (which might be an automated entity) of the target services is interested
e.g. to validate the quality of this service, and to enforce adaptive measures if the provided quality is
insufficient. Thus the “contract” is between service user and service provider and includes—to
certain extends—the permission to supervise the service execution.

Class 2: The owner of a service might be aware that its implementation can be mal-functional,
malicious, non-optimal, etc. (probably because the service makes use of 3rd party components), and
a supervision service is required to ensure operation and the advertised service level. Now the
contract is between the service owner and the supervision system.

Class 2 contracts may be viewed as enrichments or refinements of Class 1 contracts by service
specific information. The Class 1 part defines the requirements for the usage of the target service,
while the Class 2 part explains how the service is realized and thus how the validation of the user
requirements has to be performed.

Class 3: Consider a service composed out of available resources and functions which are—or are
provided by—autonomic entities. In order to supervise such a composite service, the supervision
system has to reference monitoring and actuation functions of the sub-services of the composition.
We now have an interesting situation: The owner of the composed service appears to be the user of
its sub-services, thus we have a contract of Class 1 between these entities. It might be however also
the case that the contract is not between the owner of the composed service and the sub-services,
but—assuming that there is a Class 2 contract between the several sub-services and associated
supervision sub-systems—between the supervision system for the composed service and the
supervision sub-services contracted by the sub-services.

user owner SV sys

owner SV sys owner SV sys owner SV sys

imp imp imp

class 1 class 2 class 3

implementation

Figure 3. Types of contracts

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 16 of 78

Class 3 contracts may therefore be viewed as delegations of Class 1 contracts; Class 1 contracts
may be composites of Class 3 contracts. This relationship reflects the idea to define supervision
pervasions as recursive structures aligned with the (probably emerging) architecture of the service
providing systems under supervision. It defines a transitive relationship between supervision
components on different levels based on abstraction and concretization. The reflexive version of this
relationship leads to self-application of supervision as a Class 1 contract between supervision
systems.

2.2.2 What Makes A Supervision Contract?

The ability of being supervised (i.e. being perceivable and controllable) is an integral property of a
system that is able to commit supervision contracts, an ability which has to be provided by all ACEs
to a certain extend. A non-supervisable ACE may be regarded as non-trustable! An adaptable
service configuration may refrain from invoking a non-supervisable ACE because its service level
cannot be validated. But of course the extend to which an ACE is willing (allowed, designed) to
disclose internals and permit external control depends on the ACE itself, its purpose, service model,
security policies, etc.

The generic nature (explained above) of the supervision pervasions to be developed requires novel
mechanisms for system perception and actuation; in particular, there is no definite list of attributes
that need to be perceivable and modifiable defining the contents of supervision contracts because of
the autonomicity and self-organization abilities of supervised service configurations.

Therefore, let us think in a different direction. In principle, service configuration
(represented/symbolized by ACEs) need to be open in the sense that behaviour aspects are
perceivable and controllable1. On the other hand, complete openness is not what is really needed
as information on the level of concrete executions and concrete system states (variable values) are
far too fine-grained for effective supervision. Thus the image that a supervision system maintains
about the supervised service configuration is an abstraction, an operational model of it. Such a
model describes the usage protocol (order of operations/messages, exceptions, states, etc.), the
exchanged data and data types, constraints, etc. Concerning this, we may state:

A supervision contract is about the validation of the system’s state and behaviour against its
operational model and on the enforcement of consistency with this model.

Note that in using this definition we do not assume that a model of a system actually is a correct
description of the system—in fact, the need to have an additional supervision service is motivated
by the opposite: models might be incorrect; systems may be selfish (and thus try to benefit form an
idealized picture of themselves), they might get hacked, or might simply be faulty.

The relationship between the several types of contracts already has been discussed in the previous
section. Let us now apply the equation “contracts = models” to make these relations more concrete:

2.2.3 What to Do With Supervision Contracts?

We elaborate the idea of a model by looking at the usage of models for supervision:

Monitoring: We assume that each ACE provides methods to query its operational model, further
provides a mechanism to query the actual state in which is (e.g. by “pulling”), and events that occurs
(by “pushing”, callbacks, or similar). Since it is not always clear that the ACE is aware of its own
computational model (it might be faulty), it is further necessary to enhance dynamic information
(state and events) by semantic information, i.e. data structures (e.g. as abstract data types) and
data constraints for states, and information on the state transformation function of events.

1 We are fully aware of the security issues raised with this requirement, we however have to insist that this does not concern
the WP 1 — WP 2 relationship, but has to be discussed in the WP 1 — WP 2 — WP 4 triangle.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 17 of 78

a conceptual level. To do so, we employ a metho

fford Beer [18][19] as a model

vasions is given by the

fluencing of the state and behaviour

-
ture events and the planning of suitable

Simulation: Models are not only used to put monitored data into a certain context, but also to pro-
actively estimate the effect of the execution of some action by simulating the effect of this action
within the model. This basically means that models have to be executable (at least in an abstract
sense).

Event Control: Further ACEs have to provide a “controlled mode” in which the execution of events
(1) is impossible without explicit external permission, and (2) can be forced by external intervention.
This controlled mode is activated by the supervision system if an ACE shows an unintended
behaviour or enters a bad state. We cannot assume that all events are controllable by the
supervision system. Timeouts, interrupts, (human) user or operator actions, etc. are examples of
events which remain uncontrollable.

Adaptation: We anticipate the need for mechanisms for the adaptation of the operational model of
ACEs and ACE configurations:

1. Depending on the self-organization mechanisms we foresee the necessity of directly influ-
encing the operational model of an ACE if the “emergent behaviour” is not the intended one.

2. Further, since supervision is intended to be “pervasive”, the respective supervision compo-
nents appear to be an integral part of the supervised ACE configuration, thus have to be
part of the operational model of this configuration.

3. ACEs may cheat! Or may be non-informed! Or simply may be broken! We cannot rely in the
model which is provided by a particular ACE. In fact, it has continuously validated against
actual observations, and—in necessary—repaired.

2.3 Reference Model
In this report, we investigate the problem of finding a unified pervasive approach for supervision on

dology which bases on a reference model for
autonomic systems that is used as a conceptual
framework which allows defining the borders of
the supervision system and the supervised
system, and the principal relationship of these
systems. Furthermore, to solve the problem of
self-supervision it is necessary to understand
supervision systems itself as autonomic
systems. The identified relationship “supervised
system vs. supervisions system” then can be
applied to the reflexive case.

The Viable System Model (VSM) has been
introduced by Ste
for the management of human organizations
like enterprises, facilitating the inspiration of the
(human) nerve system.

The rationale to use the VSM as a reference
model for supervision per
fact that the VSM already exhibits a number of
aspects that are important in this context,
namely:

- Continuous perception and reactive
in
of the supervised system;

Pro-activity, i.e. the extrapolation of fu-
Figure 4. Viable System Model

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 18 of 78

measures to support or prohibit such events;

- P ll instance mapp

- Algedonic stimuli play a paramount role in the sen management entity only influ-
 obser-
at pro-

are required, be-

o

urred

The VS
the man
its auton acting from

-

nagement (supervision) system on various organizational levels.

The VS
homeos
embedd cipal system parts

cts as the primary objective of
mans. In the context of self-

urpose-orientation, i.e. an overa ing policies into concrete actions

se that a
ences if a certain condition is meet. The VSM is not based on a continuous in-depth
vation of the managed entities, but uses a restricted set of signals and commands th
vide an abstracted view of the current state of the managed system.

o Algedonic signals are used if the managed system enters a non-desirable state
(e.g. a failure state) or is in danger to enter such a state. Thus algedonic signals
define a notification of the fact that external management activities
cause the managed entity is not able to resolve the problem situation by itself.

If an algedonic signal is received, the management system has issue a number of
commands that lead the managed system back into a desirable state. Those com-
mands may not only addressed to the subsystem where the problem has occ
(or has been detected), but may also involve other parts of the system.

M therefore leaves room for autonomy as long as no direct measures are required. If
aged system (or system part) turns out to be unable to deal with a problem by itself,
omy is restricted until the problem is resolved by a management system

global system perspective.

The model is recursive and therefore allows a pervasive organization: Each VSM is con-
structed from various other VSMs. Thus it pervades the managed (or supervised, in this
context) system with the ma

It should be noted that pervasiveness has also another, technological dimension that is not
present in the theoretical VSM: In order to obtain an unified view on the couple
supervised/supervision subsystem it is necessary that both subsystems uses the same
technological basis and thus are manageable by the same technical means. Since the main
purpose of autonomic communication (as well as of autonomic computing) is to integrate the
complexity of a system into a comprehensive and coherent control and management
approach, alleviating the technological complicity of a system with yet another (probably
even more) complicated supervision system is like fighting fire with fire.

M defines the structural parts and their relationships as necessary components of a
tatic system, i.e. a system which is able to maintain its operation and stability when
ed into a continuously changing environment. It identifies three prin

(compare Figure 4): Operational system(s) (ellipsoid), a meta-system (rectangle) which controls the
operational parts, and the environment (cloud) of the system. These system parts (with the
exception of the environment) are numbered as Systems One to Five (S1 to S5, for brevity, where
the numbers 1 to 5 in Figure 4 refer to these subsystems).

S1: Operation. This subsystem(s) provides the functions of the system, e.g. its productive units,
computation routines, resources, etc. A VSM might comprise a large number of S1’s.

The systems S2 to S5 compose the meta-system of a viable system.

S2: Stability. This system is responsible for the overall stability and coordination of the activities of
the S1 units. The original VSM concentrates on the resolution of confli
S2 as the basic problems for self-organization of entities driven by hu
organized computer systems it is however appropriate to view S2 in general as a subsystem
supporting the emergence of sustainable structures in large configurations.

While the systems S1 and S2 work mainly on the basis of a local perspective relative to a single
component or the interaction of a small set of components, the systems S3 and S4 maintain a
global, system-wide view.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 19 of 78

e of the S1 subunits is done by the generation of so-called algedonic

teraction with its environment.
 and changes in the system’s environment, the

y to choose autonomously between several alternative (and

intaining

,

situ
s of those adaptations to

cording the structural and functional adaptations of

proh

he anticipated ability of autonomic systems to determine an appropriate course of action in

e motivation to have a policy subsystem
S5. But to distinguish e.g. desired from undesired states from the perspective of the system under

S3: Regulation. The purpose of this system is to regulate the system’s activities on a global level,
to identify system wide problems, but also to utilize possible synergies and to perform optimizations.
The perception of the stat
signals, i.e. notifications about specific events like the occurrence of problems, unexpected
situations, etc. Thus algedonics provide a conceptual way not to flood the S3 subsystem with
information that is not needed. S3 furthermore comprises a “command channel” that allows
restricting the autonomy of the S1 subsystems if a situation occurs that cannot be handled
appropriate on the S1/S2 level but requires a system-wide solution.

System S3 performs in tight cooperation with S4:

S4: Adaptation. The subsystems S2 and S3 are concerned with the current internal structure and
processes of a system. The system however maintains an ongoing in
In order to react appropriately on developments
current state of the surroundings of a system has to be perceived, and additionally, an extrapolation
of these future changes is necessary.

S5: Policy. Systems have a purpose (e.g. to provide a set of services). In current computer
systems, this purpose is “hard-wired” in the execution code of the system. Future systems are
however anticipated to have the abilit
probably contradicting) goals to achieve. Thus a system function is required to assign a value
representing the “desirability” of a certain goal to enable the system to do this selection.

One might have noticed that the S1 units shown in Figure 4 are drawn by an ellipsoid and a
rectangle. The VSM is recursive in the sense that each of the S1 units is considered to be a viable
system by itself comprising operational sub-units and a meta-system, and in particular ma
their own interactions with their environments. Concerning the recursive nature of the VSM, it is
useful to establish the notion of a system-in-focus, i.e. a level of recursion being managed by a
single meta-system (systems S2 – S5 and the associated S1 units viewed as atomic subsystems).

Aligning the supervision architecture shown in Figure 2 with the VSM, the most obvious way is to
identify the subsystem S3 with the supervision system.

- S3 performs an ongoing monitoring of the S1 units and their interaction (S2) by the generation
perception, and interpretation of algedonic signals, thus represents the “observation” part”
(probes, evaluation) of the supervision architecture.

- The “command channel” of S3 which is activated in problem situations that cannot be resolved
on the S1/S2 level corresponds to the “reactive” part of the architecture (reaction computation
and enforcement).

This identification is however only partial. Autonomic systems are supposed to be reactive to

ational developments and to be adaptive to changes in their environments. The supervision
tem has to be awaresy

- perceive the current situation to evaluate the appropriateness of the reactions of the system un-
der supervision to it;

- align its own structure and functions to the ac
the supervised system;

- anticipate future developments and problem situation for pro-active execution of supervision
activities; pro-activity is in particular important if real-time reaction computation is not possible
and has to be replaced by the deployment of pre-defined reaction patterns.

The conclusion is that the supervision system has to define (at least from the point of view of

ibiting problem situations) parts of the S4 subsystem.

T
response to perceived situations and the associated necessity to assign “values of desirability” to
those plans (or their outcomes) have been discussed as th

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 20 of 78

 generators of algedonics and as management interfaces (command channel) which allow

). The supervision system for this recursive level is thus able to

SM structure. Thus the question arises whether

he system under supervision

ystem is to manage the distribution of control loops and the

t of a corrective

- system has the capabilities to determine a sequence of actions

supervision, the accompanied supervision system need to adopt the policies of the supervised
system.

The recursiveness of the VSM and the associated abstraction of concerns and task has to be has to
be reflected by the supervision system. Each S1 unit therefore has its own supervision subsystem
(comprising its local S3/S4/S5 subsystems). On the global level, these supervision subsystems
appear as
the supervision system to interact with the operational units. Thus it is possible to perform
supervision on an appropriate level of abstraction facilitating for more concrete, but more local views
on the deeper level of the recursive system structure, and for a more abstract, but more global
perspective at the higher levels.

The alignment of the structure of the supervision system with the recursive structure of the system
under supervision justifies the use of the term “supervision pervasion”. On a particular level of this
recursion, the two systems appear to be separated and integrated by defined interfaces (algedonic
signals and command channels
operate “in terms of this level”, i.e. at the same level of abstraction and conceptualization. From the
perspective of the next higher recursive level, the system pair appears as “atomic” S1 unit, i.e. from
this perspective, the supervision set-up is intrinsic.

Within the currently defined relationship between supervision system and supervised system, the
supervision system—although it “pervades” the supervised system—is conceptually still a separated
entity. In particular, the problem of self-supervision exists still on conceptual level when the
supervision system does not follow the described V
supervision pervasions do exhibit the basic block of viable systems.

S1: The operational units of a supervision pervasion are given by the basic supervision components
– probes, evaluators, reasoning engines to compute reactions, actuators, but also the S1 units of
the supervised system which are generators of algedonics and receivers of commands sent using
the command channel. Moreover, the Stability System (S2) of t
appears from the perspective of the supervision system as a S1 unit.

S2 is given by the basic principles for composing the S1 units to form closed control loops. Note that
the system S3 of the supervised system appears to be the part of the system S2 of the supervision
system, the current system-in-focus.

This “shift of the conceptual level” indicates that the supervision system operates on a higher level
than the system under supervision, i.e. justifies its role as a part of a meta-system.

S3: The purpose of the Regulation S
relationship of these loops. An interesting issue is the nature of the algedonic signals that the S3
subsystem perceives. Consider a control loop that gets activated because a certain problem
situation occurs, and tries to resolve this situation by means of the enforcemen
measure. It might be successful or not. In either case, it sends a signal to the system S3 which
allows evaluating the effect of the enforced reaction leading to the notion of the competence of the
supervision system. Competence may be viewed from different angles. For instance:

- Effectiveness refers to the ability of a supervision system to enforce countermeasures at all.
Possible reactions to the lack of effectiveness are the deployment of additional actuator compo-
nents or the re-deployment of existing ones, the isolation and deactivation of system parts which
cannot be affected at all, etc.

- Timeliness is the ability to react in time. Decrease of resolution can be an appropriate remedy,
i.e. the use of faster, but probably less precise evaluation and reaction computation algorithm.
There seems to be a general trade-off between Timeliness and Appropriateness:
Appropriateness means that the
that leads to the desired results. Improvements are possible be increasing the resolution, but
also the replacement of algorithms.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 21 of 78

os
com

can be applied to measure the effectiveness, timeliness,

r of questions:

tract based supervision is by no means clear from the explanations
ular, the following notions need to be justified:

m, but on a notion of

b.

ment of system behaviour and in particular not into pro-active

c.

odels.

contracts, the notion of a hierarchical model organized by

2. On the
that tak
hierarch

s
on

Note that on the level of self-evaluation (i.e. by means of a meta supervision system) the frequency
th e reconfigurations performed by the S3 subsystem yields another possible measure for the

petence of the supervision system.

The responsibilities of the systems S4 and S5 and their relationships the other VSM subsystems are
as described in above. Their rules within the “supervision system as meta-system” and the
“supervision system as viable system” view coincide. Concerning S4, the notions related to the
system’s competence elaborated for S3
and appropriateness of environment perceptions and anticipations of future situations which provide
the motivations and triggers for adaptations performed by S3.

2.4 Questions
The conceptions outline in the previous sections raise a numbe

1. How to perform con
given above. In partic

a. What is a model? We do not aim for a specific model formalis
model which is compatible with a large range of different formalisms. Using this
approach, conflicts with the model formalisms used in other WPs (in particular that
one defined in WP1) are avoided.
The most basic notion of a model is that of a structure comprising a set of system
states, a set of transitions between states defined by system actions, and—since
we focus on distributed systems—a notion of parallel or concurrent execution of
system actions.

How to express suitable of system states and behaviour, i.e. how to define triggers
for supervision activities? At the current stage, we use a somewhat simplified
approach. We assign values of suitability only to system states (i.e. we do not look
into the assess
supervision).

Having metrics for the self-assessment of competence of the supervision system
has to be considered as a first step towards a self-supervising system. So the
question is how to define these metrics in terms of models and execution
sequences of m

d. The notions of contracts of several classes and the idea of transitions between
contract classes boil down to the questions of appropriate notions of system model
refinement and composition. In particular, to understand the relationship between
Class 2 and Class 3
levels of abstractions as well as a mechanism to change between abstraction levels
is necessary.

basis of models and model contracts, how can a supervision algorithm be defined
es into account the hierarchical structure of the VSM (and in particular the
ical structure of the supervision model)?

3. The VSM is not a software architecture. Such an architecture needs to be defined in term
of ACEs and compositions of ACEs and need to be harmonized in particular with the noti
of Knowledge Networks developed in WP5.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 22 of 78

3 State of the Art
This chapter intends to provide a State of the Art report on approaches, theories, and technologies
which are important to the envisioned supervision approach. The compilation of a comprehensive
report however is an almost impossible task:

- Restricting to approaches that aims on the definition of a supervision platform in the style of
Figure 2. Basic supervision architecture would leave us with a large variety of approaches
which hides similar concepts behind different terminologies, architectural variations, and ap-
plication domain specifics. Apart form the problem of systematization such an approach is
also likely to blind us against approaches from different research areas which are likely to
give us useful additional methods and inspirations.

- On the other hand, a comprehensive description of all relevant research areas (and the
relevant approaches herein) is certainly impossible because of the amount and variety of
relevant research areas which has to be considered, ranging from control theory to semantic
modeling, from monitoring approaches in various types of systems and networks to artificial
intelligence, from agent technologies to test theory, from formal methods to (software) sys-
tem engineering methodologies, from Web Services to management approaches for tele-
communication systems, just to mention a view topics which actually are considered in this
chapter.

We thus have to restrict ourselves to a selection of topics. The selection is motivated as follows:

- Firstly, it should define a starting point and a source or requirements for the research to be
done in Work Package 2 not by listing all relevant approaches but those which are—from
the experience of the WP 2 partners—are useful in the context of pervasive supervision.

- Secondly, it should fairly reflect the interests as well as the expertise of the WP 2 partners.

The chapter is structured as follows: Section 3.1 addresses general approaches. A number of exist-
ing supervision system architectures is discussed. The VSM is used as a reference to the compari-
son and evaluation of these approaches. The following Sections 3.2 to 3.5 address more specific
aspects of system supervision. Section 3.2 deals with approaches for system monitoring; Section
3.3 is concerned with the evaluation of monitored data, and in particular with the detection of prob-
lems. Section 3.4 addresses approaches for system repair, and the determination of corrective
measures. With reference to the VSM, Sections 3.2 to 3.4 are thus concerned with the subsystem
S3. The consideration and interpretation of observations of the system’s environment, and in par-
ticular the prediction of future (problem) situations, and the pro-active evolutionary adaptation of a
system to those situations, is obviously a difficult task. Section 3.5 therefore addresses approaches
to identify so-called “concepts of interests” and to detect and predict changes of those underlying
concepts. In terms of the VSM, this section addresses the VSM subsystem S4. Finally, Section 3.6
provides a summary and conclusions.

3.1 General Approaches
In this section we are going to summarize a number of approaches related to supervision
techniques which are envisioned to be elaborated in the CASCADAS project. As we will see, all
these approaches depart from the basic idea to employ feedback control loops that base on the
continuous observation of a system and the selection and execution of appropriate actions.
Concerning this general picture, in order to compare the several approaches we employ the Viable
System Model (VSM) as a reference model that incorporates all the elements, structures, and
functions that we consider to be necessary for a supervision system and explains various the
relationship between the supervision system and the supervised system and the environment of
both subsystems.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 23 of 78

3.1.1 Comparison Summary

The following Table 1 summarizes the comparison of the approaches described in detail in the
following sections. Whenever it is not clear form the literature whether a certain property holds (Y) or
not (N), we use a more precise quantification.

Table 1 Comparison of the approaches with respect to the VSM

 MAPE Rainbow Willow COLV Nestor

Integration Extrinsic Extrinsic /
partially
pervasive

Extrinsic Extrinsic Intrinsic

System 3 Y Y Y Y Y

System 4 Y Y Y Y Y

System 4
anticipates
future

N Potentially Potentially N N

System 4 is
adaptive

N N N Considered
in some
instantiations

Y

VSM
Subsystems

System 5 N N Partially N N

Potentially self-aware Y Y Y Y Y

Potentially situation-aware N N N N Y

Algedonic N Y Y Y N

Self-applicable N N N N N

Note that the approaches often deal with architectures for supervision systems, not with concrete
instantiations those systems. Thus the question whether a certain realization of such an architecture
has some property or not depends in may cases on the techniques and components specific to this
realization.

3.1.2 MAPE

IBM has launched the Autonomic Computing initiative in 2001 as a general control paradigm.
Autonomic Computing, as originally presented [49][62], is based on the idea to replace explicit
system management by human operators by a number of feedback loops that altogether implement
the analogy of an autonomic nervous system (in the biological sense). Although the idea is to mimic
“unconscious reflexes” of living beings, the set-up of this basic reflex mechanism is quite heavy-
weighted. MAPE [12][70] (monitor—analyze—plan—execute) provides a reference architecture of
an autonomic manager component which is responsible for the implementation of a control loop.
The architecture dissects the loop into four parts that share knowledge:

- The monitor part provides the mechanisms that collect, aggregate, filter, manage and report
details (metrics and topologies) collected from an element.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 24 of 78

- The analyze part provides the mechanisms to correlate and model complex situations (time-
series forecasting
and queuing mod-
els, for example).
These mechanisms
allow the autonomic
manager to learn
about the IT envi-
ronment and help
predict future situa-
tions.

- The plan part pro-
vides the mecha-
nisms to structure
the action needed
to achieve goals
and objectives. The
planning mecha-
nism uses policy in-
formation to guide
its work.

- The execute part provides the mechanisms that control the execution of a plan with consid-
erations for on-the-fly updates.

Figure 5. MAPE Architecture [12]

The MAPE approach combines the VSM subsystem 3 and partially subsystem 4. (The managed
element is of course the VSM Subsystem 1 [Subsystem 2 is not explicitly mentioned].) Although
self-awareness is enabled, situation awareness is not in the focus of MAPE because sensing and
interaction is mainly directed towards the controlled element itself and not toward the environment of
the system (in fact, an explicit notion of an environment is not present in the MAPE reference
architecture). Situation dependent adaptation of the System 4 is not considered.

Knowledge representation is by a set of deductive rules (including uncertainty and fuzzy logics).
Decision making is driven by policies which are also considered as being part of the knowledge
base, i.e. represented by deductive. Thus policies necessarily are related to technical control
parameters (as there is no distinction between technical and non-technical rules); the step from non-
technical requirements and goals to their technical consequences is missing (or at least left implicit).
We therefore tend to the conclusion that the VSM subsystem 5 is not represented in the MAPE
approach.

MAPE is designed as a general exclusive control paradigm. A combination with other approaches is
not intended, thus for instance emergent self-organization of systems is not compatible with MAPE.

3.1.3 Rainbow

The Rainbow architecture [52][93] aims on the storage and restoration of configuration data in
distributed autonomic systems. The basic idea is to use configuration snapshots to restore the
configuration of a system that have been proved usefully within a given usage context of the system.

Rainbow bases on two ingredients: A so-called autonomic configuration language named Neptune
and the implementation framework Cloud:

The Neptune Scripting Language enables axioms, norms, and governance rules to be symbolized
within an introspective object framework, such that the individual constructs that comprise a logical
statement or assignment can be both inspected and modified without recompilation at runtime In
addition, Neptune scripts include an abstraction based on the separation of process flow and their
underlying logical model. By linking forks expressed within the process flow with the logic

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 25 of 78

layer) and partially also 4 (architecture-layer) as reflection of the inner system structure is a basic

determining the path through the model, the context of a decision can be provided by way of data
association.

Figure 6. Rainbow Architecture [47]

The notion of a Cloud is a system with loose boundaries which can interact and merge with other
such systems. A Cloud can be thought of as a federation of services and resources controlled by a
system controller and discovered through a system space. In a distributed system, oftentimes
services and dependencies can overlap with different configurations on different systems. Systems
based on the Cloud framework can interact with each other, sharing and pooling resources for
greater efficiency over a large deployment such as an enterprise. Neptune objects are executed on
demand through an event model exposed by the Clouds architecture yielding a powerful extensible
platform that is both wholly configurable at runtime, and that can be modelled at runtime.

Clouds interact by means of a shared distributed data storage that acts as a dashboard to publish
and to access information. At the centre of a Cloud is the System Controller (SC), a distributed
service that controls access to and from the individual services and resources that are within the
cloud. The SC brokers requests to services based on the system status and governance rules
defined in Neptune Objects.

The Rainbow architecture comprises the following elements:

System-layer infrastructure. At the system layer, the necessary system access interfaces are
defined. A system measurement mechanism, realized as probes, observes and measures various
states of the system. The system information may be published by or queried from the probes. A
resource discovery mechanism can be queried for new resources based on resource type and other
criteria. An effector mechanism carries out the actual system modification.

Architecture-layer infrastructure. At the architecture layer, gauges aggregate information from the
probes and update the appropriate properties in the model. A model manager manages and
provides access to the architectural model of the system. A constraint evaluator checks the model
periodically and triggers adaptation if a constraint violation occurs. An adaptation engine determines
the course of action and carries out the necessary adaptation.

Rainbow provides an extrinsic additional control layer responsible for monitoring and context
dependent restoration of system configurations. An explicit system model is used to interpret and to
classify monitored information on the current system state and its configuration. These context
should not be confused with situational information, as in the previous approaches, an explicit notion
of the environment of a system is not given. Thus Rainbow realized the VSM subsystems 3 (system-

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 26 of 78

3.1.4 COLV — KX, Olives, and Relatives

or challe nd Telecommunication Operators

l of already

service, by exerting reactive and proactive control

element of the architecture, but does not provide situation awareness. Model (i.e. System 4)
adaptation is not considered. As Rainbow is purposed to configuration restoration it does not
implement any anticipation of future situations. As being an approach having a special purpose, no
System 5 is present, but since the system organization is orthogonal to the restoration system,
Rainbow acts algedonically.

A maj nge on the current Internet Service Providers a
infrastructure is related to the capacity to organize and orchestrate distributed and heterogeneous
software components by a multitude of actors resident over various kinds of networks.

Continuous On-line validation (COLV) involves the monitoring and adaptive contro
deployed services during their operation, with the purposes of inspecting their impact on the network
facilities and operation, investigating their interoperability, and ensuring their intended quality and
performance levels at all times during operation. In practice continual validation will allow continual,
run-time validation of critical system properties.

COLV aims also at intervening on the run-time
measures that keep the running service in check with respect to its nominal functionality. The
aforementioned measures thus implement active validation policies, by dynamically adapting the
running service, e.g. by modifying its configuration, or its operating parameters, or by installing
functional patches on the fly, etc. The range of dynamic adaptation policies that can be applied to a
service may be seen as a derivation of service specifications and each dynamic adaptation action
that is taken is in itself a subject of on-line validation from that moment on.

Figure 7. COLV Architecture [68]

The control loop variant of the C

 of code which get installed in

- from these probes, and generate semantic

OLV approach is shown in Figure 7.

- Probes are generally small, constrained, non-invasive pieces
or around the target application system—they may inject source code, modify byte codes or
binaries, replace DLLs or other dynamic libraries, inspect network traffic, and/or perform
other related tasks to collect this information;

Gauges are responsible for interpreting data
events about the behaviour of the application—often operating in an effective hierarchy
where higher-level gauges interpret aggregate events from lower-level gauges;

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 27 of 78

- Controllers receive analysis results from the gauges, and decide if and when to coordinate
one or more effectors to attempt a repair.

- Effectors apply reconfiguration or repair, usually tuning or replacing an individual compo-
nent, or spinning up a new component, as per the task(s) defined by relevant controllers.

The COLV concept as such brings not too much new concepts with respect to the VSM based view,
i.e. not to many Y’s in the table at the beginning of this section. It has however elaborated in various
projects and works that add interesting specific elements to the proposed supervision approach.

Kinesthetics eXtreme. What is of special interest on the Kinesthetics eXtreme (KX) approach
[68][69][124] (among other things) is the employment of a very specific effector concept that bases
on mobile code, called Workflakes:

A Workflakes process unfolds according to a task decomposition strategy, which in the end
generates, configures, activates groups of effectors, and coordinates them towards actuating the
desired side effects onto the running controlled system. Worklets are code carrying agents that
Workflakes selects as effectors, configures and dispatches onto the target system, as a side effect
of process steps. Each Worklet carries Java mobile code snippets, and deposits them onto one or
more target components, according to a programmable trajectory. Once deposited, the execution of
Worklet code is governed by constructs that specify conditional execution, repetition, timing, priority,
etc. The agent transport facilities and the code execution environment are provided by a Worklet
Virtual Machines residing at all "stops" in a Worklet trajectory.

Thus the KX approach provides us with a way to define intelligent, asynchronously acting actuators
that—equipped with a general purpose (which might be encoded in the “payload“ code)—may adapt
to situation and technology specific circumstances and thus allow distributed global activities.

Auditing. The KX approach has been continued in the Olives projects [96] in various case studies
[37], and further developed in [35] and [39] under the main keyword “system auditing”. What is novel
in this work is the employment of testing technology—namely the test system definition language
TTCN-3 [43] (which has been developed in the context of protocol performance testing) for the
interpretation of monitored data and the classification of fault states. TTCN-3 combined the
classical notion of decision trees with interaction triggered branching with procedural elements for
computations and data analysis. In particular, it defines means for the set-up distributed dynamic
configurations for data correlation systems and thus provides means for self-adaptation of the
auditing system.

The Auditing approach to employ modern technologies for distributed testing thus equips us with
means for the definition of adaptive procedural internal system representations (the VSM System 4)
which are somewhere in between formal models as e.g. in Willow (Section 3.1.5), rule based
approach as proposed e.g. by MAPE (Section 3.1.2), and the encryption of the image of the system
(and environment) structure into code.

3.1.5 Willow

The Willow architecture [72][74] provides a comprehensive architectural approach to the provision of
survivability in critical information networks, i.e. networks with large numbers of heterogeneous
nodes that are distributed over wide geographic areas and that employ commodity hardware, and
COTS and legacy software, and providing information distribution and access services for a variety
of application level systems such as telecommunication systems, banking systems, etc. Damage to
the information system will in many cases lead quickly to the loss of at least a large part of the
service provided by the infrastructure application. Survivability refers to the ability of a system to
continue to provide service (possibly degraded) when various faults occur in the system or operating
environment.

Willow is an example of a survivability architecture in the sense of [73]. The class of faults which are
in the focus of a survivability architecture are characterized as non-local (i.e. effecting a probably

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 28 of 78

large number of nodes) and non-maskable (i.e. there is no [local] mechanism that hides the effect of
the fault from the perspective of the global system).

The basic architectural paradigm of survivability is that of a closed control loop that senses the
controlled system and manipulates it on the basis of the perceived data. Furthermore, the following
characteristics are elaborated:

- decentralized, i.e. parts of the control system act autonomously on parts of the controlled
system,

- adaptive i.e. the control system provides its service in the face of changes to the controlled
system and also to the control system

- hierarchical, i.e. control actions are determined various levels in a hierarchical system, with
low-level control system elements influencing and being influenced by higher levels of con-
trol.

Knight et. all. [73] do not only collect requirements on the survivability control system but also
analyze the necessary design characteristics of the controlled system:

- Support for application reconfiguration, i.e. the controlled system has to provide means for
dynamic run-time configuration and reconfiguration. This includes:

- Start, suspend, resume, terminate, and delay.

- Change process priority.

- Report prescribed status information.

- Establish recovery point, and discard recovery point.

- Effect local forward recovery by manipulation of local state information (e.g., reset the
state).

- Switch to an alternate application function as specified by a parameter.

- Database management services such as synchronizing copies, creating copies, with-
drawing transactions, and restoring a default state.

- Design flexibility, i.e. the controlled system must exhibit a certain degree of functional and
structural flexibility in order to be able to continue its execution in the presence of global
faults.

- Securing survivability mechanisms, i.e. the application of those mechanisms must not cause
additional faults, corruption, system instabilities, etc. In particular, the survivability architec-
ture has to be secured against misuse and attacks.

The Willow architecture is designed to enhance the survivability of critical networked information
systems by: (a) ensuring that the correct configuration is in place and remains in place during
normal operation; (b) facilitating the reconfiguration of such systems in response to anticipated
threats before they occur (including security threats); and (c) recovering from damage after it occurs
(including security attacks).

Reconfiguration is understood in a very broad sense as to be applied to any situation that is outside
of normal, “steady-state” operation. Thus, for example, initial system deployment is included
intentionally in this definition as are system modifications, posturing and so on. The system
reconfigurations supported by Willow are:

- Initial application system deployment.

- Periodic application and operating system updates including component replacement and
re-parameterization.

- Planned posture changes in response to anticipated threats.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 29 of 78

llow architecture and its components. Sensors include reports from

roach concludes with a mapping into the

tegration model—although described as hierarchical—based on a clear technological

- Planned fault tolerance in response to anticipated component failures.

- Systematic best efforts to deal with unanticipated failures.

Figure 8 illustrates the basic Wi
applications, application
heartbeat monitors, intrusion
detection alarms, or any other
means of measuring actual
network properties. From
sensing events, independent
diagnosis and synthesis
components build models of
network state and determine
required network state
changes. RAPTOR [72] is a
formal-specification driven
diagnosis and synthesis
system that receives sensor
events to analyze and
respond with desired network
changes, automatically and in

bounded time. RAPTOR
bases on sets of finite state
machines that are used to
keep track of the states of the controlled system and are driven by events emitted from the system
sensors. The Administrative Workbench is an interactive application allowing system administrators
to remotely monitor application conditions and adjust application properties. Additional diagnosis
and synthesis components can be added by modification of the Willow specification input. Synthesis
components issue their intended network changes as workflow requests. Nephele is a large-scale
network workflow execution environment. It oversees coordination and arbitrates resource usage
between independently synthesized work requests. Different workflows with differing intentions from
different diagnosis and synthesis components might conflict, and Nephele maintains ordering of
their operation to best meet the survivability goals of the application domain. When workflows are
allowed to activate, workflow events are received by the Software Dock and result in local system
state changes. The Software Dock infrastructure provides a single interface for universal actuation
at application nodes across enterprise level networks [53][54][55]. Actuation completes the control
loop cycle. All of the components of the Willow architecture interact via the Siena publish-subscribe
communication system [28]. This allows efficient, scalable event-driven communication to Willow
components throughout large-scale networks. In turn, the components of Willow provide efficient,
scalable, well-defined, proactive and reactive network change capabilities. This enhances network
application survivability, security, and manageability.

The discussion of the Willow Survivability Architecture app

Figure 8. Willow Architecture [74]

VSM:

The in
separation of the supervision (i.e. the control) system and the supervised system. The VSM System
3 is presented, System 4 is realized by the RAPTOR set of finites state machines that are used to
interpret system events and to classify system states. It is not clear from the available sources
whether these state machine models are used to make prediction on future system states (e.g. by
simulation), but pro-activity is at least the potentially enabled. Adaptation of the System 4 is not
considered. Thus we conclude that Willow provides self-awareness, but situation awareness is not
maintained (or at least not discussed in the available literature). It is interesting that Willow has at
least a rudimentary System 5: by employing a so-called resource manager/priority enforcer Willow is
able to select between several high-level policies such as alleviating a security attack versus

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 30 of 78

3.1.6 Nestor

 on the automation of dynamic configuration tasks in distributed

ral technical challenges:

atabases and repositories so that con-

- e knowledge of configuration consistency rules in a composable form, and en-

- ional configuration states,

tates and states

Data an in the Nestor architecture. System models are

DL) is a subset of MODEL [95][120], a language for

CDL) is a declarative expression language for stating

onfiguration model objects

architecture. In the top layer, self-configuring Applications access a

masking a minor fault effecting only a few system components. These decision models are
implemented by (asynchronous) workflows which define a partial order on the reconfiguration tasks
to be performed by the survivability system. Finally, Self-application is not considered.

The Nestor architecture [76] aims
network structures like Active Networks. Nestor is not strictly a supervision system in the sense of
this report, we nevertheless add a description since the approach concentrates on internal system
state and structure representation and thus builds a complementation to the more process oriented
approaches described so far.

Nestor is concerned with seve

- How to unify access to heterogeneous configuration d
figuration management tasks can be programmed and executed by software rather than
manually.

How to cod
force these rules through configuration changes,

How to support rollback and/or recovery of operat

- How to detect and handle emergent inconsistencies between configuration s
controlled by underlying built-in procedures.

d semantic modelling play and important role
described using a variety of languages2:

The Resource Definition Language (R
modelling network systems for event correlation. MODEL extends the CORBA Interface Definition
Language (IDL) with support for instrumented and computed attributes, declaration of problems
(events), and association relationships for modelling event propagation. Instrumented attributes are
bound to values stored in the managed element, whereas computed attributes are bound to an
expression that is evaluated dynamically.

The Constraint Definition Language (
assertions over the valid values of objects in RDL. As an inherent language feature, statements in
CDL cannot modify any attributes or relationships in the model and do not cause side effects.
Constraints may be composed from restrictions on the configuration of component devices or
services. CDL is based on the Object Constraint Language (OCL) [97].

The Policy Definition Language (PDL) is used to assign values to c
based on the configuration of related objects and thus is used to define interrelationships and
dependencies of model data.

Figure 9 describes the Nestor
unified semantic configuration model to discover the configuration of their environment and to export
their own configuration state, operational constraints, and change propagation rules. NESTOR
applications access the repository using the Directory Access Protocol (DAP), a remote interface
permitting applications to execute either locally or remotely. NESTOR uses protocol proxies to
interface with legacy dynamic configuration protocols. Existing configuration servers are wrapped by
NESTOR protocol proxies. Clients connecting to the proxy server continue to receive the same
service with the difference that changes are effected through the NESTOR repository.

2 Nestor provides also a plug-in mechanism using a programming language called JSpoon (a JAVA
derivative). The authors of [75] claim that this language provides constructs for the programming of
Autonomic Systems.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 31 of 78

The Self-Configuration Management layer consists of a constraint and change propagation
manager responsible for authorizing changes in the model, maintaining consistency through change
propagation, and assuring that the composition of the change propagation rules does not lead to
cyclical changes. The constraint and propagation manager subscribes for changes in the model and
has the right to abort configuration transactions, or to effect additional changes. Its actions are
controlled by CDL constraints and PDL rules.

The Configuration Modelling layer is responsible for maintaining the model and supporting the
advanced model operations. The Resource Directory Server (RDS) maintains an object repository
that stores and controls access to model object instances. Repository objects reflect configuration
settings at the real network elements plus meta-information that is supplied or inferred from multiple
sources.

The Protocol Adapter layer provides instrumentation for network elements that are not NESTOR-
enabled. Adapters are responsible for propagating information, forward and backward, between the
RDS repository and the managed element or service. Use of protocol adapters separates the task of
mapping the unified model attributes to the real element attributes, from the protocols realizing that
mapping.

Figure 9. Nestor Architecture [76]

As said above, Nestor is not a supervision system in the sense of this report but nevertheless, and
identification of the VSM equivalents of the several components of the architecture is possible.

Since Nestor is intended as a (generic) network node architecture, it is an example of the intrinsic
integration of a control system with the system under control. The VSM System 3 is somewhat
hidden behind various sensor and configuration functions provided both by the Application layer and
the Network Element layer, and the continuous reflection of these data in the Configuration
Modelling layer. System 4 is presented by the Configuration Modelling layer and the Self-
configuration management layer. Both layers provide a dynamically adapting model of the system
which enables for self-awareness. Since the architecture is located on specific network elements
which act as autonomic entities, the environment of these elements (namely, the rest of the network)
is also represented in the modelling and self-configuration management layer.

3.2 Monitoring
This section surveys the main approaches to monitor the execution of software components. Many
proposals deal with Web services, but we also address other types of software elements. Illustrated
approaches are divided into two different classes: languages for monitoring contracts, and existing
monitoring architectures.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 32 of 78

3.2.1 Languages for the Description of Monitoring Contracts

WSLA is a language defined by IBM; it stands for Web Service Level Agreement. WSLA is part of
the on-demand [32] focus. WSLAs define agreements between a service provider and a service
consumer. These agreements are represented as obligations for each party. Obligations for a
service provider are to perform its service within parameters that represent, for example, availability,
throughput, response time, etc. A parameter is an aggregation of metrics which detail what should
be measured in the system and how (i.e. the algorithm). WSLAs also define the actions that should
be executed in case of an obligation failure. This standard implies the monitoring of information like
availability, throughput, response time, but is not limited to that and allows for constructing new
monitoring information. The language offers mathematical functions to express new computations to
help transform measurement into parameters. WSLA abstracts the measurement level and propose
to express the computation of a parameter on top of a measurement directive, which is retrieve as a
value from a web service. From the user perspective the WSLA language enables the declaration of
composite metrics that allow constructing complex functions and the computation of non-trivial
parameters. The user expresses the functions (that are defined as a library) to be applied on
measurement directives and then produces a result. The declaration of obligations allows
expressing the comparison of parameters value to threshold values that represent the failure.

WS-Agreement [128] is a standardization effort being conducted in the Global Grid Forum. It is an
XML language for specifying agreements between service providers and consumers, and also
defines a protocol for the creation of agreements using agreement templates. WS-Agreement is
very generic in the way that it can use any term of service descriptions, any condition specification
language, and can be composed with various negotiation models. An agreement is composed of the
definition of the parties (i.e. the context) and the terms of the agreement. The main part of an
agreement – the terms - is divided into the service description terms and the guarantee terms. The
service description terms define the functionality that will be delivered under an agreement. The
service description terms are generic and their content itself is dependent on the particular domain.
Guarantee terms define the assurance on service quality, associated with the service described by
the service definition terms. WS-Agreement defines a two layers architecture which is composed of
the service layer that represent the application-specific (i.e. the business service being provided)
and the agreement layer that provides a Web service-based interface that can be used to represent
and monitor agreements with respect to provisioning of services implemented in the service layer.
From the user perspective the WS-Agreement specification defines a very generic framework for the
description of agreement and guarantee. It relies on the definition of domain specific descriptions.

In this context, we must also mention WS-Policy [63], which does not support monitoring directly,
but it allows the designer to specify policies, which in turn might address monitoring.

3.2.2 Monitoring architectures

Cremona [81] proposes an architecture for the semi-automatic creation and monitoring of WS-
Agreements. It provides implementations of the WS-Agreement interfaces, provides management
functionality for agreement templates and instances, and defines abstractions of service-providing
systems that can be implemented in a domain-specific environment. In the Cremona Architecture
(Creation and Monitoring of Agreements), two different layers of agreement management help in the
runtime monitoring of the agreements. The Agreement Protocol Role Management (APRM) provides
functions for agreement protocol roles. It is a middleware layer for creating agreements and for
accessing agreement state at runtime. In particular, it provides the functions for discovering the
state of service description and guarantee terms. On the other hand, the Agreement Service Role
Management (ASRM) builds on the APRM and relates it to the service implementation or to the
service-consuming system. In particular, for the service provider, the ASRM includes monitors for
mapping the state of a service to a status for a guarantee term.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 33 of 78

AgFlow3 [132][133] is one of the new middleware platforms motivated by service-oriented
applications for the dynamic composition of services and guaranteeing the QoS parameters set or
negotiated during the composition. AgFlow moves the problems of dynamic and QoS-aware
composition from the application to the supporting infrastructure. The middleware platform considers
five basic generic quality criteria: execution price, execution duration, reputation, successful
execution rate, and availability, but also allows the designer to add special-purpose dimensions. The
composition can be based on either local optimization or global planning. Local optimization can
cause sub-optimal solutions if we consider aggregated services. This is why the second strategy
(global planning) exploits a novel integer programming approach to select the best (global) set of
operations for the given composition. Re-planning must be performed every time the platform
signals a discrepancy between the negotiated QoS and the provided one, and also when a given
service does not answer anymore. Since the middleware platform is in charge of supplying the
agreed QoS, these quality dimensions must be monitored. The approach collects QoS information
from service data published by the providers, execution monitoring, and requesters’ feedback.
Moreover, the approach distinguishes between deterministic and non-deterministic QoS criteria. In
the former case, the value is known and certain when the service is invoked (e.g., the execution
price); in the latter case, values are not available when services are invoked. Non-deterministic QoS
variables have a random value that follows a normal distribution with a certain mean and standard
deviation calculated from the history of past executions. Both classes of criteria need to be suitably
monitored to ensure that there is no disagreement between agreed and measured values.

CA WSDM tool [129] monitors Web Services traffic for a variety of metrics. Transaction driven
metrics include Response Time, Request Size, Reply Size, Transaction Volume and Transaction
Rate. Message driven metrics include SOAP Fault monitoring and a configurable Content Monitor
which enables user defined observation and alerting based on specific message content. Real time
alerts are generated upon violation of any monitor threshold. All of these metrics can be monitored
and deliver reports and alerts if this is deployed in a host based installation, inside the corporate
firewall and enforcement points. However a majority of these metrics can be used to monitor web
services that are consumed outside the firewall in a remote manner. This permits the users to
monitor significant performance and availability metrics on web services that would normally be
considered out of the user control. The metrics are gathered by observing the SOAP message
stream. As such CA WSDM can be used by either the publisher, consumer or by a third party
offering a service monitoring web services. CA set up an example of such a service called CA
performance index, monitoring popular public web services. Monitoring results can be seen on the
CA web site www.ca.com

JOpera [101] is, first of all, a toolkit for visual composition of services. It defines a proprietary Visual
Composition Language (JVCL). This visual abstraction permits every service to be seen as a black
box that takes a certain number of parameters in input and provides an output. The composition is
achieved by mapping outputs to the inputs of subsequent services. JOpera can be used to compose
web services, but it also can be used to compose components produced with other technologies.
For example, mismatch between outputs and inputs of black-box operations are resolved by calling
upon a piece of Java code. Monitoring in JOpera consists of a runtime overview of the execution of
the composed process. A visual tool is provided. With this tool the single operations of the process
are coloured accordingly to their state (running, completed, etc.). Throughout the execution it is
possible to obtain the values of the inputs and outputs of the operations by simply looking at a
sidebar that contains the operation’s run-time properties. A part from the values these inputs and
outputs contain, it is possible to see, in the case of Web Services, the contents of the SOAP
message that was sent to and received from a certain operation. Monitoring allows, in ultimate
analysis, to keep an eye on the execution of a process. So, if a process is blocked by some
erroneous service, it is possible to immediately discover which of the services is responsible.
Furthermore, the contents of the input and output messages sent to it can be analyzed to try and
understand where the problem lies.

3 Notice that the new system is now called self-serv. (It is unclear which new system is meant)

http://www.ca.com

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 34 of 78

Spanoudakis and Mahbub propose a framework for monitoring requirements for service-based
systems [83][117]. Their framework assumes service based systems which incorporate a central
process that co-ordinates the individual services deployed by them and which is expressed in BPEL
[13]. In this framework, the requirements to be monitored include: (a) behavioural properties of the
co-ordination process of the service based system, and (ii) assumptions about the atomic or joint
behaviour of the services deployed by the system. Both these types of requirements are expressed
in a requirements specification language which is based on event-calculus [114]. The behavioural
properties to be monitored at run-time are extracted automatically from the specification of the co-
ordination process of a service-based system in BPEL while the assumptions to be monitored must
be specified by the providers of the system. These assumptions must be specified in terms of: (a)
events that can be observed at run-time and correspond to either operation invocation and response
messages or the assignment of values to global variables used by the co-ordination process of the
system, and (b) conditions over the state of the co-ordination process of the system and/or the
individual services deployed by it. These restrictions ensure that requirements monitoring can be
based solely on events, which are generated by virtue of the normal operation of the system without
the need for instrumenting the individual services deployed by it. The requirements specification
language that is used by this framework is a first-order logic language that incorporates special
predicates to signify assertions about time and, to this end, it provides a very expressive framework
for specifying functional requirements, which may include temporal characteristics. However, the
language used by this framework does not support the specification of a full range of quality-of-
service requirements including, for example, requirements expressed in terms of aggregate
measures of system functionality. At run-time, the framework deploys an event interceptor that
catches events, which are exchanged by the different services and the co-ordination process of the
system, and stores them in an event database. A requirements monitor that can detect different
types of violations of requirements accesses this database. These types are: (i) violations of
assumptions caused by the recorded run-time behaviour of the system, (ii) violations of behavioural
properties of the co-ordination process of the system or assumptions made for specific groups of
services deployed by it that would have occurred if the system was functioning according to the
entire set of assumptions specified for it, and (iii) unjustified actions which the system has taken by
wrongly assuming that certain pre-conditions associated with the undertaken actions were satisfied
at run-time. The detection of these types of violations is fully automatic and is based on an algorithm
that has been developed as a variant of algorithms for integrity constraint checking in temporal
deductive databases [31]. The detection of requirement violations in this framework can happen only
after a violation can occur. Thus violations cannot be prevented and need to be handled after they
have occurred (reactive approach). It should, however, be noted that, in its current state of
development, this framework does not support the handling of these violations.

Dynamo (DYNAmic MOnitor) [14] proposes an assertion-based approach for monitoring BPEL
process. A Visual Tool allows the process provider to define some assertions and associate them
with the invocation of services. These assertions are written in WSCoL, a first order language part of
the approach. The original BPEL process and defined assertions are passed through an
instrumentation tool, called BPEL2 that creates an executable and monitored version of the process:
this is still pure BPEL and it is executable on any BPEL engine. The instrumented version contains
additional BPEL code inserted to call the Monitoring Manager, which conversely is in charge of
interacting with external Web services that act as monitors. During process execution, Dynamo (the
monitoring manager) works as a proxy; it checks the data exchanged between the process and
called services against the desired behaviour described in WSCoL. If an assertion is violated,
Dynamo communicates the problem to the BPEL engine, which can continue or throw an exception
that signals that something has gone wrong. The exception is caught by a BPEL exception handler,
which in turn might perform a graceful halt on the process, communicate the error to the client of the
process and exit.

University of Trento proposes a framework for associating business rules and client requests to
business processes. It is capable of planning and executing a process that is compliant with the
specified rules and requests. In this approach assertions (business rules) are classified along two
dimensions: operational assertions and actor assertions. Assertions are classified along the

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 35 of 78

operational dimension on the basis of the operational context and complexity of the assertion. They
are classified along the actor dimension on the basis of the ownership of the assertion. An
operational assertion can be a simple assertion, a preservation assertion or a business entity
assertion. The first is an assertion that must be true in a certain state in order to reach the next. The
second is a condition maintained throughout all states reached during the execution of a process.
The third is a property that applies to the evolution sequence of a process variable. An actor
assertion can be a business process level assertion, a role level assertion or a provider level
assertion. The first is applied to an entire business process. The second is valid for all the providers
playing a certain role. The third is tied to a precise service provider. The framework is based on two
languages: one for the definition of business assertions (XML Service Association Language, XSAL)
[79] and one for the definition of client requests (XML Service Request Language, XSRL) [99]. Both
predicate using terms from standard business processes provided by the market maker (domain
maker). The system plans sequences of actions by reasoning on the combination of business level
assertions, assertions provided by the client, and the business domain. This step can be iterated if a
valid plan cannot be formulated and re-planning is necessary. Once execution commences the
system can monitor the assertions. If violation occurs or extra information is acquired by the system,
re-planning can also be undertaken.

DIANA [113] proposes an algorithm for monitoring a distributed program's execution for violations of
safety properties. The monitoring is based on formulae written in PT-DTL (Past Time Distributed
Temporal Logic), a proprietary variant of PT-LTL (Past Time Linear Temporal Logic) capable of
predicating on remote expressions and remote formulae without the use of global or shared
variables. In this approach the, monitoring is performed locally at an actor’s site. In order to achieve
this, the remote values necessary to the monitoring code are passed using a so-called Knowledge
Vector (a set of remote values necessary for monitoring) that is constantly piggybacked on the
messages flowing throughout the system. The Knowledge Vector is added to the message by
whoever sends it. Each process keeps track of one Knowledge Vector. The size of this Knowledge
Vector does not depend on the number of processes in the distributed system, but on the number of
remote expressions and formulae. In fact, each entry in the vector contains the values stored within
a certain process and the sequence number of the last event seen at that process site. The
sequence number is useful for solving problems due to asynchronous messages arriving out of
order. It is the case, in fact, that older values for expressions could overwrite the new ones if the
sequence number is not taken into account. With DIANA, a distributed systems application
development framework is provided. To use DIANA, a user must provide a distributed program and
the safety properties he/she wishes to monitor. DIANA is capable of synthesizing the monitoring
code and weaving the appropriate instrumentation code into the distributed system.

Canfora et al. propose [1] another proxy services to perform monitoring. To effectively monitor QoS
attributes and trigger re-planning, some information needs to be collected. The data on the actual
QoS of each service are used to get more accurate QoS estimations for future executions of that
service, possibly in the context of compositions, whereas the information on the workflow instances
is used to predict the likelihood of each branch, and the number of iterations of each loop of the
workflow, from which the overall QoS is computed. Similarly to what proposed by Mandel [85], their
proxy services receive invocations from composite services, as well as from any service-oriented
system, and forward the request to the invoked service. At the same time, the proxy service has the
responsibility of monitoring the service QoS:

• by reading declared QoS attributes from the QoS description (expressed in any of the
available languages, e.g. WSLA or WSOL - Web Service Offerings Language [122])
hyperlinked to the service WSDL;

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 36 of 78

• by directly performing some measures (e.g. checking availability, measuring response time
or throughput using the Simple Network Management Protocol (SNMP) [116] possibly
following the measurement specification indicated in the service QoS specification4.

To monitor workflow executions, the BPEL description is probed with partner links to a service that
collects structural information (such as paths followed), but also keeps track of the overall values of
the QoS attributes of the composite service. In particular, service probes are placed on each loop
and branch of the workflow, and after each service invocation.

This permits service re-planning whenever the paths followed or the QoS values measured indicate
that the workflow may not be able to meet the SLA. Several scenarios may happen:

Once information related to which branch is executed in a conditional statement is known, the
overall QoS can be re-estimated accordingly (the previous estimated was a weighted average of all
branches QoS), and this new estimate could suggest that a re-planning is needed;

Similarly, the monitoring may indicate that the estimated number of iterations of a while statement
deviates from the actual value;

Measured QoS attributes for a service can grossly deviate from the declared/estimated values; or

A service may be not available.

Although the proposed approach requires instrumenting a BPEL process description, there is no
need for any intervention on the workflow engine, since measures are collected by the proxy
services properly invoked by the probes.

TILab has developed a set of facilities for service management for the new Telecom Italia service
platform based on the Session Invitation Protocol (SIP [109] The monitoring feature, based on the
standard SIP Event Framework [108], provides the capability to collect information about and
inspect the state of entities within the network as they evolve over time The monitoring feature has
been designed to support the collection of different kinds of data, tailored to different network
elements and services residing on them. Monitoring information is XML-based to allow for
extensibility, so that any kind of component can report its specific state information. The architecture
envisions that a single network element may incorporate many monitoring components, each of
them publishing different information, using different XML namespaces. In that context, basic node
information common to all nodes of a certain type can be provided by a core component in that
node. The subscription mechanism, furthermore, allows filtering the events in various ways,
constructing multiple monitoring views that respond to different needs and can be directed to diverse
recipients, ranging from human readable reports, to management consoles, to software agents, to
decision support systems. To detect the unavailability of network or service entities, keep-alive
mechanisms are used that require network elements to frequently refresh their information, so that
the monitoring server could notify watchers in near real-time about unavailability, whenever a
refresh information is not received in time.

3.2.3 Conclusions

All the described infrastructures and languages assume the presence of a contract between a
provider and a consumer. In the CASCADAS environment, it is difficult to identify such roles, simply
because the provider role can be fulfilled by a large number of elements that can change
dynamically Furthermore, in the CASCADAS infrastructure, the supervision system must oversee
the behaviour of a (probably large) set of distributed elements and, to the best of our knowledge,
Diana is the only proposal that considers that the elements to oversee are distributed without any
centralized controller.

4 For example, WSLA provides information to indicate how some measures can be performed:
Measurement directives define how the measurement is conducted and which information is needed
for this purpose depends strongly on the particular system to which measurement is applied.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 37 of 78

3.3 Evaluation, Event Correlation, and Problem Detection
A key feature for a self-managed system is to detect problems by itself, reducing the resolution time,
rapidly identifying the root cause of a fault, in order to ensure properly service level agreement.

Event correlation can be defined as the conceptual interpretation procedure of assigning a new
meaning to a set of events that happen within a defined time interval [65]. Typically, in traditional
communication networks, the analysis of events is characterized by a static environment with well
defined messages with limited syntax. The strong causal relations between events and type of faults
make the analysis the application of a sequence of predefined rules.

In an autonomic communication environment we have to face new challenges due to the high
dynamicity of the environment, the unpredictability of the events and their syntax, the heterogeneity
of the information and of the event sources.

Event correlation in such a complex and heterogeneous environment should be able to correlate
events in order to identify symptoms. We can define a symptom as:

“Perception resulting from an interpreted observation that indicates a possible problem
or situation in the environment. Basically, symptoms are indications of the existence of
more general or serious problems”

From this definition we may use Symptoms as a way to identify possible problems from
observations in order to undertake the right actions.

In the following sections we describe different techniques for event correlations which consider the
key aspects described above.

3.3.1 Distributed Event Correlation and Self-Management System

In [90], a distributed event correlation technique based on the hierarchical model and self-
management features is described. The paper mainly describes the impacts of introducing
autonomous systems capable of taking independent corrective actions. In fact, the paper points out
how this implies change in the organizational model, which in management architecture deals with
the way different entities interacts and share the management work load.

The need for distribution in event-correlation arises from the limits of the manager/agent paradigm
applied to the management of systems supporting high available services. Such environment are
typically characterized by managed object (application or device) which is serviced by an agent,
which is responsible for updating information related to the managed object in a database known as
the Management Information Base (MIB). The manager communicates with the agent to store data
in the MIB (such as new configuration settings for the managed object) or to retrieve information
from the MIB (such as current managed object status). Additionally, the agent can asynchronously
signal the manager when an interesting event occurs. Centralized managers and static information
format modelled by MIBs make this environment unsuitable for an extensible and unpredictable
autonomic environment.

The self-management feature is introduced in the system by adding a component, named SMS
(self-managed system) into the management model. In highly distributed environments, centralized
event correlation is not applicable, hence distribution techniques has to be adopted. In the proposed
technique the distribution of the event correlation task takes place at the SMS level. Basically, the
SMS tries to run the event correlation tasks as local as possible, limiting the needs to propagate
events to higher level components (Top-Level-Manager TLM and Sub-Level-Manager SLM).

The following figure shows the management model:

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 38 of 78

TMN

SLM SLM SLM

SMS

Component Component Component

Figure 10: management model

3.3.2 Service-Oriented Event Correlation

The authors of [59] describe the impacts on event correlation due to the shift from device-oriented to
service-oriented management.

An overview of the main IT process framework (ITIL [64] and eTOM [42]) is done in order to
highlight how such frameworks cope with IT service management. Usually, such frameworks
describe only high level process steps regarding fault management, problem detection, and other
related tasks, not taking into account details on how to implement such processes.

For example in eTOM three processes are defined for fault management:

Problem handling deals with receive trouble from customer and solve them using Problem
Management.

Service Problem Management deals with customer-effecting service failure. Using the information
provided by the problem handling process tries to find the root causes and the problem solution. It
contains a subtask named “Diagnose Problem” which tries to find the root causes performing tests
but no event correlation is explicitly mentioned.

Resource Trouble Management performs the resource failure event analysis, alarm correlation
and filtering.

A service model is used allowing the definition of the dependences among the services described.

The technique is based on a workflow which defines the steps needed to carry out event correlation
taking into account service failures other then resource failures only. It is reached correlating the
different kind of failure in order to avoid SLA violations and to identify the fault in a very short time.

The workflow defined is the following:

Resource
usage

Resource
Active probing

CSM
Active

Intelligent Agent

Service
Active
Probing

Fault detection

Resource
Event

correlation

Servic e
Event

Correlation

Aggregate
Event

Correlation

Fault diagnosis Fault recovery

Resource
Management

Figure 11. Event correlation workflow

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 39 of 78

The key elements shown by the figure are the following:

Customer Service Management Access Point (CSM AP) Intelligent Agent: The purpose of this
element is to reduce the effort for the provider’s first level support, structuring the customer’s
information about a service trouble. It basically uses a decision tree in order to dynamically adapt
tests to customer answers.

Resource/Service Active Probing: The aim of these activities is to react to problems before a
customer notices them. Such activity may be periodically or triggered by the event correlators to test
important services and resources in order to achieve more information if the current correlation
result needs to be improved. A specific aspect which differentiates Active Probing respect to
management tools and customers is that it notifies also positive events in order to have a wider view
of the resources/services behaviour.

Resource/Service Event Correlator: The most important aspects regard the dependencies between
the services and resources usage. The result of this activity is a list of services/subservices which
could contain a failure in the resource. The event correlation is carried out separately at resource
level, where only relations between the resources are considered (e.g. caused by network topology),
and at the service level, which considers relations among services and between services and
resources. Information elaborated separately at these two levels is aggregated in the Aggregate
Event Correlation.

The figure shows some back arrows starting from event correlation boxes to the Resource Active
Probing and the CSM: those arrows should improve the correlation results; in fact, going back to the
fault detection phase it is possible to start the active probing to get additional events helpful to
confirm a correlation result.

3.3.3 Reasoning About Complex Dynamic Situations

The document [66] describes an architecture that implements dynamic event-based situation
analysis for application areas which involve awareness of complex unfolding scenarios such as
homeland security. Such applications involve dynamic objects which change their state and are
involved in complex relations with other objects. In order to manage such application it is important
to understand the situation in which these objects are involved in order to undertake protective
actions when a threat is recognized. Situation may be defined as states which have assigned time
value. That definition emphasizes the time as a critical aspect of the event-correlation for situation
analysis.

The aim of this architecture is to fulfil the requirements of an environment with complex event-based
dynamic situations. Such environments differ considerably with respect to traditional event
management systems where usually (i) the topology of the operational environment is known, (ii) the
environment is mainly static, and (iii) events are well defined and we have strong causal relations
due to the propagation of faults through interconnected network components.

On the contrary, the target environment for the proposed architecture is characterized by complex
temporal/spatial relations which are formed by multiple complex ontologies, the operational
environment is highly dynamic, events are very diverse in nature and contents, involving signal,
textual, visual and other types of information; moreover, causal relations are typically weaker.

The architecture is based on the combination of two approaches: Real-Time event correlation (EC)
[65] and Case-Based Reasoning (CBR) [5]. CBR refers to a style of designing a system so that
thought and action in a situation are guided by a single distinctive prior case (precedent, prototype,
exemplar, or episode). It is interesting for an autonomic environment because it tries to address the
following issues:

- CBR does not require an explicit domain model and so elicitation becomes a task of gathering
case histories,

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 40 of 78

- implementation is reduced to identifying significant features that describe a case, an easier task
than creating an explicit model,

- CBR systems can learn by acquiring new knowledge as cases thus making maintenance easier.

The architecture proposed tries to make the CBR dynamic exploiting the EC capability. Therefore, in
order to manage the dynamics of the situation changes the proposed architecture uses cases for
describing situations and correlated events for determining situation transitions. An example of
situation could be:

- Spatial relations: s1 LOCATED_AT s2, s1 ABOVE s2, s1 CO-LOCATED s2,
s1 NEAR s2

- Administrative relations: s1 SUBORDINATE_TO s2, s1 DIRECTS s2
- Structural relations: s1 PART_OF s2, s1 CONNECTED_TO s2

The system recognizes dynamic situation using CBR. A case is a sort of template for generic
situation. When a new event is generated in the system, it tries to compare the event with the
available templates in order to recognize the most similar known situation. The integration with EC is
realized in order to use significant events to select the case then raw events. In fact the events used
to select the right situation template are events generated by the event correlator. Moreover, in the
reverse direction, the case has the opportunity to suggest further information to the event correlator
in order to strengthen some hypothesis.

3.3.4 Root-cause Analysis

The document [67] describes a framework with reasoning capability in order to perform root cases
analysis in a self-managed environment.

The framework is built by an Autonomic Management Engine which is basically used to filter and
collect raw events and to make some basic correlation. ABLE [92], the reasoning module, is used to
develop a rule set implementing a decision tree which supports the root case analysis. The module
support both machine learning and reasoning, different kind of data reading and writing and
inference mechanisms.

Other interesting features of the ABLE module, interesting for an autonomic environment but not
used in the proposed architecture are:

1. A reflective property between the basic components which built the architecture which enables a
box within a box scenario. Those mechanisms may be exploited in order to achieve dynamic
adaptation by means of composition.

2. The reasoning module implements different kinds of rule engines, allowing the adoption of the
most suitable engine depending on the specific problems to tackle with.

3. In order to avoid inflexibility due to the exclusive adoption of rule-based reasoning, learning ca-
pability is provided which embody neural networks. This feature provides support to build adap-
tive application. As far as event correlation is concerned, for example, learning may be used in
order to recognize unpredictable symptoms.

3.3.5 Symptoms Deep Dive

In the definition of the autonomic elements specifying the architectural view for autonomic
application developed by IBM [12] the monitor function collects the details from the managed
resources, and organizes them into symptoms that need to be analyzed. The details can include
topology information, metrics, configuration property settings and so on. This data includes
information about managed resource configuration, status, offered capacity and throughput. Some
of the data is static or changes slowly, whereas other data is dynamic, changing continuously
through time. The monitor function aggregates, correlates and filters these details until it determines
a symptom that needs to be analyzed.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 41 of 78

The article [104] discusses a new autonomic computing symptoms format, which is an evolution of
the current symptoms format [12] widely available in the autonomic computing toolkit under the Log
and Trace Analyzer component. This article briefly addresses the following points:

- How knowledge in the autonomic computing context is defined;

- How symptoms are a form of knowledge;

- The various components of a symptom;

- The roles of a symptom in the autonomic computing architecture;

The article relates symptom adoption not only to self-healing but considers it as suitable to deal with
other kinds of problems such as self-protecting, self-optimizing, and self-configuring.

A symptom is composed by metadata (generic part information), a schema (specific part
information), and a definition, i.e. a piece of logic which is used to recognize a symptom. Practically
the symptom definition specifies how events must be arranged in order to a symptom to be
recognized.

What is missing in order to make a symptom-based environment completely autonomic and
adaptable is the capability to build new symptom definitions autonomously, i.e. to autonomously
infer a new significant sequence of events that represents a new symptom definition.

Some common IT scenarios that show how both users and IT personnel would benefit from a
symptoms-based autonomic computing architecture are described in [105]. You'll also see how
generic situations can be associated with relevant canonical symptoms to enable a higher degree of
automation in IT processes. The scenarios include situations involving: security, service support,
service availability, service continuity, business logic.

For example for service availability the following symptoms are defined:

Table 2. Example of service availability symptoms

Symptom name Description

Resource capacity met A given resource or set of resources is fully
loaded and reached their maximum capacity

Resource unavailable A given resource or set of resources is installed
but not available

Resource degraded A given resource or set of resources had its
service level degraded

Resource unreachable A given resource or set of resources cannot be
reached

Repeated availability problem A given resource or set of resources fails
multiple times within a specific time period

3.4 Repair and Corrective Measures
This section surveys the main approaches to design recoverable applications and some research
proposals in recovery oriented computing. We survey existing planning-based approaches, some
architecture oriented towards dynamic changes, and a new vision in recovery computing. The last
approach changes the viewpoint: a failure is considered a fact and a new goal consists in
decreasing the time to repair it.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 42 of 78

3.4.1 Planning-based approaches

Mainly adapted for Artificial Intelligence problems, the Planning Domains and Definition
Language (PDDL) is used to describe deterministic planning domains and problems. In traditional
AI planning, there are three artefacts to define a plan: a domain, an initial state, and a goal state. In
order to standardize the planning terminology and to exchange results, the AI planning community
has developed the PDDL language to define these three artefacts. Moreover, the AI community has
constructed a number of planners that use different heuristics to compute a plan.

A PDDL planning domain is described by hierarchically organized types, global objects (instances of
types), variables, predicates, functions, and actions. Objects and variables are called terms and
each term has a type. Predicates and functions permit the definition of respectively Boolean and
numeric state variables; actions are used to define state transitions. A planning problem consists of
a set of state variables V, a set of actions A, an initial state S0, a goal condition identifying a set of
goal states, and an optimization metric that is typically a function of numeric state variables
evaluated over a goal state. A state is simply an assignment of values to the set of state variables.
In PDDL, a planning problem is always associated with a domain definition, and the definition of a
planning problem includes a declaration of a set of problem-specific objects. The state variable for
the planning problem are obtained from objects O, constraints C, predicates P, and functions F as
type-consistent applications of predicates or functions to objects (including domain constants). The
set A of actions is obtained similarly as type-consistent applications of action to objects.

This language can be used as starting point for an ad-hoc language to describe recovery actions; in
fact PDDL is useful to describe system states and rules that must be executed to reach a desired
state. Heimbigner et al. [60] propose a planning based approach to failure recovery that used PDDL.
The methodology follows a classic monitoring, analyzing, planning and executing mechanism that
they call Sense-Plan-Act. An Architectural Description Language (ADL) describes the architecture of
the system; the plan is defined by using a pseudo version of PDDL. Their approach automates
recovery by capturing the state after a failure using the ADL description, defining an acceptable
recovered state as goal, and applying a PDDL planning to get from the initial state (i.e. the state in
which the system is right after the occurrence of the failure) to the goal state.

Furthermore, in [61] Heimbigner et al. propose a methodology to analyze failures during recovery
actions; they use the dynamic recovery model defined by Park and Chandramohan [3]. The
approach is based on a three-phase model: Sense, Plan, and Execute. They assume that if a
component has a fail-stop behaviour it does not start to work again; further, the recovery process is
perfect and does not cause other failures. A dependency model, that is, a graph where nodes are
components, describes the system and/or resources (Application Server, Databases) and arcs are
dependencies between the components. They propose two kinds of dependency: hard and soft; a
hard dependency represents actual functional dependency between components without which the
dependent component cannot provide any real functionality; instead a soft dependency represents a
use relationship between components. Furthermore, the state of a single node can be classified as:
working, with no functionality, and with reduced functionality. The authors also show patterns of
failure during recovery actions and propose some solutions to handle these failures.

This research proposes interesting approaches to deal with failures in distributed systems, but there
are no available prototypes that can be used to evaluate the approach.

3.4.2 Architectures repair-oriented

Wile [127] introduces a meaningful set of architectural patterns for self-management to design a
self-repairing system or to adapt a system not previously capable of managing itself. This kind of
patterns is useful to describe how a system can be structured to deal with recovery situations.

A pattern called resource reallocation assumes that some probes watch the consumption of
resources and gauges determine average usage and threshold violation. Then some decision logic
determines how to reallocate resources, either by adding new resources to one process or removing
resources already allocated to others.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 43 of 78

Figure 12: Resource reallocation pattern

The main goal of the pattern corruption resiliency is to bring the system back on track after
discovering tampered resources.

Figure 13: Corruption resiliency pattern

The authorization pattern uses gauges to determinate that a particular action is being attempted; a
threat modem decides if this action should be prevented or is allowed to proceed. If the decision
cannot be made automatically, it is delegated to the user.

Figure 14: Authorization pattern

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 44 of 78

The pattern model comparator requires the construction of two models of the system: the actual and
simulated model. Environmental events are executed in both models and the system compares the
results.

Figure 15: Model comparator pattern

The last pattern, progress measurement reports on the percentage the job that has been
accomplished: the quantity of task to be made is “announced” by a module that can count
elementary steps.

Figure 16: Progress measurement pattern

Another theoretical approach to design recoverable systems is proposed by Park and
Chandramohan [3]. Their goal is to develop applications that can recovery during attacks,
components failures, or accidents. They describe three different kinds of survivability models for
distributed systems based on off-the-shelf components. The static recovery model is based on
redundant servers located on the same machine or on different machines. Existing dynamic
recovery actions can be simply associated with this model. In this model, possible recovery actions
are based on two different modes: Restart mode through which client data are not stored and
Continue mode where client states are stored when they reach a coherent state. In the dynamic
recovery model, the components are replicated on the fly when a failure occurs. It is assumed that a
component can be duplicated and deployed on any machine inside the network. In this way, there
are not duplicated components. The last approach described is the hybrid survivability model that
combines features of static and dynamic models. At the beginning, there is a set of redundant
servers as in the static model; when a server fails, a new server is instantiated on the fly as in
dynamic model.

David Garlan et al. [52] propose another approach for failure recovery in distributed systems.
Garlan’s approach reflects the Model Comparator pattern described above: it uses an ADL
(Architecture Description Language) model of the system and compares it with its monitored

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 45 of 78

behaviour. The execution system is composed of many distributed machines and it is monitored to
observe runtime behaviour. Monitored values are compared against an architectural model of the
system: changing properties of the architectural model trigger architectural analysis to determine
whether the system is operating correctly. Unacceptable operation causes repairs, which adapt the
architecture, and architectural changes are propagated to the running system. The style used in this
work to represent a system is composed of a system of types and a set of rules and constraints. The
types are defined in ACME [51] a generic ADL language, instead rules and constraints are defined
in Armani, a first order predicate logic, augmented with a set of architectural functions. To create a
working prototype, the group has adapted a number of their existing software tools: AcmeStudio,
xAcme, and AcmeLib5 are used to define architectures in the Acme language, AcmeStudio is a
graphical design environment, xAcme is a set of XML schemas to translate architectures in the
Acme language into XML files, and AcmeLib offers two different implementations (Java and C++) of
a library to manipulate Acme architectures. The Gauge Infrastructure is a library that allows for the
definition of gauges, gauge managers, and gauge consumers. Gauges are monitoring entities that
are attached to a high-level model (in most cases, to an architecture); gauge managers control the
lifecycle of gauges; gauge consumers listen to gauge values, and can display or analyze these
values. Moreover, to monitor the runtime behaviour of architectures described in the Armani and
Acme languages, there is DiscoTect [112], a run-time system capable of constructing an
architectural view of the system by observing its behaviour at runtime. DiscoTect works in sequential
steps; monitored events are filtered by a Trace Engine to select out the subset of system behaviour.
The resulting stream of events is then fed to a State Engine. The heart of the recognition engine is a
state machine designed to recognize interleaved patterns of runtime events and to output a set of
architectural operations. Those operations are then fed to an Architectural Builder that incrementally
creates the architecture, which can then be displayed to a user by architecture analysis tools.

Building on previous experience gathered in the development of JOpera, Pautasso et al. [102]
provide an autonomic reconfiguration component for their distributed service composition and
deployment platform. It allows the system to automatically reconfigure its deployment strategy in the
wake of QoS problems that can arise due to excessive workload. Recovery strategies are chosen by
the autonomic controller according to a number of possible goals, such as minimizing resource
allocation or response time. In practice, they consist of a modification of the number of nodes
among which the deployment infrastructure is distributed. JOpera offers an open and flexible
platform for service composition. It maintains a library of re-usable components, which can be
dragged, dropped, and connected into data and control-flow diagrams. JOpera makes very few
assumptions on the properties of these components, so that the user can freely choose to compose
the most appropriate kinds of services in terms of performance, reliability, security, and
convenience. Such components may represent the invocation of basic, remote services, but also,
for example, job submissions to external resource management and scheduling systems, or the
execution of local applications under a variety of operating systems. Additionally, composite
services can be re-used in two different ways. On the one hand, computations can be decomposed
hierarchically into different modules, which can be invoked and re-used independently. On the other
hand, composite Grid services can define re-usable patterns of interaction between services, which
can then be customized and tailored to specific applications. To do so, service interfaces are bound
to actual sites providing compatible services at deployment or invocation time.

3.4.3 Recovery Oriented Computing

Recovery Oriented Computing (ROC) has a different point of view in recovery methodologies. In
their manifesto [4], they consider faults, errors and bugs as facts. Their goal is to reduce the Mean
Time to Repair rather than the Mean Time to Failure. The idea is to try to reduce the recovery time
and thus to offer high availability.

There are three projects developed by the group:

5 This software and libraries are available at http://www.cs.cmu.edu/~acme/

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 46 of 78

SWORD6 [98] is a scalable resource discovery tool for wide-area distributed systems. The SWORD
project aims to explore techniques for specifying and evaluating resource discovery queries in wide-
area distributed systems. SWORD discovers nodes on which to deploy a service. Unfortunately, the
code of the SWORD prototype is not available. The group provides a running application of SWORD
on PlanetLab. Even if the code is not available, the authors provide three different interfaces to their
prototype: two interfaces are web based and the last is based on a command-line client. SWORD
collects reports about available resources on nodes, and answers queries from users requesting
nodes matching user-defined criteria. These criteria may be per-node (e.g., load, free memory, or
free disk space) or inter-node (e.g., inter-node latency). The nodes about which SWORD collects
reports do not have to be the same nodes as those that are running SWORD, but for SWORD on
PlanetLab, they are the same set of nodes.

UNDO7 [26]. One of the key tenets of the ROC philosophy is that systems should provide undo
functionality for their operators and administrators, to allow them to recover from human errors, as
well as to recover from failed operations like software upgrades, installs, and configuration updates.
Undo for System Administrators and Operators is a tool developed to achieve this goal. This
approach explores system-wide undo via a framework based on the concept of spheres of undo,
bubbles of state and time that provide scope to the state recoverable by undo and serve as a
structuring tool for implementing undo on standalone services, hierarchically-composed systems,
and distributed interacting services.

The traditional undo tools usually lost information and data during the undo steps; e.g. consider a
user that is writing a text and he wants to recuperate a paragraph he deleted in the past; through the
traditional undo system, the user loses all the changes from the deletion to the last version of the
document. The aim of the Undo research is to avoid these situations.

Exploiting the concept of spheres of undo, this undo methodology works in three phases. In the
Rewind phase, all state within the spheres of undo is rolled back in its entirety to a prior version, as
recorded in the history. In the Repair phase, the system operator can optionally make any desired
changes to the system. In the Replay phase: all rolled-back end-user interactions with the inner
sphere of undo are re-executed against the repaired system.

Through the classic concept of Undo operation, this kind of recovery strategy permits to recover a
subset of the previous operation in the history of a tool without loosing any other operation made.

One of the last studies considers Undo operation for distributed services. The source code of the
UNDO prototype is available.

FIG8 [25] is a lightweight extendible prototype for testing the recoverability of software packages
against a variety of external errors. FIG is a tool for injecting errors and logging errors at the
application/library boundary with minimal configuration and run-time overhead. FIG runs on UNIX-
like operating systems and operates by interposing a library between the application and other
function libraries that intercepts calls from the application to the system. When a call has been
intercepted, FIG then choose, based on testing directives from a control file, whether to allow the
call to complete normally or to return an error that simulates a failure of the operating environment.
In order to facilitate the dynamically adaptation to different application to test, FIG toolkit provides an
automatic stub generator. The source code of FIG is available.

3.4.4 Conclusions

The approaches illustrated in the previous sections to recover faulty systems address two different
supervision tasks in CASCADAS: the planning phase and the recovery phase. In fact, planning-

6 http://sword.ucsd.edu/
7 http://roc.cs.berkeley.edu/projects/undo/index.html
8 http://roc.cs.berkeley.edu/projects/fig/

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 47 of 78

based approaches face the problem by using a composition of possible corrective measures
provided to the supervision system by the supervised system. They can be used during the planning
phase of the supervision task. Following the architecture of self-repairing systems, supervised
elements can easily change their structure.

None of presented approaches considers the fact that the overseen system can be a black box
element. All the approaches know the internal structure of the supervised system; so that the
recovery strategies can change the intrinsic nature of the elements. In CASCADAS, the overseen
group of elements can also be composed by black box components and, in this case, the only
actions allowed to the supervision system are the tuning of some parameters. Partially, Heimbigner
et al. consider the problem of the distribution of elements, but their approach consider as repair
measures only the connections among elements; furthermore, in CASCADAS we also need to
change the internal behaviour of the ACEs.

3.5 Evolutionary Strategies
Supervision methodologies and systems as discussed so far usually follow a closed control loop
approach. Current analytics of such systems is often based on static rule or policy-based methods
that react on individual changes. While static rule-based methods are sufficient for traditional
applications working in non-distributed environments, future autonomic systems will require more
dynamic, highly intelligent and fully automated services that are able to operate in distributed
context aware environments and as such are able to not only adapt the system that is under
supervision but, more importantly, the supervising system itself. For the above vision to be realized
the rationale of the system to be supervised as well as the rationale of the supervising system need
to be modelled and observed over time. While flexible and intelligent methods are required to
analyze the resulting behavioural patterns, the success for future pervasive supervision systems will
depend mainly on the ability to model underlying real world problems, scenarios and policies in a
flexible yet fully comprehensive manner.

We call any such reflections of real world processes a ‘concept of interest’, which will play a central
role for future supervision mechanism enabling individual systems to evolve within the boundaries of
the environment they operate in. Simplified, continuous observation of the system together with long
term trend analysis allows for adaptations that can improve service and system performance on
different levels of granularity that go beyond traditional introspective based learning approaches.

3.5.1 The Concept of Interest

The need for advanced long term supervisions, independent of the environment they are applied to,
is based on the volatile nature of the underlying model of individual services, which are likely to
change constantly over time. In order to adapt to such changes effectively any supervision
mechanism needs to incorporate a computational model of the real world problem they were
originally designed for. This so-called concept of interest and the real world problem it reflects are
therefore of paramount importance to enable autonomic services to self evolve in context aware
environments [38]. Simplified, a concept of interest reflects the underlying model of a given service
or application in a machine readable format. Therefore, a concept of interest provides the
“boundaries” a system can evolve in without violating its general purpose. Consequently, the
principal task for a learning system is to incrementally learn about changing contexts without being
explicitly informed about them [77].

The concept of interest for any real world service or scenario often depends on a hidden or very
complex context [123] which makes it extremely difficult to design and implement let alone model
the concept of interest that is intended to supervise it. Typical examples include almost any type of
forecasting scenarios where individual models have to be built or adapted constantly to adapt to
changing conditions, e.g., seasonal or geographical specifics.

Currently, there are no standards to model individual concepts of interests and no specific language
has yet been developed that enables the description of real world scenarios in a domain

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 48 of 78

independent manner. Nevertheless, established XML based mark-up languages such as PMML
(see http://www.dmg.org/pmml-v3-0.html) do provide features that allow the modelling of specific
models stemming from the data mining arena. Another general problem in this area is the handling
of the often large amount of properties that are required to reflect even relatively small concepts of
interests and, furthermore, the implementation, adaptation and constant supervision of relationships
among individual properties can be particular difficult.

3.5.2 Concept Drifts

As mentioned, advanced long-term supervision is based on the specific nature of the underlying
concept of interest of individual services and their environments, which are likely to change
constantly over time. Continuously changing conditions can open a gap between an actual concept
of interest, implemented for a given service, and the real world concept they were designed for. This
problem, referred to as concept drift, implies the constant adaptation of intelligent services and their
underlying models.

Event Extraction
/ Correlation

System / Service under Supervision

M
M

M A
A

A

Execution of
Adaptation

communication infrastructure

Monitoring Comparison /
Analytics Adaptation

Concept of Interest

Event Extraction
/ Correlation

System / Service under Supervision

M
M

M A
A

A

Execution of
Adaptation

communication infrastructure

Monitoring Comparison /
Analytics Adaptation

Concept of Interest

Figure 17: Concept Drift Supervision Architecture (schematic)

Figure 17 illustrates the basic supervision cycle to accommodate for the analysis of concept drifts.
Similar to more general supervision architectures it incorporates the concept of interest in order to
analyze changing behaviour within the boundaries set out through the concept of interest. In
essence, individual context specific attributes are observed and compared to past concepts and
experiences in order to identify differences between them. Based on those differences specific
reactions may be triggered to adjust the system towards its original concept of interest.

Individual changes of a system or the underlying concept are often concealed by the complexity of
the context they are used in, which makes it difficult to predict the impact of any changes made to
the target concept. One of the important features of a concept drift based supervision system is
therefore formed by its ability to track and react on individual changes as quickly as possible without
being explicitly informed of them [126]. Another central problem for the observation of concept drifts
is the handling of noisy data as a supervising system is initially doomed to react on any type of data.
This problem can be particular hazardous as it may cause oversensitivity or insensitivity for the
supervision systems with respect to their adaptability for changing conditions by erroneously
interpreting noise as a type of concept drift (see [126]).

For most scenarios only two types of concept drifts are relevant; continues concept drifts which may
be further divided into slow and moderate drifts depending on the speed of change they follow [119]

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 49 of 78

and sudden concept drifts where abrupt and immediate visible changes occur. The literature [126]
also differentiates between two different concepts of “concept drifts”, namely virtual and real concept
drift. While virtual concept drifts only depend on changing operational data distributions, real
concept drifts may also depend on any change of the underlying context. Whatever the case either
one requires the update of the reflecting model.

Relevant systems that deal with the problem of concept drift and hidden contexts include STAGGER
[111], IB3 [9], and FLORA [126]. Based on the systems available three different approaches can be
distinguished that deal with the problem of concept drift, namely; instance selection, instance
weighing and ensemble learning techniques. Furthermore, traditional patterns discovery techniques,
such as the extraction of associative, sequential and episodic patterns could be useful as such
techniques have been used in the past to extract behavioural patterns and rules from stream based
data.

Instance Selection. Based on the fact that a given context changes over time instance selection
utilizes only a certain number of “latest” contexts to be compared against an original concept of
interest. The set of latest contexts, also known as window of interest, is constantly updated with new
contexts removing older context as they become obsolete. Those actions may trigger modifications
to the supervised concept by constantly comparing the current window of interest with the original
concept of interest. The original FLORA algorithm proposed in [126] implements this technique
using a fixed window size. This concept has then be extended through FLORA2, FLORA3 and
FLORA4 incorporating variable window size, past cases of distinct concept of interests to be used
for comparison purposes and a more advanced noise handling mechanism. Other systems that
implement a similar technique include FRANN [77] and TMF (Time-Windowing Forgetting) [110].

Instance Weighting. Simplified, instance weighing techniques allocate specific weights to individual
properties of the current concept of interest, which are then analyzed by distinct supervised learning
methods such as that support the handling of weights. The way weighing takes place for individual
properties may vary and can include various measures such as competence, update frequency and
the relevance of individual properties with respect to the current context [71].

Ensemble Learning. The purpose of ensemble learning is to build a learning model which
integrates a number of base learning models, so that the model gives better generalization
performance on application to a particular data-set than any of the individual base models [2].
Compared to the previous two approaches, ensemble learning provides a more effective technique
to handle concept drift as it constructs and maintains a set of concept descriptions over different
time intervals. Individual predictions thereof are later combined in order to select the most relevant
description.

Two basic types of learning approaches exist, incremental learning and batch learning. While the
latter analyses large number of instances at once incremental systems evolve over time processing
new instances as they arrive [123]. Systems handling concept drift normally use an incremental
approach because of the fact that new instances need to be processed as quickly as possible in
order to keep a learning model up to date. In essence, an incremental based ensemble method
processes an incoming stream of concepts one at a time classifying them into positive or negative
instances of pre-defined (or previously occurred) concepts. Any discrepancies between the occurred
concept and the predicted concept may trigger modifications to the systems or the underlying
concept of interest [126].

Several distinct learning algorithms, such as rule based, decision trees and instance-based
algorithms, have been utilized for base models in ensemble learning systems in order to handle
concept drift. Almost all of them implement an incremental learning approach in which ensemble
members are dynamically created, deleted or modified in relation to the consistency of individual
base models with respect to the data used.

STAGGER [111] has been one of the first systems which implemented an ensemble learning
approach. It utilizes an initial set of properties as concept features and creates more complex
variations thereof in an iterative fashion using feature construction [123]. Based on the relevance to

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 50 of 78

the current data set the most appropriate features are selected and further processed. The
approach described in [125] divides the original data sets into sub-sets of equal size building an
ensemble system based on those sub-sets. Alternatively, in [119] individual classifiers of different
“age” were used to build an ensemble system. In a nutshell, each base algorithm only utilizes the
latest instance rather than all available instances. The IB3 system proposed in [9] implements an
instance based technique that calculates the percentage of successful classification attempts
comparing it with the frequency of its class. Based on this, the system decides which cases to keep
discarding obsolete and noisy cases. Other systems, such as LWF (Local Weighted Forgetting)
described in [110] only remove old instance whenever a new relatively similar instance appears.
PECS (Prediction Error Context Switching) represents another system which is able to store past
instances for later use and also incorporates the accuracy of an instance [110].

Patterns Discovery Methods. Patterns discovery has always been considered a challenging task,
which has received great attention not only within the research community but also from various
industry sectors. Pioneered by Agrawal et al. in [8] and [7] it has been an active research topic for
more than two decades in which countless publications have been published and numerous
algorithms where proposed. Multiple techniques have been introduced to extract such patterns and
they were utilized for various domains, including telecommunication, life science, chemistry, drug
testing, the World Wide Web, etc. Distinguishing between associative, sequential and episodic
patterns temporal as well as non-temporal patterns and characteristics can be extracted from
different types of data.

Associations represent relationships of a set oriented structure, where the order of items within
those patterns is irrelevant, e.g. (A, B) = (B, A). The area was pioneered by Agrawal et al. and most
of the current research in that area is based on work presented in [8] and [6]. Some of the most
popular methods are based on the apriori-algorithm proposed in [8], which has been later optimized
[6] resulting in AprioriTID and AprioriHybrid. Other popular algorithms include the DIC algorithm
proposed by Brin et al. in [24]; the DHP algorithm proposed by Park et al. in [100]; sampling based
approaches as proposed in [121]; Eclat proposed by Zaki et al. in [130]; FP-growth proposed by Han
et al. in [58] and the so called COFI-Tree mining approach proposed by Hajj et al. in [41].

Sequential patterns are similar to associative patterns but incorporate an additional dimension,
usually that of time [48], where the order of items is relevant and cannot be ignored,
i.e. (A, B) ≠ (B, A). The discovery of sequences can be thought of as association discovery over a
temporal database [131]. This area, also pioneered by Agrawal et al. [7][118] has focused on the
problem of predicting future events based on past events, where an event could be virtually
anything. Naturally, most sequence discovery algorithms are extensions of algorithms that where
designed to extract associations. Some of the most popular once are GSP proposed by Agrawal et
al. in [7]; PSP proposed in [91]; FreeSpan introduced in [57] and [58]; PrefixSpan proposed by Pei et
al. in [103] and Spade proposed by Zaki in [131].

Episodes represent another distinct patterns type combining associative and sequential patterns.
First introduced by Mannila et al. in [87] and [88] they provide a powerful technique to analyze time
series related data, such as error and status log files or behavioural patterns, which contain related
items or in this case events. Examples are found in the telecommunications sector, fraud detection
applications or stock market analyses. A number of algorithms and concepts were proposed to
extract episodic patterns [11], [20], [56], [80], [86] and [87]. However most of them are based on the
same concepts as used to extract associations and sequences.

3.5.3 Visualizing Concept Drifts

The visual presentation of information as well as the interactive exploration of data is an important
and challenging task that allows for better understanding and interpretation of data and information.

In [106], Pratt et al. propose an extension of parallel coordinate graphs called “brushed parallel
histograms” in order to visualize concept drifts in data. Simplified, a parallel histogram graph is a
parallel coordinate graphs with a histogram superimposed on each of its axis, describing the
frequency distribution of points of the projected data set. Taking advantage of the fact that parallel

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 51 of 78

histograms display axes side by side, rather than in a 3-dimensional orthogonal space, they allow
visualization of data distributions in high dimensional feature space. Furthermore, advanced
interaction methods allow the highlighting of individual values and their relevant links which enables
interactive data exploration as well as the presentation of detailed information. In fact, brushed
parallel histograms allow the visualization of change rather than state information in high
dimensional space, which has been a long standing challenge [106].

3.6 Summary and Conclusions
This report deals with various approaches and results related to Pervasive Supervision and provides
a foundation for the further work of WP 2. In the first part, several general approaches have been
analyzed and compared according to the implementation of the various subsystems of a reference
model, the Viable Systems Model. It turned out that the low-level monitoring and actuation
subsystem (VSM System 3) is present in all these approaches as the basic architectural paradigm
employed by all compared approaches is that of a closed control loop. The same holds for the
analysis subsystem (System 4) that evaluated monitored data with respect to the actual situation of
the environment of a system, as long as reactive behaviour is concerned. Only one of the analyzed
examples claims that pro-active activities are performed (i.e. future situations are anticipated). None
of the considered approaches consider self-adaptation.

Purpose-orientation is represented in the VSM by a high-level system (System 5). We found that
only one of the discussed approaches has a rudimentary higher-order policy subsystem.

Pervasiveness, i.e. structural intervening with the supervised system, has to use the (self-organized)
structure of the supervised system, but since this structure is considered either as a black box
(extrinsic approaches) or as static (intrinsic, i.e. Willow node architecture), this aspect is not
investigated in a satisfactory way in any of the considered approaches. Finally, situation-awareness
is due to the concentration to the actually supervised system (ignoring its embedding into an
environment), is also insufficiently elaborated.

In the second part, we had a deeper look into specific aspects of interest. Monitoring has been
mainly investigated from the perspective of advanced service architectures (exemplified by Web
Services). We found large variety of the available results ranging from (standardized) monitoring
and pre-evaluation approaches and tools.

Event correlation and problem detection is—at least on a generic level—not so well elaborated.
Most existing approaches are task and application specific and do not offer a generic systematic
algorithmic methodology. However a number of structural and architectural approaches are
available that can be exploited in the CASCADAS project. It is however foreseen that this topic will
be one of the main research areas for the further work in WP2.

There are a number of approaches concerning the recovery from errors and the determination of
corrective measures (which closes the perception—evaluation—reaction control loop). Not only the
exploitation of management interfaces (the usual way to interact with a system) is considered but
also systematic structural approaches (patterns) and tools for planning are considered.

Finally, we looked into strategies for the self-adaptation of supervision pervasions (in contrast to the
self-adaptation of the supervised service configurations). A number of pioneering approaches
revolving around the notion of “concept drifts” are available. How to concretize these techniques to
work with ACE based service configurations is subject of further work in WP 2.

4 Application Example
To provide a concrete example for a supervision system, this following section describes an
application scenario to illustrate the algorithms described in the following sections. The scenario
describes a pervasive and distributed application called “Behavioural Advertisement”. In particular,

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 52 of 78

the scenario is chosen to illustrate the use of supervision models for system management, and to
describe a basic supervision procedure. It is not intended or capable to capture all the concepts
discussed so far:

- The supervision model that is used is supposed to be the result of the negotiation of the
system under supervision and the supervision system on a supervision service, i.e. it defines
the supervision contract (of class 2, c.f. Section 2.2.1). At the current state of the project, the
precise mechanisms of negotiation and contract construction have not been comprehensively
investigated. The example therefore does not explain how this contract is obtained.

- The exploitation of hierarchies in the supervised system to define levels of abstractions has
been considered from a theoretical perspective (cf. the accompanied document [34]). In order
to keep the example simple and to focus on the main ideas of the definitions of supervision
cycles, the aspect of hierarchies is not presented.

- We restrict ourselves to supervision activities related to the VSM subsystem 3. Proper
mechanisms for the prediction of future situations and long-term system adaptations (cf.
Chapter 7) will be considered in a later project phase.

4.1 The Behavioural Advertisement Application
Behavioural targeting is supposed to allow marketers to better grasp customers' needs and
interests, by tracking and monitoring consumer behaviours. Currently, those techniques are mainly
applied to WEB based applications. We propose to extend behaviour tracking to any communication
context supported by Telecommunication operator services where user interests and needs can be
grasped (e.g. tracking the preferred shops of a user by means of GSM-based localization services).

Figure 18. Behavioral Advertisement scenario.

Figure 18 shows an example of a Behavioural Advertisement application expressed as an ensemble
of ACEs. Four different actors participate to the scenario: One telecommunication operator and
three service providers. The service provider 3 is needed to start the scenario, sending a SMS to the
user’s device. As soon as a Personal ACE (running on a mobile device) receive the activation SMS,
it starts sending personal data. A Habits Data Base is used to determine the personal preferences of
the user that owns the Personal ACE, and an Ads Images Data Base is responsible to select

Screen
Window

ACE
Screen

Controller

Screen
Window

ACE
Screen

Controller

ACE
PersonalACE

Personal

ACE
Personal

ACE
PersonalACE

Personal ACE
Personal

Ads
Images

DB

ACE
Ads

Finder
ACE

Population
Aggregator

ACE
Habits
Finder

Habits
DB

SERVICE PROVIDER
LOCALIZATION
SYSTEM

SERVICE PROVIDER
LOCALIZATION
SYSTEM

TELCO OPERATOR

Service Provider 1

Service Provider 2

Service Provider 3

ACE
Ads

Finder

ACE
Ads

Finder

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 53 of 78

images to be displayed on a window screen the proximity of the initiating device. A GSM based
location service is available to identify the devices which are in the range of the screen.

4.2 Supervision
In order to highlight some specific supervision challenges to be addressed, let us consider the
following simplified set-up. Consider a mobile device in the range of a localization service which
sends data to a content server in order to select the contents to display in the digital ads screen.
The ACEs that form the example application (i.e. the Personal ACEs of the mobile devices, the
population aggregation, habits finder, and ads finder ACEs explained in Figure 18) form a distributed
virtual blackboard (DVB), i.e. an ad-hoc networked structure that propagates personal data and
contents toward the display service. This propagation function basically is the service that is in the
focus of the supervision activities described below.

Such an ad-hoc network is always in the danger to get congested. The main goal of the supervision
task is therefore to keep a congestion level parameter (C) between specific thresholds and to
ensure some reasonable values for the number of mobile in the range (N) and the advertising rate
(R), which is the average to the advertisement rates (r) of the mobile devices.

The figure below provides a detailed view of the scenario:

DVB - distributed
virtual blackboard

(composed service)

display
service

content
server

mobile
devices

localization
service

distance D

<p_data> sent

at rate r

co
n
ten

ts

Figure 19. Simplified Scenario

The parameter D in the picture above is the maximum distance of a mobile to consider in the range
of interest and so that should be involved in the advertisement selection. Thus the targets of a
supervision system may be expressed as the task to keep these values in a given range; in the
scenario we therefore have two main objectives for the supervision system:

• Cmin < C < Cmax.

• Keep N and R in reasonable boundaries.

Moreover, we allow the supervision system to make use of some additional knowledge related to the
domain the supervision system has to operate, which might be obtained from the underlying
Knowledge Network or can be part of the supervision contract. In the scenario we use the following
knowledge:

• N * R is proportional to C.

• N = D * n (n is a suitable constant).

• decreasing D (and thus N) has a stronger impact to C than decreasing R.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 54 of 78

4.3 The Supervision Model
As explained above, contract based supervision makes use of and operational model of the system
or service under supervision that explains the ways in which this system can behave, what can be
observed by the supervision system, and what can be influenced. To illustrate a possible formalism
for those models, consider the following “extended finite state machine” that provides an operational
model for a single mobile device (where we concentrate on the aspect of sending personal data,
and operations to set the local advertisement rate r of the mobile.

idle ?<start>
r := r0; t := 0;?<stop>

t >= r
!<p_data>; t := 0

<tick>
t := t + 1

?<set(x)>
r := x

sending
r, t

Figure 20. Mobile device model

The “timer” variable t is used to model the sending of the personal data <p_data> on a regular basis.
The model exhibits the following actions:

• ?<start> and ?<stop> to initiate and to suppress the sending of personal data.

• ?<set(x)> to set the local advertisement rate r to x

• !<p_data> to send personal data

• <tick> is an internal action to model the event of a time tick.

We now have three different types of actions:

• ?<…> are actions which are controllable by some external entity (i.e. the supervision
system)

• !<…> are controlled by the mobile device, but are observable by an external entity

• <…> are internal actions which are neither observable nor controllable

Of course, this mobile device model cannot be used for supervision purposes directly:

1. Firstly, in a real application example, an operational model would contain large a number of
additional functions and thus would be much too large and to detailed. Moreover, we do not
have a singe device, but probably a large number of those devices, and additional models
for the other components of the advertisement service. Thus working with the composed
model (which might be of exponential or even super-exponential sizes in terms of the
number of components) is not feasible.

2. The model does not express the relationships between the global parameters C, R, D, and
N that define the supervision task. And it does not qualify a given state of the system as not
suitable, thus it contains no information on when a supervision action is to be performed or
not.

We therefore use a different model for supervision as shown in the EFSM below.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 55 of 78

?<start> N := N + 1;
?<stop> N := N - 1

?<set_D(x)> D := x
sending

N, D, R, C
?<set_R(x)> R := x

?<set_C(x)> C := x
set by sensors

set by SVN

Figure 21. Supervision model

We furthermore impose the following constraints on the set of legal “sending” states:

• N = D * n

• C = c * N * R

(for suitable constants n and c).

We how state the following hypothesis:

The model shown in Figure 21 is an abstraction of an ensemble of N mobiles. An application
of an appropriate concretization (or refinement) map should yield the model given in Figure
20.

We are currently not in the position to justify this hypothesis – this will be a work item for the 2nd
project phase of CASCADAS. With the notions of “zooms” that are elaborated in the accompanied
document [34] we however are able to present a step towards a general theory of automated
abstraction mechanisms.

Finally, we give the following notion of the suitability of a system state S = (N, D, R, C) by defining

 V(S) := if C > Cmax or C < Cmin then 0 else a * N + b * R

for suitable coefficients a and b. We furthermore say that the state S is suitable if V(S) is within
certain thresholds (also conveyed with the supervision model).

4.4 Supervision Procedure
A supervision procedure is a sequence of steps which should ensure the proper implementation of
the supervision tasks and that are triggered by defined states which need supervision. In our
scenario for example we need to define a procedure which manages the values of D and R properly
in order to keep their values into reasonable range. The procedure is the following:

1. Check if current state is suitable

2. if not, determine new values for D and/or R (to be refined)

3. set new distance D

4. call subsystems for mobiles to adjust local rates according to R

5. Validate constraints (check and improve competence)

6. If N deviates significantly from the expected value, adjust n

7. If C deviates significantly from the expected value, adjust c

Moreover such procedure should be based on suitable heuristics in order to adjust the values of the
variables in a proper way. In our scenario some example may be:

1. If the number of mobiles approaches the thresholds slowly then adjust R

2. If the number of mobiles approaches the thresholds fast then adjust D

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 56 of 78

3. If C exceeds the thresholds then adjust D, and if this does now work, adjust R (panic mode)

A problem to address in order to implement heuristics is the representation of this heuristics. A way
to represent this heuristics may be using history information or include information on the success
probability of a certain action into the model.

4.5 Pervasive Supervision
Each application of supervision activities to the target system requires specific extensions which of
that target system or the underlying execution platform (e.g. actuators and sensors).

These extensions are better achieved if already available
functions of the target system can be exploited. For
example the fact that an ACE should be able to interface
specific features of the mobile handset where it runs, in
the ACE architecture defined so far, is addressed by its
“specific features” module. Moreover, the continuous
detection of the congestion level can be done by the
perception of the periodically signals sent by the ACEs
that form the DVB, e.g. by monitoring of the GN-GA
protocol messages defined in Work Package 1. Each ACE
sends GA messages based on its capability until an ACE
with a service profile matching the GA message (the “GN”)
is reached. In our scenario we can implement the
congestion signal as a GA received by an aggregator ACE
which estimates the congestion level by the rate in which
GA messages are received. The left hand side figure
depicts a possible set-up that makes use of those
correlation ACEs.

Congestion signal aggregator

Mobile handset ACE

The Figure 22 below summarizes the relationship of the supervision model (comprising states of
the form S = (R, C, D, N)). The parameters N and D are directly received from the incorporated
location service. The congestion level C and the average advertisement rate R are computed in a
distributed way as illustrated above. For actuation, operations to set a new distance D are directly
available to the supervision system, while the breakdown of the average advertisement rate R to the
local advertisement rates r can be achieved in a distributed way similar employing e.g. the GN-GA
protocol.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 57 of 78

R r set D

NCR D

Model

C1 C2

Figure 22. Relationship between supervision model and supervised system.

5 Requirements
In this section, we are going to provide a list of requirements that is to identify open issues and thus
defines working tasks for Work Package 2. Before we present these requirements in a more detailed
form, let us start with a more general discussion.

In the initial discussion in Section 2.1 we pointed out that current approaches to define of autonomic
systems in a way similar to the MAPE paradigm are not sufficient for self-management, as a number
of aspects such as autonomy of the supervised system and self-organization are not adequately
represented. The analysis of the state (Chapter 3) of the art showed that a large number of
approaches that deal with specific aspects of supervision are currently available, but a coherent
approach that combines all aspects has not yet developed. The preliminary ideas on contract based
supervision (Section 2.2) and the application example (Chapter 4) indicates that a model based
approach is an encouraging candidate to overcome current limitations.

The following table details a number of high-level requirements of the comprehensive supervision
approach that is in the focus of WP 2 and indicates how they are reflected in the currently available
results.

No Description Status

1 Autonomic Supervision

The supervision system should not rely on extensive operator
configuration but has to infer the properties to be ensured and
the appropriate tasks to be performed as much as possible from
run-time information, i.e. by the communication with the ACE
configuration to be supervised

Concepts for contract
based supervision

2 Adaptive Supervision

The supervision system has to be able to adapt itself
dynamically to changes both in the system under supervision

To be investigated. This
requirement is related to
the self-organization

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 58 of 78

No Description Status

and its environment principles investigated in
WP3 that define the
dynamics of the system
under supervision.

3 Self-organized Supervision

The supervision system has to be able to self-organize
available components into control loops and accompanied
additional functional blocks as defined by the VSM.

To be investigated. This
requirement is obviously
related to the self-
organization principles
investigated in WP3.

4 Pervasiveness

The supervision system should be organized along the
organization structure of the system under supervision.

Addressed by employing
the VSM as conceptual
model, and concepts for
hierarchical models

5 Adequate Level of Abstraction

The supervision system should perform its task on an
appropriate level of abstraction avoiding global (non-scalable)
views as much as possible

Addressed by the
developed concepts for
hierarchical models

6 Pro-activeness

The supervision system should be able to predict future
problem situations and to enforce appropriate reactions

Addressed by the
investigation of drifts in
concepts of interests

7 Self-application

The concept of supervision has to be applicable to supervision
systems itself (i.e. a supervision system can be considered as a
system under supervision by itself)

Addressed in principle,
since the supervision
system has been identified
as an autonomic system
(that will be realized by an
ensemble of ACEs) and
thus is a possible target for
supervision. Details
however need to be
investigated

8 Effectiveness

If the system under supervision enters an unsuitable state or is
in danger to do so, the supervision system has to be able to
enforce a sequence of actions purposed to lead the system
under supervision back into a suitable state

Effectiveness is related to
the contract that is
committed between
supervision system and
system under supervision.

9 Timeliness

If the system under supervision enters an unsuitable state or is
in danger to do so, the supervision system has to be able to
enforce a sequence of actions purposed to lead the system
under supervision back into a suitable state within suitable time

Not addressed yet.
Improvement of timeliness
requires self-optimization
features of the supervision

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 59 of 78

No Description Status

limits (e.g. before the system state degrades further) system which are related to
the ability to select proper
(and fast) contingency
plans. This aspect will be
addressed in the next
project phase.

10 Appropriateness

If the system under supervision enters an unsuitable state or is
in danger to do so, the supervision system has to be able to
determine an appropriate sequence of actions to lead the
system under supervision back into a suitable state

Not addressed yet.
Improvement of
appropriateness requires
self-evaluation features of
the supervision system
which are related to the
ability to assess the
suitability of contingency
plans. This aspect will be
addressed in the next
project phase.

11 Lightwightness

The supervision system should not add significant performance
burdens to the system under supervision when it is working
within suitable ranges.

Addressed only by the fact
that supervision pervasions
are defined as ACE based
configurations. Experiments
with concrete systems are
necessary.

12 Self-assessment

The supervision system has to be able to assess its own level
of processing, and has do be able to optimize itself

Addressed by the definition
of a number of metrics for
“system competence” (see
[34])

6 Supervision Algorithms
This section is concerned with:

1. A generic definition of a system model providing for abstraction and composition

2. Definition of supervision algorithms based on this notion

Due to the mathematical nature of these issues and the overwhelming problems to typeset
mathematical text with Microsoft Word, we decided to provide these deliverable parts in a separated
document [34] (using the LaTeX text processor). Here, we are going to give a summary of the main
results presented in this document.

1. The term “model” made its appearance in several contexts through this report. We talked
about the use of supervision models as contracts. The application example provided some
examples of supervision models. Moreover, the ACE model currently developed in WP 1
makes use of an explicit self-model that defines the possible behaviours and services of an
ACE. We thus have to answer the question: “What is a model?”

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 60 of 78

2. The formalism that is used for models is currently under discussion in WP 1. The
deliverable document D1.1 discusses a number of candidates. From a more generic
perspective, all these formalism (and many others) are basically defined by a (not
necessarily finite) set of system states and a set of transitions between states. We adopt an
approach that uses this observation as definition of a generic notion of the term “system
model”: A system is simply defined by a set of states and a set of transitions.

3. State/transition systems do not expose (as they are) any build-in notion of composition of
concurrent (e.g. distributed) system components, and in particular there is now explicit
expression of concurrency or distributiveness. To overcome this problem, we use a special
type of state/transition systems, namely those that are defined over so-called distributed
alphabets. A distributed alphabet provides an alphabet of system actions together with an
independence relation over actions. Independent actions are supposed to be executable
in parallel, or in a distributed way. The complementary notion is that of dependence.
Intuitively, dependent actions are executed on the same computer, use exclusive
resources, or are causally dependent (as a send-receive pair for a given message). We
furthermore introduce a special hidden action that is use to express the fact that a system
or its environment performs an action that is not directly observable but only perceivable
because it causes a change in the current state of the system or environment.
State/transition systems with actions taken from a distributed alphabet that structurally take
the independence of actions as well as certain conditions on hidden actions into account
are called interpretations of distributed alphabets.

4. The language of general state/transition systems, is usually defined in terms of words over
system actions as “letters”. For interpretations of distributed alphabets, a more attractive
notion of language is available, namely that of partially ordered multisets (pomsets). A
pomset is basically a set of system events that expresses the fact that a certain system
action has been executed together with a notion of causality between system events.
Informally, occurrences of dependent actions have to be in causal relationship. Events that
are causally unrelated stand for the occurrence of independent system actions. Causal
relations are mathematically expressed as anti-symmetric and transitive relations – as
partial orders.

We investigate a certain class of pomsets that are executable in a state/transition system,
so-called weak pomsets. Intuitively, a weak pomset comprises only those causal
relationships between system events that are really necessary to correctly express the
dependence structure of the underlying distributed alphabet. It can be shown that the class
of weak pomsets has the pleasant algebraic property of being a free monoid.

5. What is still missing is a system of values that expresses the “desirability” or “suitability” of
a given system state or system behaviour. In the current state, we restrict ourselves to
assessments of systems states. Entering a non-suitable state means that the supervision
system has to get active. We again adopt a very generic perspective in defining those
value systems as general partial orders (where intuitively, “greater” values are “better”).
We are well aware that practically it might be a problem to set-up a relation of desirability
between arbitrary system states (for instance, if a number of incomparable criteria are
available). It is however necessary to unify the values of different states, even if they are
not directly comparable with respect to the desirability order. Thus we stipulate the
assumption that for each set of values, a greatest lower bound is available. Informally, a
greatest lower bound is the best value that is still worse than any of the values in this set. It
is thus the best pessimistic approximation of these values.

6. Valued interpretations of distributed alphabets are now defined as interpretations
equipped with a value structure, together with a state assessment function that assigns a
value to each of the states of the interpretation, and an admissible predicate that defines a
threshold of the desirability of a system state.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 61 of 78

7. We now have a formal definition of the terms “system” and “system behaviour”, and
“desirability” of system states, but we still have only a very vague idea of what it means that
a formal system is a model of a real system, or is an abstraction of another model. At this
point, we use the implicit assumption that for each real system there is some system model
that expresses all the aspects of this system in each detail, i.e. is the most concrete model
of this system. Thus, we only have to cope with the notion of abstractions between models.

8. As already said, a system comprises of states and actions that define transitions.
Abstraction thus needs to be defined in terms of these elements. For states, it has to be
abstract away from structural details of those states. Abstraction simplifies states and
identifies different concrete states. System actions are also identified by the abstraction
process, but it is also possible that a certain concrete action has no expression on a more
abstract level. Finally, the value structures of more abstract systems are expected to be
more coarsely grained than their more concrete counterparts.

9. Another concept is that of the embedding of a system into another. Informally, a system
component is embedded into its environment. An embedded system appears as a part, or
subsystem of the embedding system. As in the case of abstractions, the concept of
embedding needs to be explained for states, actions, and values: The state information of
the embedded system has to contribute to the state information of the embedding system,
and for values hold a similar relationship. But of course all the values of the embedded
system are still present in the embedding system.

Abstraction and embedding are explained in terms of functions between actions, states, and
values of valued interpretations of distributed alphabets. The mathematical branch that deals
with this type of definitions in the most abstract way is category theory. The document [34]
(although self-contained) uses extensively the language of commutating diagrams to express
the relationship between abstraction and embedding maps (or “arrows”).

10. What happens with a subsystem when it gets embedded into some larger system context?
This context provides only a subset of all the stimuli to which the subsystem is capable to
deal with, thus the embedded subsystem shows now only a subset of its possible
behaviours. The resulting restricted system is called the image of a subsystem under an
embedding. It turns out that the process of embedding can be understood as a
concretization of the embedded system in the sense that the “un-embedded” subsystem is
more abstract than its image.

11. We finally introduce an important concept, namely that of zooms. Consider two systems,
the first one is an abstraction of the second one. Suppose furthermore that the abstract
system is embedded into some environment. The question we now are going to answer is:
Can we use the embedding process that makes the abstract system a part of the
environment also to embed the more concrete system into this environment? Is there a
notion of local refinement, of decreasing the level of abstraction only for a certain area of
an overall system model (the environment in this case). It turns out that the answer is
positive. This result provides us with a way to set-up hierarchical models with respect to the
level of abstraction, where the shift from a more abstract to a more concrete perspective is
done by the application of appropriate zooms.

12. Zooms have a “dual” counterpart, namely that of anti-zooms that provides us with a notion
of local coarsening. This concept is not used yet, but we anticipate its usefulness when the
automated construction of supervision contracts is considered. This is future work.

The discussion of zooms and anti-zooms concludes the first part of the companion document.
The second part is concerned with a first definition of supervision algorithms basing on the
notion of models as defined in the first part. To relate this work to our reference model, we still
remain in the functional domain of the VSM subsystem S3.

1. We start the discussion with a further refinement of the notion of distributed alphabets.
We assume that the actions alphabet is separated into several sets of actions:

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 62 of 78

a. Observable actions are those actions of the system under supervision which
can be perceived by the supervision system. Not all actions may be directly
perceivably by the supervision system, or are visible at all. This may not only
have technical reasons but also may be related to the unwillingness of a
system to disclose certain actions to the supervision service.

b. Controllable actions are those which can be triggered, suppressed, or
modified by the supervision system. We assume that if a problem occurs that
triggers the supervision system, the system under supervision enters a
“controlled” mode in which controllable actions are under the command of the
supervision system. Of course, actions like system interrupts, timeouts, etc. are
hardly controllable form externally. Moreover, certain management actions may
not be desirable to be controlled by the supervision system e.g. because of
security issues.

2. State in distributed systems is not always a meaningful concept. We nevertheless can
use “local states” (i.e. those of the sequential components of a distributed system) to
validate whether a system has been successfully executed or not.

3. We continue with the definition of a first supervision algorithm, i.e. a programmatic
description of a basic supervision cycle. The cycle extends the basic MAPE-like
approach by adding a validation function that assesses whether a certain corrective
activity has lead to the desired results.

4. From that, a number of metrics that assess the “competence” of the supervision system
can be defined, namely:

a. Effectiveness refers to the ability of a supervision system to enforce
countermeasures at all.

b. Timeliness is the ability to react in time.

c. Appropriateness means that the system has the capabilities to determine a
sequence of actions that leads to the desired results.

5. A supervision algorithm based on hierarchical models is sketched. The concepts of
zooms (and images) are used to explain the relationship between different levels of
abstraction.

6. An outlook on further work concludes the companion document.

We finally give a brief summary of the state of this branch of research on WP 2. The presented work
was motivated by the need to justify a number of terms that are used informally in the discussion of
contract and model based supervision. A number of concepts have been elaborated, but the work is
by no means completed. Its application to hierarchical and pervasive supervision is still to be
investigated in more details, and application examples are missing yet.

7 Utilising Concept Drift for Pervasive Supervision
The work presented so far deals with functions that are mainly concerned with the definition of
supervision cycles that relate to the “here and now” of the system, i.e. with its current state and
structure. In this chapter we leave the VSM subsystem S3, and provide a first step in the definition
of the functionalities of the subsystem S4, which is concerned with the “there and then”, the
environment and the future of the system under consideration.

There is strong motivation for new perspectives on generic supervision methodologies in order to
provide more resilience in the face of ever more complex systems. In particular, future autonomic
systems that ideally operate with no or only a limited user input require such advanced supervision

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 63 of 78

to control and adapt different variables of existing systems but more importantly to supervise the
dynamic aggregation of individual autonomous working components as found in e.g. upcoming
service oriented architectures or SOA. This research seeks to explore the requirements for a
supervision mechanism that is capable of observing and analyzing complex and dynamically
constructed models that reflect a real world service or computational system. Furthermore, the
method proposed will be able to operate at different levels of granularity with respect to the model
supervised and as such supports the methodological framework for pervasive supervision.
Subsequent sections explore the requirements for different observation methodologies for
distributed and network like knowledge structures, in particular exploring how such knowledge can
be gathered, represented and what type of mechanism can be used to detect so called drift
behaviour within the observed data.

A secondary objective is formed by the problem of how such drift behaviour can be used to (a)
adapt individual components of a supervised system and (b) achieve a stable state of more global
oriented systems, which could then freely evolve within pre-defined boundaries that describe the
functional correctness of the system under supervision. In particular, the use of a lower and upper
bound as well as the so called ideal state of individual variables will be explored.

7.1 Overall Architecture
In general, state of the art supervision methodologies and systems mainly implement a closed
control loop approach which implements the following three concepts.

• Monitoring: Gathering of information from the system that is under supervision. Additional
tasks may include correlation and translation activities in order to pre-process incoming
information to improve the quality of the monitored data and to reduce information overhead.

• Analytics: Dedicated methods testing for certain conditions, violations etc. that are of interest
to the supervision process. Current analytical methods often implement a static rule- or
policy-based methodology where individual rules or policies are “hard coded” for each
system and as such are not dynamic and often difficult to adapt to changing conditions.
While such methods are sufficient for traditional applications working in non-distributed
environments, future autonomic systems will require more dynamic, highly intelligent and
fully automated services that are able to operate in distributed context aware environments
and as such are able to not only adapt the system but, more importantly, the supervising
system itself.

• Reaction: the reactive part of a supervision system closes the loop to actually achieve
supervision. That is guiding a system within the boundaries it is allowed to operate in. The
challenge for this part is not to realise and control the so called actuators which realise
individual corrective measures on a supervised system. On the contrary the correlation of a
given problem that has been detected with the correct countermeasures at different levels of
granularity can be seen as the biggest obstacle for pervasive supervision.

The same three concepts are also relevant for a more long-term oriented and evolutionary-based
supervision principle as envisioned here. That is with one important extension. In order to allow a
system to evolve over time but at the same time assure the correctness of the underlying logic,
advanced forecasting and prediction methods are required which allow the system to:

• forecast the “direction” of a supervised system;

• predict individual attributes based on past behaviour or on other attributes;

• and finally, detect critical states before they actually occur.

For that to be realised, it is necessary to build up a history of all monitored attributes of the system
that is under supervision. Dedicated forecasting and prediction methods could then be used to
predict future states and events based on the past behaviour of the model that is under supervision.
Specific reaction mechanism may then be linked to the monitored model in order to register

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 64 of 78

dedicated corrective measures to specific parts of the system under supervision. Figure 23 depicts
schematically the general supervision architecture and highlights individual aspects for each part
which will be discussed throughout this section. For convenience, individual monitor or actuator
units as relevant for a complete supervision system are not shown in Figure 23.

Figure 23: Schematic Supervision Architecture, Concept Drift

7.2 Concept of Interest
The need for such a more long term oriented supervision approach is based on the fact that the real
world model of individual services or the underlying data thereof are of a volatile nature and as such
is likely to change constantly over time. Thus, continuously opening a gap between the actual model
and the real world concept they were designed for. This problem, referred to as concept drift, implies
the constant adaptation of intelligent services and their underlying models in order to achieve a
stable state around some pre-defined boundaries. In order to adapt to such changes effectively a
supervision mechanism needs to incorporate a computational model of the real world problem they
were originally designed for. Simplified, a concept of interest reflects the underlying model of a given
service or application in a machine readable format. Due to the fact that a concept of interest may
depend on a hidden or very complex context it is often extremely difficult to design and implement
them, let alone the modelling of the system that is intended to supervise it. Another general problem
within this area is the handling of noisy data (or even irrelevant attributes) as a supervising system is
initially doomed to react on any type of data, relevant or not. This problem can be particular
hazardous as it may cause oversensitivity or insensitivity for the supervision systems with respect to
their adaptability for changing conditions by erroneously interpreting noise as a type of false
behaviour. Finally the necessity to allow for virtually any type of data as well as structure forms
another challenge.

7.3 Modelling
As mentioned, the dynamic modelling and population of individual concepts of interests can be very
difficult. This is mainly due to the fact that the type and structure of the system under supervision is
normally not known beforehand. Furthermore, as the system under supervision may change the
underlying monitoring model has to change too. Another problem is the handling of the potentially
very large amount of properties that are required to reflect even relatively small concepts of interests

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 65 of 78

and, furthermore, the implementation, adaptation and constant supervision of relationships among
individual properties can be particularly difficult.

Relevant requirements for a system suitable for the modelling of such concepts of interests can
therefore be drawn upon the following criteria:

Intrinsic / Extrinsic Supervision: The system as well as individual variables to be supervised may
exist in a distributed rather than in a localised environment which calls for different mechanisms that
are able to operate in a centralised as well as in a decentralised fashion.

Cascading: The system should not be limited be any structural or conceptual boundaries in a way
that it needs to be able to handle different type of variables, different relational concepts among
them as well as different supervision goals at different levels of granularity.

Attribute Correlation: Individual variables may be correlated into higher, more meaningful
concepts that are more suitable for later evaluation.

Context History: A history of the variables under supervision has to be created in order to analyse
drift behaviour of different kinds. Algedonic signals such as heartbeats signals may be used to build
up such a history given that a continuous stream of data can be provided.

Overall Architecture: Although outside the scope of this section it has to be stressed that
advanced configuration & feedback mechanisms are key to any supervision architecture.

Within CASCADAS it is envisioned that the concept of knowledge networks as designed by WP5 is
reused for the modelling of such concepts of interests. Figure 24 depicts such a modelling structure
where individual variables are accessed via the concept of knowledge atoms thus feeding
information into the supervision system. Linking individual atoms together via the concept of
knowledge containers provides a flexible mechanism to correlate individual information into higher
concepts and as such provide general supervision support at different levels of granularity based on
the hierarchy of the supervised model. Finally, adding a dedicated service to each atom provides the
functionality to build up a history of relevant attributes to be used by dedicated forecasting and
prediction mechanism

Figure 24: Monitoring Component for Concepts of Interests

Utilising the concept of knowledge networks for the modelling of individual concepts of interests is
based on two design facts of the overall CASCADAS framework but in particular the ACE model.
Firstly, observable events or attributes for supervision may be extracted from the self-model or from
the specific-model of individual ACE’s, see specification on ACE’s (WP1). Secondly, due to the fact
that knowledge atoms (as well as other KN components) will be realised via ACE’s, both models

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 66 of 78

(the self or the specific) may expose the atom interface to publicise individual attributes that are of
interest for a specific supervision task as identified via the supervision contract model outlined
earlier. Therefore, once a contract is established between any number of ACE’s (or their underlying
model) a dedicated and private knowledge network may be constructed which only serves the
supervision contract it is created for. Simultaneously, standardised methods which are part of the
general knowledge network toolkit may be registered to this network to provide additional
functionality e.g. the logging of attributes to build up a history of past events. This will be made
possible via the service handler concept (see WP5, Building Knowledge Networks) which allows one
to dynamically extend the business logic of each network component. Thus specialised supervision
mechanism developed within the scope of WP2 may be used via the network framework provided
by WP5 and vice versa.

7.4 Monitoring
Independent of the technique used to monitor individual source the goal can be summarised as to
collect (a) a pair ω = (α, t), where α is the observed value and t a timestamp referring to the time the
value / event has been observed. As visualised in Figure 24, a registered history service is then able
to build up a context history of the observed source such as θ = ω1, ω2, ω3, ...

Despite the fact that internal knowledge network methods will be used to actually access relevant
variables of individual concepts of interest’s three distinct monitoring mechanisms have been
identified to be relevant. These are:

• Event Based Monitoring: The observed source posts relevant information at pre-defined
intervals or at certain events (e.g. the value of the observed attribute has changed) to a
centralised monitoring unit.

• Request Based Monitoring: A centralised monitoring unit requests at pre-defined intervals
or at certain events (e.g. an outside alert) requests relevant values from observed sources.

• Embedded Monitoring: Individual components provide the functionality to monitor
themselves.

Table 3 evaluates the three monitoring techniques based on a host of criteria that have been
identified to be relevant for the CASCADAS framework as a whole but in particular for the
supervision framework. As shown, none of the techniques can be identified as to be best suitable.
While event-based and request-based monitoring techniques promote lightweight components and
good attribute correlation, and are reasonably easy to control as well as configure, embedded
monitoring allows for a decentralised system, a built in cascading mechanism, fast reaction times
and basically no delay in monitoring whatsoever.

Monitoring Technique

Event Based Request Based Embedded

Decentralised Monitoring No No yes

Lightweight Components Yes Yes no

Controllability &
Configurability Medium Good difficult

Time to React Slow Slow fast

Monitor Delay Medium High none

Complexity Medium medium high

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 67 of 78

Attribute Correlation Possible difficult

Cascading No No Build-in

Table 3: Summary, Monitoring Techniques

7.5 Analytics for Concept Drift Detection
As mentioned earlier, a concept of interest is a phenomenon that describes a real world model and
is defined by underlying contextual information or raw data. By nature, it is likely to change over time
which is referred to as concept drift. Drift may occur in the underlying concept of interest if it:

• is not static e.g. dynamic models

• can not be described in its entirety e.g. incomplete models

• if its values are subject to change in any way e.g. changing context

In general and for real world systems, concept drift can not be avoided and will occur in one way or
the other. When dealing with concept drift the following considerations should be taken into account.

• Batch learning is only useful for initialisation procedures or off-line analytics.

• On-line learners are required for “working” systems.

• Tracking concept drift on-line requires a learner to continually monitor the context defined by
its “concept of interest” and ultimately adjust itself if necessary. Consequently, the principal
task for such a learning system is to incrementally learn about changing contexts without
being explicitly informed about them.

• Finally, a higher oriented system needs to exist and be capable of realising reactive
measures in order to compensate for drift behaviour.

7.6 Types of Concept Drift
For most systems two types of concept drifts are relevant, firstly continuous concept drift which may
be further divided into slow and moderate drifts (also referred to as concept evolution) depending on
the speed of change and secondly, so called sudden concept drifts where abrupt and immediate
visible changes occur [123]. Furthermore, the literature also differentiates between two different
concepts of “concept drifts”, namely virtual and real concept drift [126]. While virtual concept drifts
only depend on changing operational data distributions, real concept drifts may also depend on any
change of the underlying context. Whatever the case either one requires the update of the reflecting
model and therefore the execution of some reactive part that adapts relevant components of the
system under supervision.

7.7 Detecting Drift Behaviour
Based on the two types of drift behaviour identified above three distinct analytical methods have
been identified. These are:

Current State (Sudden drift behaviour): Analysing the current state of α with respect to its own
value / state and / or with respect to pre-defined boundaries9 as specified by (β-, β=, β+).

Forecasting (Visible, continues drift behaviour): Analysing IF and at what time t α reaches e.g. a
critical state as specified by pre-defined boundaries.

9 See Section 7.7.1 Boundaries

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 68 of 78

Prediction (Hidden, continues drift behaviour): Predicting α for time t + n based on: θ or more
interestingly based on other variables that are correlated to a given α.

7.7.1 Boundaries

Identifying the general ‘path’ of a system and as such drift behaviour is a powerful method to identify
if a system slowly but continually moves into a specific direction or towards an unwanted state. The
system is indifferent to whether the state represents only an annoyance or more seriously a critical
situation of the system under supervision. In order to (a) identify if a system is in an illegal state; (b)
predict the time it takes to reach an illegal state; or (c) to self–organise it around an ideal state which
is either pre-defined or the mean of its boundaries. Thus, the boundaries of a given concept of
interest specify the states a system can evolve in without violating its general purpose.

Lower and Upper Bound. As depicted in Figure 25, the lower and upper bound (β-, β+) define the
borders a system can evolve (operate) in. Overlaid trends would then allow predicting long term
directions so that out of bound violations could be identified at an early state. If a system violates the
boundaries, as shown at the end of the time line, a possible alarm may be triggered or corrective
measures may be induced. Note that individual lower and upper bounds do not need to be static.
Depending on a changing context individual boundaries may change as well.

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t

α

β+

β-

Figure 25: Lower and Upper Bound

Ideal State. More interesting in the context of autonomic computing is the organisation of a system
around a so called ideal state, β=, which is situation a system should attempt to achieve. For
instance, an autonomic system regulating the temperature of a building has to react on a multitude
of factors, e.g. outside temperature, number of people in the building, open windows, etc.
Nevertheless, based on its configuration its ultimate goal could be as simple as “keeping the
temperature at 27 degree Celsius”. In this case the ideal state of is reflected directly by its goal.
Never mind the fact that it would be pretty hot in that building.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 69 of 78

?ß?ß

Figure 26: Ideal State

Figure 26 extends Figure 25 with an ideal state threshold where a supervised system attempts to
achieve a stable state around β=, which in this case is around 27 degrees Celsius. The main
advantage for such supervision is that relevant countermeasures could be configured more
precisely which is due to the fact that the difference between the current state and the ideal state is
known. Considering any number of micro supervision systems that are capable of self-organising
themselves around a stable state then the overall supervision system too should be able to operate
around a stable state.

7.7.2 Summary

Table 4, shows a summary of the identified methods that can be used to detect drift behaviour. As
seen each method is relevant for identifying either type of drift behaviour. For numerical values such
behaviour can be detected using different mathematical and statistical methods. For symbolic
values this may be more difficult, in particular if the complete set of symbolic values and their
relationship to each other is not known beforehand. As for a predictive mechanism, a host of
different techniques is available to analyse complex data structures. In particular neural networks,
support vector machines, associative and sequential patterns discovery algorithms promise to be
valuable when testing for drift behaviour in complex data structure. Nonetheless, the suitability of
individual methods needs to be evaluated carefully and the selection thereof may depend on
specific scenarios.

 Current State Forecasting Prediction

Sudden Concept Drift Relevant to detect Relevant to predict
Continues Concept

Drift Relevant to detect Relevant to predict

History n/a Required

Predictive features are
relevant for complex

structures

Boundaries Useful but not required

Numeric Values Mathematical Functions Statistical Methods Depending on the type
of algorithm used

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 70 of 78

Symbolic Values Difficult (Set of initial values and ranking
thereof is required)

Complex Structures Difficult Difficult Difficult

Table 4: Summary, Concept Drift

7.8 Reaction
Based on the closed loop approach, the reaction part of a supervision process is concerned with the
identification, configuration and execution of relevant measures to counteract incorrect behaviour or
to invoke a specific recovery mechanism. With respect to the discussed monitoring and analytical
techniques discussed so far two possible reaction mechanisms are deemed relevant.

• Direct Reaction: Corrective measures are invoked whenever an illegal state or violation is
detected. This mechanism is particularly relevant for autonomous micro-supervision systems
that are fully aware of what to supervise, how to supervise it and finally how to react if
something goes wrong.

• Descriptive Reporting: If a system is not able to react on an illegal state or violation or if a
system is forced to invoke countermeasures on a more global aspect of a system then
individual components may choose to report their current ‘health’ to conceptually higher
oriented supervision components. Obviously, such a reporting mechanism should be as
complete as possible containing information about the sender, the fault, possible reasons (if
the fault already has been analysed locally) and if known, relevant corrective measures.

Both mechanisms may be realised in a centralised way where possible corrective measures are
identified and executed via a centralised system or, alternatively, in a decentralised system that is
embedded, where individual components have full control to execute corrective measures. The
latter obviously requires that each component is aware of the reactive measures it can invoke.

7.9 Summary
While the problem of concept drift is only one possible method to allow for long term supervision, the
concept of interest and the real world problem they reflect are key to enable autonomic services to
self evolve in context aware environments.

The main problem in this area is that a system under supervision can, at different levels of
granularity, contain any type of information. It is therefore not possible to create a generic evaluation
function that is capable of evaluating any type of information. This is based on the fact that an
evaluation value is likely to be meaningless rather than due to different types of information. Thus, it
may be better to allow a system to try and self organise itself in a way that micro versions of the
whole supervision system exist at different levels. If such micro supervision systems maintain a
stable state, the overall system should be stable too. On the other hand, if this state changes in any
way, a system may recognise this as odd behaviour and may react on this. Realising a current state
analysis combined with more advanced forecasting and prediction mechanisms will allow the
detection of sudden as well as gradual drift behaviour. If embedded in a virtual realisation of a
system under supervision such drift behaviour could be detected at early stages and effective
countermeasures or a fail back mechanism could be invoked.

Within this section the requirements for such a system have been discussed and possible directions
have been outlined. Subsequent steps will include the realisation of individual components in order
to directly embed a supervision mechanism into individual components of a system under
supervision. Finally the use of predictive methods will be explored in an attempt to predict critical
states of important variables based on their own history or, more importantly, based on other
variables altogether.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 71 of 78

8 Reference Software Architecture
In this chapter, we introduce the software architecture that implements the supervision approach
discussed in Section 2. First of all, we introduce the software components that are needed for the
supervision and the relations among them. Then, we show how to distribute the entire set of
components onto the levels of the Viable System Model. We validate identified components and
relations through a simple example, which is a simplified version of the case study on
advertisements proposed by WP 6. The last part of this section describes a possible implementation
for the proposed architecture based on the event-based paradigm.

Figure 27. Components of the Supervision System

8.1 Components and Relations
The Sensors capture the data from ACEs, and the communications among them. They also send
monitored data to the other components of the supervision system. The Correlator analyzes the
history of monitored data to construct a coherent picture of the supervised system. This component
has a repository of collected information and a reasoner to extract important information from
collected data. The Assessor creates an abstract model of the system under supervision based on
monitored data and correlation analysis. It is also able to detect if the status of single or composed
elements is ”correct”. As soon as a problem is detected, the Assessor declares it. This means that
it can detect both the status of a single element under supervision and problems with the
environment of the system under supervision.

The Planner elaborates the set of actions that must be executed on the supervised system when
the Assessor declares a problem. It uses the data received from both the Correlator and the
Assessor. The Effector simply translates planned recovery actions into executable actions and
messages that are then sent to the supervised components. The Predictor retrieves information
from the Sensors, Correlator, and Planner to predict the likely behaviour of planned recovery
actions. Like the Assessor, the Planner is also able to raise future problems to the Planner

Independently of the allocation of each component in the environment of the supervised system, the
main relations among these components are:

• The tasks of the Correlator, Assessor, and Predictor are based on monitored data
provided by the Sensors.

• Both the Assessor and the Predictor require correlated events from the Correlator and
planned actions from the Planner.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 72 of 78

• Starting from collected information, the Assessor informs the Planner that there is a
problem and that a reaction strategy must be executed.

• The Planner sends the actions that must be executed on the autonomic elements to the
Effector.

• The Predictor requires the results from the Planner to predict their effect.

• The Predictor uses collected information to inform the Planner about a possible future
problem and that a reaction strategy must be executed.

8.2 Components and Viable System Model
The components described in the previous section fully comply with the requirements of the Viable
System Model (VSM). Figure 28 describes how each component can be associated with the
different levels of VSM.

Levels S1 and S2 define the autonomic system we want to oversee and are not presented in Figure
2. Level S3 represents the structures and controls that are put in place to establish the rules,
resources, rights and responsibilities of the system under supervision and to provide an interface to
the upper level. This level comprises the capability of acquiring data (Sensor), the capability of
detecting problems (Correlator), the capability of planning necessary recovery actions to deal with
detected problems (Planner), and the capability of executing them (Effector).

Level S4 is responsible for looking outwards to the environment to monitor how the federation of
components needs to adapt to remain viable. It is crucial to understand that S4 has two main
interfaces: the interface to S3, which provides information and actuation facilities concerning the
inner structure of a viable system, and the interface to the environment. Furthermore, S4 is
responsible for anticipating and pro-actively adapting to future situation. In the context of
supervision, the ability to foresee and extrapolate future problems and requirements is of major
importance since instantaneous reaction to problems on a global distributed basis is hampered by
communication delays and by the complexity of data correlation and problem detection. The
Predictor is the key S4 component. It retrieves data from S3 and it also informs S5 about the status
that the system under supervision is likely to assume in the future. It also informs S3 about the
future behaviour of the supervised system. This way, S3 is able to anticipate the problem by means
of appropriate recovery strategies.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 73 of 78

Figure 28. Supervision components and the VSM model

S5 is responsible for policy selection on the system as a whole to balance the demands from the
different parts of the system and steer the organization as a whole. These policies are considered
being non-technical in the sense that they are not directly represented by rules related to adaptation
and optimization parameters (those rules are part of S3 and S4), but they define the purpose of a
system and its intended relation to other systems in terms of general requirements. Hence, S5
comprises the Assessor, which analyzes the vision of the system under supervision provided by the
other levels and assesses whether planned actions and their predicted results are within an
acceptable range.

8.3 Example Application
The effectiveness of the software architecture must be validated through examples. In this case, we
have chosen the case study about smart advertisements presented in Section 4.1. In this example,
there is a supervision system that oversees the behaviour of the Advertisement System (ADV),
which comprises a set of mobile devices and a screen; a Distributed Virtual Blackboard (DVB) is
used as communication bus; it is an ad-hoc network that links all mobile devices; thus, the DVB is
the composed service.

The internal model of the supervised system comprises four different parameters:

• D is the maximum distance of a mobile device that must send personal data. It is a
parameter inside the DVB.

• N is the number of mobile devices in the range D.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 74 of 78

• R is the rate with which personal data are sent. A mobile device sends its personal data
every R milliseconds.

• C is the current congestion level. This parameter is derived from the other parameters by the
formula C = c*N*R, where c is a suitable constant.

The goal of the supervision system is to regulate R and D in order to maintain C between two
thresholds (Cmin and Cmax). The system detects the value of N from the DVB by means of a sensor. A
suitable mathematical model evaluates whether the system is viable or not. When an abnormal
situation is detected by the supervision system, it regulates the value of variables C and R.

Components. Figure 29 illustrates the data exchanged among the different components in the
example application. This is a static view of the software architecture: here we identify the
messages exchanged among the different components to carry out the scenario described above.

A Sensor is inserted in the DVB: it detects the value of N (number of mobile devices) and sends it to
the supervision system. Given the previous value of N and the time of arrival of this information, the
Correlator detects the rate of change for this variable. Afterwards it sends this information to the
Assessor and Predictor. The Assessor evaluates whether there is a problem in the system under
supervision by analyzing the values of N and R that come from the Sensor and Correlator. In
particular, it calculates the value of C and detects whether it is over the threshold; moreover it
detects whether the number of mobile devices in the range D grows too fast. Planner receives the
detected problem from Assessor and decides how to react. This component evaluates how to adjust
the value of variables D and R. Effector translates the planned decisions into an executable format.
Therefore, Effector sends messages set(r) and set(d) to the DVB. Predictor uses relations
N~n*D and C~c*N*R to predict the effect of planned reactions.

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 75 of 78

Figure 29. Communication diagram of supervision component for the example scenario

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 76 of 78

8.4 Possible Implementation
Before describing the proposal for implementing the software architecture, we analyze the context
where introduced components are supposed to operate. In the general vision of supervision, there
are three different kinds of supervision tasks. (Figure 30):

• Embedded supervision oversees the internal behaviour of each autonomic element;

• External supervision addresses the behaviour of each autonomic element externally;

• Coordinated supervision controls and coordinates the overall coordination of an autonomic
system.

Figure 30. Levels of supervision system

These tasks do not really impact the software architecture. They mainly differ in the way sensors are
deployed and oversee the behaviour of the different parts. More precisely:

Embedded supervision controls the common functionality of an ACE, such as GA/GN protocol.
Sensors are embedded in the Common Part of the Message Handler and get information about the
common functionality of an ACE. A Sensor works like an intermediary between the Message
Handler and the Reasoning Engine to intercept the communications between the two components
and send these data to the supervision system.

External supervision inserts sensors in the Specific Part of the Message Handler and thus provides
data to supervision system about the behaviour of the specific parts of the ACE. This external
supervision controls the lifecycle of ACEs.

Coordinated supervision, differently from the two previous options, imposes that sensors collect: (a)
information about messages exchanged among the ACEs, (b) the status of the supervision system,
and (c) the status of controlled ACEs. Hierarchical supervision requires that sensors be placed in
both the interfaces of the different ACES, and controlled supervision (sub)systems.

8.5 A Solution Based on Knowledge Networks
To accommodate the different supervision tasks presented in the previous section, and let them be
organized hierarchically, the supervision infrastructure must be flexible enough to manage

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 77 of 78

information detected by the sensors both in the different ACEs and in the supervision subsystems.
Furthermore, the relations among identified components show that different kinds of components
require the same information: for example the Assessor, Correlator, and Planner require
monitored data. To cope with these requirements, the supervision system is built on top of the
Knowledge Network developed in WP5.

The Knowledge Network provided by WP5 provides two different features exploited by WP2. First of
all, a way to publish specific information to a virtual knowledge layer that is accessible by other
ACE’s. This feature allows the construction of private sub-networks that (a) serve specific (local)
supervision tasks, (b) allows other ACE’s to serve or retrieve information from this sub-network and
as such enables task specific knowledge provisioning.

The Knowledge Network acts as a request-driven architecture, but provides also functions (such as
a push functionality) that can be exploited to define event-driven concepts. An event-driven
architecture (EDA) defines a communication paradigm for designing and implementing software
systems in which components are loosely coupled and their interactions are governed by
exchanging events (messages) through an intermediary event manager. Event consumers
subscribe to the intermediary event manager for the types of events they are interested in, and
event producers publish their events onto this manager. When the event manager receives a new
event, it forwards it to the consumers registered for receiving it.

This kind of architecture allows certain degrees of freedom in the definition of the supervision
system architecture. All the components introduced above become data/event consumers and
data/event producers. For example, the Sensor produces data/events for the Correlator,
Assessor, and Predictor. The Planner produces data/events for the Predictor, Assessor, and
Effector. This model allows us to easily federate different components by registering them onto the
Knowledge Network. Similarly if the sensors deployed in a given supervision subsystem are
attached to the Knowledge Network, we can easily create hierarchical supervision infrastructures.

Figure 31 shows the interactions between WP2 components and the Knowledge Network in a
reflective manner. The KN is seen as a set of features provided to the other components. Sensors
can insert important sensed data about the System Under Supervision into the KN through the push
functionality provided by the KN. This data can then be retrieved by the other components of
supervision system A through the KN. In the same way, a Sensor of the Supervision System B
senses the events dispatched in the Supervision System A; so that, all the important data
dispatched in Supervision System A can be analyzed by the Supervision System B.

Figure 31. Data and event dispatching among Supervision System components

IST IP CASCADAS “Component-ware for Autonomic, Situation-
aware Communications, And Dynamically Adaptable Services” Title of the document

D2.1 – Report on
Pervasive Supervision

Bringing Autonomic Services to Life

Page 78 of 78

9 Summary
This report is necessarily about “work in progress”, as in the current state of the project final results
cannot be provided or are even desirable. As described in the initial Chapter 1, we started from an
initial vision of a pervasive supervision architecture as described in the Viable System Model. From
that, three main work tasks have been defined:

1. Supervision as a service. This idea leads to the use of supervision models as contracts
between the system under supervision and the supervision system. We developed a formal
framework for the mathematical work with models, abstractions, and embeddings.

2. Prediction of future situations to detect possible problem situations and to perform pro-active
system adaptation. We presented a framework based on concepts of interest.

3. Software development. As a first step to an implementation of the theoretically elaborated
concepts, a high-level software architecture has been developed.

Now since all work packages in CASCADAS are able to present initial results, the integration of the
WP 2 activities with that of other WPs becomes possible. The following list provides a road map for
the further work of WP 2.

1. What are the technological pre-requisites to build and to interact with supervision perva-
sions, i.e. which abilities are required from ACEs and ACE configurations to support (a)
monitoring and interaction, but also (b) to model and to implement a supervision architecture
using ACEs? This question demands a close cooperation with WP 1.

2. Self-organization (WP 3) is one of the envisioned properties of service configurations, and—
following the pervasive supervision paradigm—supervision subsystems are thus (a pervad-
ing) part of such configurations. Thus they have to follow basically the same organization
rules than the supervised subsystems. On the other hand, interaction and modification of
service configurations by exploiting self-organization rules is a mean to interact with those
configurations.

ACE configurations will not be statically formed networks but base on dynamic and
continuously changing interrelationships. Thus a major problem is how to identify and to
build up an internal image of the actual configuration that is needed to correctly percept
monitored data. An accompanied question is how to define long-term trends in such an
environment and to support pro-active self-adaptation of the supervision pervasion.

3. From the perspective of security, supervision is of course a very critical approach. Thus co-
operation with WP 4 is required to perform supervision tasks in the presence of security
demands. On the other hand, security modules and components are—as being software
packages—error prone and might non-functional, add unacceptable performance bottle-
necks, etc. Thus security is by itself an application area for supervision techniques. Resolv-
ing this mutual relationship is another foreseen research topic for WP 2.

4. Finally, as already noticed, situation-awareness is not reflected by the most existing super-
vision approaches. In CASCADAS, the concept of a knowledge network (WP 5) exists as a
structure that intends to provide and to distribute the necessary information. How this net-
work can be exploited for supervision is yet another open issue to be investigated in more
detail.

5. The implementation work proposed by WP 2 has to be done in the context of one (or sev-
eral) of the application examples developed in WP 6. We will concentrate on the Behav-
ioural Advertisement example.

	1 Introduction
	1.1 Purpose and Scope
	1.2 Reference Material
	1.2.1 Reference Documents
	1.2.2 Acronyms

	1.3 Document History
	1.4 Document Overview
	2 Pervasive Supervision
	2.1 Limitations of Current Approaches – The MAPE Example
	2.2 Contract Based Supervision
	2.2.1 Supervision Contracts
	2.2.2 What Makes A Supervision Contract?
	2.2.3 What to Do With Supervision Contracts?

	2.3 Reference Model
	2.4 Questions

	3 State of the Art
	3.1 General Approaches
	3.1.1 Comparison Summary
	3.1.2 MAPE
	3.1.3 Rainbow
	3.1.4 COLV — KX, Olives, and Relatives
	3.1.5 Willow
	3.1.6 Nestor

	3.2 Monitoring
	3.2.1 Languages for the Description of Monitoring Contracts
	3.2.2 Monitoring architectures
	3.2.3 Conclusions

	3.3 Evaluation, Event Correlation, and Problem Detection
	3.3.1 Distributed Event Correlation and Self-Management System
	3.3.2 Service-Oriented Event Correlation
	3.3.3 Reasoning About Complex Dynamic Situations
	3.3.4 Root-cause Analysis
	3.3.5 Symptoms Deep Dive

	3.4 Repair and Corrective Measures
	3.4.1 Planning-based approaches
	3.4.2 Architectures repair-oriented
	3.4.3 Recovery Oriented Computing
	3.4.4 Conclusions

	3.5 Evolutionary Strategies
	3.5.1 The Concept of Interest
	3.5.2 Concept Drifts
	3.5.3 Visualizing Concept Drifts

	3.6 Summary and Conclusions

	4 Application Example
	4.1 The Behavioural Advertisement Application
	4.2 Supervision
	4.3 The Supervision Model
	4.4 Supervision Procedure
	4.5 Pervasive Supervision

	5 Requirements
	6 Supervision Algorithms
	7 Utilising Concept Drift for Pervasive Supervision
	7.1 Overall Architecture
	7.2 Concept of Interest
	7.3 Modelling
	7.4 Monitoring
	7.5 Analytics for Concept Drift Detection
	7.6 Types of Concept Drift
	7.7 Detecting Drift Behaviour
	7.7.1 Boundaries
	7.7.2 Summary

	7.8 Reaction
	7.9 Summary

	8 Reference Software Architecture
	8.1 Components and Relations
	8.2 Components and Viable System Model
	8.3 Example Application
	8.4 Possible Implementation
	8.5 A Solution Based on Knowledge Networks

	9 Summary

