

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

1 / 74

Deliverable 1.1
Report on state-of-art, requirements and ACE model

Status and Version: Final

 Date of issue: 09.01.2007

 Distribution: Project Internal

 Author(s): Name Partner

 Antonio Manzalini (Editor) TI

 Antonietta Mannella TI

 Rosario Alfano TI

 Edzard Höfig FOKUS

 Marco Mamei UNIMORE

 Borbala Katalin Benko BUTE

 Tamas Katona BUTE

 Rico Kusber UNIK

 Nermin Brgulja UNIK

 Checked by: Franco Zambonelli UNIMORE

 Ricardo Lent ICL

Abstract
The overall objective of IST Project CASCADAS (http://www.cascadas-project.org/) is to
develop and validate an autonomic framework for creating, executing and provisioning
situation-aware and dynamically adaptable communication services. Particularly the project
development activities aim at prototyping a toolkit based on distributed self-similar
components characterised by autonomic features (self-configuration, self-optimization, self-
healing, self-protection, etc.).

This document constitutes the Deliverable 1.1 “Report on state-of-art, requirements and
ACE model”.

http://www.cascadas-project.org/

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

2 / 74

Table of Contents
1 Document overview 4
2 Introduction to Autonomic principles 4

2.1 Situated and Autonomic Communication 7
3 Project Vision at a glance: the Open Autonomic Service Environment 8

3.1 The Autonomic Communication Element 10
4 Application scenario and requirements 11

4.1 Motivating Examples for Autonomic Communications 11
4.2 Requirements 12

General (Foundational) Requirements 14
4.3 Requirements Involving ACE and WP2 (Pervasive Supervision) 17
4.4 Requirements Involving ACE and WP3 (Self-organized Component
Aggregation and Emergent System properties) 17
4.5 Requirements Involving ACE and WP4 (Security, Survivability and Self-
Preservation) 18
4.6 Requirements Involving ACE and WP5 (Knowledge Networks) 19

5 State-of-Art 20
5.1 Related Projects 21

5.1.1 BIONETS 21
5.1.2 Autonomic Network Architecture (ANA) 22
5.1.3 Haggle 23
5.1.4 AutoMate 24
5.1.5 Cortex 26
5.1.6 Runes 28

5.2 Component Models 30
5.2.1 JavaBeans and Enterprise JavaBeans (EJB) 30
5.2.2 CORBA Component Model 31

6 ACE component model 32
6.1 The ACE conceptual model 32
6.2 The ACE functional model 33
6.3 The Common Interface 35
6.4 The Specific Part 36
6.5 The Self Model 37
6.6 The Reasoning Engine 37
6.7 The Facilitator 37
6.8 Example1: ACE Personal 38

6.8.1 Self-Model 38
6.8.2 Specific Part and Specific Interface 39

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

3 / 74

7 Supportive Technologies 41
7.1 Inter-ACE communication 41

7.1.1 Message Format 42
7.1.2 Message Handler 44
7.1.3 Addressing schemes 45
7.1.4 Message Types 46
7.1.5 Communication flow 46

7.2 Reasoning Engine 46
7.2.1 Parallelism, synchronization, queuing 47
7.2.2 Message sources, proactive manner, timing 48
7.2.3 Single-state vs Multi-state engines 49
7.2.4 Determinism, planning 50
7.2.5 Supervised mode 50

7.3 Self-model 50
7.3.1 Extended finite state machine based model 50
7.3.2 Petri net based model 54
7.3.3 SXL based model 57

7.4 Facilitator 58
7.5 Specific part 58

7.5.1 Resource access 58
7.6 Interfaces 59

8 Realising Autonomicity 59
8.1.1 Self-Similarity 59
8.1.2 Self-Healing by Using Dynamic Binding 60
8.1.3 Self-Organisation 62
8.1.4 Self-Awareness and Self-Description 62

8.2 Interaction models and communication primitives 62
8.2.1 The importance of the interaction model 62
8.2.2 The basic assumption 63
8.2.3 A metaphor behind the interaction model 64
8.2.4 Self-aggregation by means of P2P interactions 64
8.2.5 A use case: behavioural pervasive advertisement 66

8. Conclusion 71
References 72
Acronyms 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

4 / 74

1 Document overview

The overall objective of CASCADAS is to develop and validate an autonomic framework for
creating, executing and provisioning situation-aware and dynamically adaptable
communication services. Particularly the project development activities aims at prototyping
a toolkit based on distributed self-similar components (Autonomic Communication
Elements) characterised by autonomic features (self-configuration, self-optimization, self-
healing, self-protection, etc). The Autonomic Communication Element (ACE) is the basic
component abstraction over which the CASCADAS vision is built. Services are being
created and executed (in a distributed way) by the self-aggregation of ACEs

This document, constituting the Deliverable 1.1 “Report on state-of-art, requirements and
ACE model”, report the main results (achieved during the first year of the project) about the
definition of the ACE model and its interactions mechanisms.

CASCADAS has adopted an application-oriented approach: starting from scenarios and
related use-cases, high level requirements have been defined and are being used by WPs
activities.

In particular, the document is structured as follows after the introduction to Autonomic
definition; the chapter 3 describes the project vision; the chapter 4 describes the
application scenario and the requirements collected through the interaction with the other
WPs. Chapter 5 is devoted to a review of some existing architectural models and platforms
offering autonomic features by highlighting commonalities and differences with respect to
the CASCADAS objectives. Chapter 6 describes the components envisioned for the
Autonomic Communication Element, the core of this deliverable while chapter 7 illustrates
an overview of techniques/tools that might be adopted for developing the ACE architectural
model. Chapter 8 focuses mainly on the autonomic aspects addressed by the project.

2 Introduction to Autonomic principles

If computer systems manage themselves, if networks organise themselves to establish a
wide-ranging, high-quality communication, if outages are reduced to zero because of
reliable error detection and correction systems, and if IT-professionals do not have to keep
such systems running but just have to further improve them, then we have reached the era
of autonomic computing.

The problem we are faced with is the fact, that IT systems become more and more
complex. In order to permanently increase the efficiency in our everyday work, to advance
comfort and to continually create new services, we develop faster, cheaper and smaller
computer systems. The price for this improvement is a drastic rise in complexity affecting
hardware as well as software. This, if not limited, will lead to a situation in which the
installation, configuration and administration of a system cannot be efficiently realised even
by a team of IT professionals.

Autonomic computing systems are considered to be a potential solution to this problem.
IBM introduced the “Autonomic Computing Initiative” in the year 2001, with the aim of
developing self-managing systems (cf. [4] , [19]). “Autonomic” is derived from the human
autonomic nervous system. Its property to act self dependent and without being controlled
by any other entity, but controlling itself was taken as model to be applied to future
technical computer systems. In this context, “IBM defined four general properties a system

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

should have to constitute self-management: self-configuring, self-healing, self-optimising
and self-protecting. These are accompanied by four enabling properties or attributes,
namely self-awareness, environment-awareness, self-monitoring and self-adjusting” ([30],
also cf. [19]).1 The IBM vision of autonomic computing implies that implementing self-
managing attributes involves an intelligent control loop which collects information from the
system, makes decisions, and then adjusts the system where required.

Managed element

Autonomic
manager

Sensors Effector

Monitor Knowledge

Analyze Plan

Execute

Figure 1 IBM-MAPE architecture

The MAPE-K architecture organises the control loop into two main elements: a managed
element and an autonomic manager. Thereby, a managed element is what the autonomic
manager is controlling and an autonomic manager is a component that implements a
particular control loop. Figure 1 illustrates the MAPE-K (Monitor, Analyze, Plan, Execute
and Knowledge) reference architecture proposed by IBM within the autonomic computing
initiative.

The managed element is a controlled system resource, which can be either a single
resource (e.g., a web server, database server or router) or a collection of resources (e.g., a
pool of servers, cluster or business application). The managed element is monitored
through its sensors, providing mechanisms to collect information about the state of an
element. Effectors, which are mechanisms that change the state of an element, allow for
controlling the managed element. A combination of sensors and effectors forms the
management interface that is available to an autonomic manager.

The autonomic manager is a component that implements the control loop as consisting of
four stages that share knowledge:

5 / 74

1 This first set of attributes is now enriched with the inclusion of features such as self-
anticipating, self-adapting, self-critical, self-defining, self-destructing, self-diagnosis, self-governing,
self-organized, self-recovery, self-reflecting, and self-simulation[30]. Yet the initial set still represents
the general goal.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

6 / 74

The monitor stage collects, aggregates, filters, manages and reports details (metrics and
topologies) collected from sensors related to a managed element, to provide both self-
awareness and awareness of the external environment.

The analyze stage provides the mechanisms for modelling and correlating complex
situations (e.g., time-series forecasting and queuing models). These mechanisms allow the
autonomic manager to learn about its environment and help to predict future situations.

The plan stage organises the actions needed to achieve goals and objectives.

The execute stage controls the execution of a plan (considering also on-the-fly updates).

The plan and execute parts decide on the necessary self-management behaviour that will
be executed through the effectors.

The four functions - monitor, analyze, plan, and execute - consume and generate
knowledge. A large amount of this knowledge comes from the first step of the control loop:
monitoring. It is important to consider the type of data that is necessary. If large amounts of
data are stored, performance might deteriorate because even if data has no relevance for
the system, it is constantly being monitored. All known information about the system is
provided to the knowledge part which can grow as the autonomic manager learns more
about the characteristics of the managed resources. The gathered knowledge is
continuously shared among the four functions in order to improve their decision making
processes. The monitor-, analyze-, plan-, and execute-parts collaborate and exploit the
common knowledge to provide the control loop functionality.

The IBM MAPE-K architecture is not related to a specific technology. Instead its purpose is
to work with existing computing technologies, as well as with new technologies that will
emerge in the future.

The idea of autonomic computing offers interesting aspects to be further investigated in the
CASCADAS project. Nevertheless, the situation we are faced with in the scope of
CASCADAS differs significantly from the IBM perspective in the following points.

Autonomic computing systems, as they are considered by IBM, are seen to be complex
and integrated. ACEs (Autonomic Communication Elements), the central components in
CASCADAS are partially expected to be light weighted. The envisaged environment will
contain a variety of ACEs, all acting autonomic themselves. For that reason, autonomic
behaviour will not be realised by large and computational expensive subsystems but will
emerge as an effect of ACE aggregation and cooperation among different system
components, e.g., interaction with the knowledge network. This last point is the main
aspect which mostly differentiates the IBM approach from the CASCADAS approach: in the
latter not only each component is autonomic, but even components interactions at system
level are autonomic.

The consequence of the distributed character of a network of ACEs is a very high degree
of heterogeneity and dynamic. Different ACEs experience different environments and
varying situations. So, they have to be aware of the situation they are in to be able to
autonomically adapt themselves to occurring changes.

Heterogeneity, variability, and the light weighted and distributed character of ACEs require
a high communication effort among ACEs. The ideas of autonomic computing have to be
further investigated and developed. They serve as a source of inspiration and a basis to
build on. Nevertheless, for the purpose of the CASCADAS project this basis has to be
extended and focused on strategies of autonomic communication to manage the given

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

7 / 74

challenges. The following section describes what autonomic communication is and how it is
related to CASCADAS.

2.1 Situated and Autonomic Communication
The term “situated and autonomic communication” (short AutoComm hereafter) refers to a
long-term research effort that is projected in leading to a radical paradigm shift towards
self-organising; self-managing and context-aware autonomous networks (see Fokus
AutoComm whitepaper [18]). Networks are envisaged as being built of large amounts of
structurally simple and self-similar autonomic building blocks that are able to connect in an
ad-hoc manner, forming new networking primitives for service provisioning that potentially
may exhibit complex behaviour. AutoComm systems are adaptive: Changes in the usage
pattern, formation or any other environmental circumstances may initiate the elements to
re-configure and adjust their behaviour, trying to optimise service provisioning with regard
to a new situation.

The aims of AutoComm are similar to the one’s of IBM‘s initiative on Autonomic Computing
[4], because the underlying problem is the same: How to manage the complexity of future
computing systems (in the case of AutoComm that is telecommunication systems).

Complexity of connected systems is constantly increasing. For example the bandwidth
available on wireless, coupled with ad-hoc networking, could in perspective rival the
capacity of backbones. A plethora of interwoven devices that form a ubiquitous, mobile
information access layer based on a various technologies (e.g., Wi-Fi IEEE 802.11n,
WiMax IEEE 802.16e, Bluetooth UWB or UMTS HSDPA / HSUPA), all bundled within the
same case, is quickly emerging.

Providers are investing large amounts of management and maintenance effort to enable a
smooth operation of current-day internet with its more than 1 billion users, nearly half a
billion registered domains and several hundreds of protocols in use. But bandwidth is
cheap and users are accustomed to flat-rate price models, making it hard for carriers to
invest capital in the network infrastructure, operating on a best-effort base and making
revenues disappear when provider-specific streams are converging in the internet. To stay
in the market, telecommunication providers are coming up with a multitude of diverse and
innovative services, which on the one hand need to be constantly maintained and on the
other hand call for intra-provider settlement interfaces that need to be standardised and
managed, as well (see [25]). Coping with this growing complexity will become more and
more problematic, so ‘Keep it simple’ should be one of the basic principles of a future
communication paradigm. For AutoComm this is in regard to single network elements and
centred on networking Selfware. Selfware is the common name for all the “self” system
properties, i.e., for a number of tightly coupled processes – sensing, data handling,
decision making and communication – that are used to achieve system properties of self-
awareness, self-healing, self-configuration, self-optimisation, etc. and that can be
instantiated in a multitude of variations.

AutoComm studies “the individual network element as it is affected by and affects other
elements and the often numerous groups to which it belongs as well as the network in
general”. The “goals are to understand how desired element’s behaviours are learned,
influenced or changed, and how, in turn, these affect other elements, groups and
networks”(cf.[18]) The idea is to engineer micro-properties in order to cause a desired
macro-behaviour, optimally without any human interference and in a self-organised and

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

8 / 74

evolutionary way. To accomplish this, AutoComm research has to find general principles
enabling this kind of behaviour by building upon results from diverse scientific fields like
control theory, cybernetics, machine learning or social and human sciences. The
discovered principles have to be verified, evaluated and cast in a shape that is making
them useful for the wider autonomic community. That is, new approaches to system
modelling have to be devised that can cope with incomplete information and that will
support evolution; engineering processes have to be re-thought along with their associated
tools, languages, methods and metrics. Checking for validity of systems would need to be
done in new ways, requiring not only a pervasive approach for verification or for
guaranteeing certain system properties, but also requiring new test infrastructure and tools.

First prototypes are already visible (for example the FOCALE architecture from Motorola
[29], but generally efforts are concentrated on research, rather than implementation as
deduced from the member list of the Autonomic Communication Forum [2]).

3 Project Vision at a glance: the Open Autonomic Service
Environment

Providers’ Service Framework (as we know it today) is that set of platforms, functionalities,
systems and data for the creation and execution of services; furthermore current solutions
includes also related interfaces towards a control layer and towards systems for
management and provisioning.

In order to save CAPEX/OPEX2 and to generate new potential sources of revenues,
technologies and solution for next generation service frameworks are required. Innovative
proposals are expected to be characterised by distribution of resources and de-
centralization of functionalities. The requirements above are likely to be met by a
dynamically configurable architectures using a P2P overlay network (generally IP-based,
both Internet and Service Providers’ networking solutions).

On the other hand, Web 2.0 is bringing a shift of business models thus forcing players of
the service arena to look for frameworks capable of following rapidly market trends (even
with new approaches, e.g., including advertisers in the value-chain) for composing and
providing even short-life personalized services (beta versions à la Google).

Given that context, there is the need of finding solutions capable, for example, of
composing and running complex services starting from highly distributed basic components
(even outside the Operators’ domain, e.g. including Service Brokering capabilities).
Services may be executed starting from the dynamic self-aggregation of distributed self-
managing autonomic components. This approach would allow also managing the huge
amount of heterogeneous data and information, making knowledge available, in the proper
form, where and when it is necessary. Furthermore the same component-based
environment may be capable of “handling” service-related knowledge and data.

CASCADAS is adopting an application-oriented approach: starting real application
scenarios highlighting the above needs and requirements, project vision is proposing an
Open Autonomic Service Environment for the future evolution of today service frameworks.

2 CAPEX = Capital Expenditures, refers to the cost of developing or providing non-consumable parts for the
product or system. OPEX = Operating Expenditures are the on-going costs for running a product, business, or
system.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

9 / 74

The Open Autonomic Service Environment is expected to be the highly distributed platform
for composing, executing and providing situation-aware and dynamically adaptable
communication and content services. The tool-kit developed in the project will be used to
demonstrate such vision specifically referring to some use-cases of particular interest (such
as pervasive communications, etc).

The essence of the innovation stands in exploiting highly distributed resources (even
commodity servers at low-cost) running autonomic S/W solutions based on distributed self-
aggregating, self-organising components. The overall architecture may enhance the self-
similarity of Google technology [39](both pizza-box servers and clusters of servers have
the same functional architecture) supporting a distributed replication of data. This will allow
high levels of availability also starting from low-cost commodity H/W.

A first key characteristic of the Open Autonomic Service Environment is the distribution of
resources and infrastructures at any level, introducing the distributed paradigm in
traditionally monolithic field like a telecommunication company infrastructure. In principle a
distributed system is a collection of independent sub-systems (linked with distributed
software) that appear to the operators/users of the system as a single entity. Distributed
software enables sub-systems to coordinate their activities and to share the resources of
the system - hardware, software and data. Motivations for distributed systems are:

• Functional distribution
• Physical separation
• Resource Sharing
• Economics

Another aspect of the Open Autonomic Service Environment is a P2P network that allows
resources communications. This is dynamic network where peers resources can act as
server and client indistinctly and peers might freely join and leave the network over the
time. P2P communications enable large numbers of resources to share information and
resource directly without dedicated central servers. P2P characteristics are:

• De-centralization
• Ad hoc behaviour
• End-to-End communication
• Shared ownership
• Scalability/Reliability

The above two characteristics together with the deployment of autonomic distributed S/W
solutions is expected to allow executing and provisioning situation-aware and dynamically
adaptable communication and content services; furthermore data and information broadly
distributed may be effectively handled to make it available where and when it is necessary.
Autonomic S/W components, distributed over the resources, should perform also
“embedded” self-management behaviours (for fault, configuration, accounting, performance
and security).

The Open Autonomic Service Environment vision is expected to be capable of overcoming
at least two serious bottlenecks (in current solutions):

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

10 / 74

 Software complexity and system heterogeneity: individual system are increasingly
complex to maintain and operate; heterogeneous systems are becoming
increasingly connected, and behaviours, execution context, interactions not known
a priori

 Huge amount of data and information that should be collected, handled, replicated,
correlated and made available when and where it is necessary

Regarding the former, self-management solutions as offered by autonomic behaviours of
the environment may represent a sound solution. The self-managing characteristics of the
distributed resources made them capable of hiding completely such complexity to
operators and users: e.g., systems may make decisions on its own, using high-level
policies from operators, constantly checking and optimizing status and automatically
adapting to changing conditions.

Concerning the need to deploying solution capable of collecting, handling, replicating and
managing the huge amount of data and information available, again an autonomic and
highly-distributed environment is providing key features such us hiding complexities and
high scalability (mandatory in a context such rich of data).

Concerning some of the advantages produced by the development of such vision, from the
Customer viewpoint, an Open Autonomic Service Environment can offer:

• “Simpler and better approach” to service
• Customization of services (Customers’ profile, context, etc.)
• Services meeting better(or even anticipating) Customers’ needs
• Pervasiveness of contents and communications service

From the Service Provider viewpoint an Open Autonomic Service Environment can offer:

• Cost Optimization
• Enabling an horizontal TLC-IT integration
• Using low-cost H/W and smart autonomic S/W
• Adopting self-management (self-configuration, self-healing, self-optimization etc.)
• Generating New Revenues

o Picking the opportunities offered by some ongoing trends (and the future
related evolutions) of the web (e.g., Web2.0, Web3.0, etc.) with more
flexible and open solution for executing services

o Enabling new business models based on sharing resources, service enabler
(TLC and IT) and data highly distributed

The CASCADAS tool-kit will be used to validate such project vision (i.e., Open Autonomic
Service Framework). Use-cases have been selected to demonstrate (into the test-beds)
executing and provisioning situation-aware and dynamically adaptable communication and
content services.

3.1 The Autonomic Communication Element
The key ideas of the project is to identify and rely on a new model of distributed
components, called ACEs—Autonomic Communication Elements, able to autonomously

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

11 / 74

self-organize with each other towards the provisioning of specific user communication
services, and able to self-adapt such provisioning to social and network contexts [1].

The ACE is the main building block needed to implement the vision of Autonomic
Communication outlined above. It will provide the basic interfaces and mechanism aimed
to support self-similarity, self-organization, situation awareness and any other key aspect
needed to implement the Open Autonomic Service Framework.

The basic structure of the Autonomic Communication Element as outlined in the following
sections has been defined on common agreement among WP1 members and it is defined
taking into account the requirements form CASCADAS application scenarios and the
development of other CASCADAS WPs.

4 Application scenario and requirements

The purpose of this section is to describe the proposed application scenarios collecting
among partners to define the requirements in order to provide an efficient support to the
ACE model definition.

4.1 Motivating Examples for Autonomic Communications
In CASCADAS we have identified three main application scenarios to drive the projects
activities and goals. Two scenarios come from the pervasive computing area and another
one is from wide-area Internet computing.

 Smart Environments Supporting Independent Living.

As the population continues to grow, society is faced with the challenge of supporting those
within the community who still remain within their own homes and are not fully
independent.

This scenario introduces novel techniques for person-centric services in pervasive spaces.
From a technical perspective, It proposes, how such services could be realised based on a
distributed network of knowledge, facilitating dynamically combined and flexible service
provision that engenders service continuity. This proposal assumes that individuals are
equipped with some devices (e.g., a smart phone or a PDA) able to determine the user
localization (using GPS or less expensive local hardware) and to interact with a wireless
network that should be provided by the ambient. One of the challenges for future smart
environmental infrastructures is the need to reason about “situation” and to understand the
deduced behaviour. To do this they are required (both at the level of individual components
and as a whole) to be introspective, and to feed back the results to improve performance.
While this process provides the knowledge with which they can, eventually, manage and
configure themselves it does also make them more self-aware or in short it makes them
smarter.

 Behavioural Pervasive Content Sharing.

Several pervasive computing applications are rooted on providing personalized content to
users anytime and anywhere. This scenario is based on devising suitable mechanisms to
provide the user with the best available content given information such as the user profile,

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

12 / 74

his/her location, the device being used to access the content, the user current activity, etc.
Two exemplary applications of this general scenario are behavioural pervasive
advertisement and pervasive tourist information.

1. Behavioural Pervasive Advertisement (BPA) applies pervasive computing techniques
and technologies to the nowadays emerging advertisement technique called
behavioural advertisement (or behavioural targeting) which tries to ensure that
advertisers reach the target audience in a more effective way. This application
proposes to extend such technique to any communication context where user interests
and needs can be grasped. Moreover, exploiting the pervasive nature of CASCADAS
based applications, BPA may provide customized contents and advertisement, not only
during web navigation, but different channels may be personalized to the single user or
to groups of users (e.g., digital screens in the road may autonomously provide
advertisement customized according the users’ profiles moving by the screen position).

2. Pervasive Tourist Information considers that people, using handheld devices, can
connect to a tourist guide system of a city/museum/exhibition and receive useful
information such as nearby objects, ‘what-to-visit- next’ or “how-to-get-to” suggestions,
hints about public transport etc. The location of the tourist, together with his/her profile
and current activity are used to differentiate the content being presented (e.g., tourist
information, transportation facilities, etc.) In addition, if transportation means (buses,
trams) do have electronic location tracking (which predicts the arrival of the next
vehicle) then tourist ACEs can choose the hopefully optimal path to the destination.
Using similar techniques, one could also use the system for searching friends or profile-
matching people in overcrowded places: mobile devices owned by each person could
connect to a network (possibly ad-hoc) and to inject signals there to find persons and
things.

 Distributed Auctions
Auctions are a class of negotiation protocols for allocating goods based upon competition
among the interested parties.

Autonomic components are well-suited for dynamic, constrained and real-time
environments such as electronic marketplaces. In such environments, components
representing their customers negotiate for goods and services following negotiation
protocols.

The idea at bottom line of the above scenarios is that the wide spectrum of application they
contain is a reasonable guarantee that the models and abstractions we are going to
develop in the project will be general enough and still application-driven.

4.2 Requirements
In this section we are going to derive requirements from the scenarios described above.
First, general –foundational – requirements are listed and explained: they are the basic
characteristics to consider in the ACE model. These requirements are the ones allowing
ACEs to “live” in the selected scenarios. Then, we present those requirements involving
advanced and autonomic ACEs functionalities that are the core of the other WPs. These
requirements ensure that ACEs will be ready to integrate such functionalities in a coherent
model.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

13 / 74

The ACE model described in the next sections takes these requirements in considerations
to build an effective model that will be suitable to address the challenges of the presented
scenarios.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

14 / 74

General (Foundational) Requirements

In the following table we identify the main general requirements for ACEs. Such
requirements derive basically from the open, dynamic and heterogeneous scenarios that
CASCADAS tries to address.

Scenario 3 Requirement Motivation

SESIL, BPCS ACEs must be very lightweight with
lightweight interfaces, suitable for
lightweight devices

In pervasive scenarios the
implementations of distributed
communication services involve a plethora
of devices (e.g., wireless sensors, PDAs
laptops,etc.) The ACE architecture should
fit for different extent to all of them.

SESIL, BPCS,
DA

ACEs must support interoperability
between the different levels of the ISO-
OSI stack (network-level, the service-level,
as well as the user level).

ACEs should be capable of handling both
users-level events as well as network-level
and device-level events.

The goal of CASCADAS is to build
autonomic communication services
spanning different layers of the network
stack. All the above scenarios require
performing activities both at the network
level (e.g., routing in sensor network in
SESIL) and at the application level (e.g.,
supporting high-level policy in DA). ACE
should be able to deal seamlessly with all
of them.

SESIL, BPCS ACEs must tolerate execution over
unreliable devices and unreliable network
links.

ACEs should count with a dynamically,
unpredictably and frequently changing
network structure

All considered scenarios, but mainly
SESIL and BPCS, consider possibly faulty
devices interconnected with low
bandwidth, unreliable networks links.

BPCS, DA ACEs must support for dynamic and
spontaneous aggregation and
composition, even in absence of
centralised control.

Mostly in BPCS and DA scenarios ACE's
networks will be diffused over a large
spatial scale in a highly decentralized
fashion. Because of this and considering
the fact that a central control is not feasible
adequate tools to control, self configure
and make secure ACEs ensemble are
required (this is mainly a WP3 concern).

3 SESIL = Smart Environment Supporting Independent Living, BPCS = Behavioural Pervasive
Content Sharing, DA = Distributed Auctions.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

15 / 74

Scenario 3 Requirement Motivation

SESIL, BPCS,
DA

ACEs' aggregation model should support
self-similarity, in which a group of ACEs
can be accessed as a single entity.

Support for transparent aggregation from
the outside

ACEs should contemplate very large scale
systems composed by a huge number of
different devices in which services could
be composed by a large number of
components.

In addition, software reuse and
component-oriented design are
fundamental principles to build complex,
large-scale system such as those required
by the presented scenarios. ACEs should
be able to provide advanced composite
services without changing ACE internal
behaviour.

SESIL, BPCS,
DA

ACEs should be able to communicate with
each other in various means (point-to-
point, any cast and multi cast, local multi
cast, probability multi cast).

ACEs should be able to implement both
simple and stateless communication
protocols (e.g., value queries), and
complex and stateful protocols (e.g.,
negotiations).

The variety of the identified application
scenarios and the possible applications
within them requires that ACEs should be
able to create and use a number of
communication services. Such services
should sustain and support the dynamic
distributed scenario by providing high-
level, powerful communication channels
that are also robust and scalable.

BPCS, DA ACEs do not necessarily have a clearly
identifiable name/identifier, or a specific
stakeholder, and must be able to interact
in an anonymous way.

Mostly in BPCS and DA scenarios ACE's
networks will be diffused over a large
spatial scale in a high decentralized
fashion. Because of this and considering
that a central control/registry is not feasible
due to the dynamism of the scenarios
novel tools to control and enable
interaction will be required.

SESIL, BPCS,
DA

ACEs should support dynamic interfaces
(i.e., should be able to dynamically adapt
the provided functionalities).

ACE should share a common ontology or
be able to access services translating from
one ontology to another.

A big challenge in open scenarios like the
ones being considered relates to
interoperability between heterogeneous
components. This challenge involves both
the syntactic level (interface definition) and
the semantic one (meaning of an interface)

BPCS, DA ACE should be able to include
mechanisms to support the building and
maintenance of various structures of
overlay networks. ACE overlays must be

In large scale scenarios, interaction
mechanisms must be tuned for specific
application needs. Overlay networks are
flexible and powerful mechanisms to tie

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

16 / 74

Scenario 3 Requirement Motivation

lightweight and scalable. together related components, while
avoiding information overflow.

BPCS, DA ACE should support mechanisms for
dynamic life cycle management (grow,
swarm, & shrink...)

In BPCS and DA scenarios, developers
cannot easily foresee the amount of
resources needed to achieve a task, or the
load conditions upon which their
components will have to operate. Thus,
the implementation of any distributed
services must consider to handle available
resources in an autonomic and situation-
aware way, by replicating its components
on need, and have them start
autonomously to increase the quality of
services by properly exploiting the
enlarged resource availability as a
collective (i.e., as a swarm). On the
opposite, whenever such resources
appear excessive, the distributed swarm of
ACEs should properly shrink itself to
accommodate the new need.

BPCS, DA ACEs should be able to provide services
with various and tuneable QoS, and also
should support for QoS evaluation

In dynamic scenarios, QoS must be
constantly monitored and pre-emptive
actions must be enforced to guarantee
suitable levels of QoS. This would allow
both to better comply with contracts, and
also to optimize resource usage.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

17 / 74

4.3 Requirements Involving ACE and WP2 (Pervasive
Supervision)

The pervasive supervision work-package deals with the creation of dynamic, online
feedback and control loops over an ensemble of ACEs. Such control loops will be a
fundamental mechanism to manage ACEs activities in a decentralized and autonomic way.
To this end, ACEs have to provide suitable hooks to let controller ACEs to supervise their
operations.

Scenario Requirement Motivation

SESIL, BPCS,
DA

ACEs must provide hooks to let other
components to monitor and supervise
their behaviour. This can be achieved
either by some kind of reflective
operation, or by aspects programming, or
by suitable connector components.

Pervasive supervision requires monitoring
the ACEs behaviour and to possibly
change it. This kind of supervision should
be as transparent as possible from the
ACE point of view, in order to advoid
complexity and foster separation on
concerns. In addition, a given supervision
mechanism (e.g., controlling resource
consumption) should be general and
should be applicable to different ACE
ensembles with minimal changes.

SESIL, BPCS,
DA

ACEs can be asked to perform some
operations to ease the supervision task.
For example, ACEs can be asked to
aggregate, filter and report the operations
they are undertaking to the supervisors.
This can require aspects, and/or mobile
code.

Supervising large ACE ensembles with
fine-grained logs (e.g., the trace of
operation of every ACE) would be
unfeasible because too complex.
Aggregated and filtered information are
required to enforce an effective high-level
and robust supervision.

4.4 Requirements Involving ACE and WP3 (Self-organized
Component Aggregation and Emergent System properties)

The self-organized component aggregation and emergent system properties work-package
aims at identifying a repertoire of self-organized algorithm useful for a number of tasks. The
inherent decentralized and large-scale nature of ACE applications will take advantage of
these algorithms. To enable a fruitful integration of WP3 activities, it is important that the
ACE model supports the implementation of self-organized and emergent algorithms.

Scenario Requirement Motivation

SESIL,
BPCS,
DA

ACEs have to be possibly lightweight as
ant-based components.

A great number of self-organized/emergent
algorithms is based on a huge number of tiny
components doing something smart together.
The ACE framework has to enable scenario
with a huge number of tiny components without

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

18 / 74

Scenario Requirement Motivation

incurring in scalability problems.

SESIL,
BPCS,
DA

ACEs have to interact in various ways:
direct communication, epidemic
communication,stigmergic4
communication, and also simply by
observing each other behaviour (i.e., BIC
Behavioural Implicit Interaction). It is worth
noticing that this last form of interaction
presents strong analogies to the
“observable” requirement required by
WP2.

The key point in a number of swarm-intelligent
and emergent algorithms is in mimic the way in
which components (e.g., insects) interact with
one another. To support the development of
such kind of algorithms, it is thus fundamental
that ACEs are able to interact in various kinds
of ways.

SESIL,
BPCS,D
A

ACEs should have a concept of location

ACEs should be able to organize in a
overly network

A number of swarm and emergent algorithms
are based on the location of the components
according to some metric space ACEs should
be able to link together to create cluster and
groups as requested by swarm algorithms.

SESIL,
BPCS,
DA

Mechanisms to assess the similarity
between ACEs need to be provided.

Mechanisms exploiting the similarity between
components are involved in many swarm
algorithms. In particular, these are needed to
support the creation of WP3 calls clusters (i.e.,
groups of ACEs offering the same functionality)
and reverse clustering (i.e., groups of ACEs
offering different functionalities).

SESIL,
BPCS,
DA

ACEs should have proper places where to
plug-in reconfiguration algorithms.

It is important to plug swarm algorithms in ACEs
to enforce autonomic and self-organizing
functionalities.

4.5 Requirements Involving ACE and WP4 (Security,
Survivability and Self-Preservation)

The security, survivability and self-preservation work-package deals with security and self-
healing mechanisms. This WP has many points in common with WP2, in that the
mechanisms proposed by WP2 can naturally be applied for security purposes. However,
the fact of controlling and modifying a running system cause privacy and security problems
in turn. ACE should provide mechanisms to effectively enforce security constraints.

4 stigmergy refers to communication by modification of the environment. It is an often observed
strategy in emergent systems.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

19 / 74

Scenario Requirement Motivation

SESIL,
BPCS, DA

ACE communication has to be encrypted,
and not all ACEs can interact freely with
each other.

The goal of WP4 is to develop high-level
and flexible protocols to enforce security
constraints at the application level. The
ACE architecture must support the creation
of such services. To achieve this ACE has
to create a secure foundation on which to
enforce higher level policies. With this
regard, the fundamental requirement is that
ACEs communication cannot be
eavesdropped.

SESIL,
BPCS, DA

ACEs need some kind of unique
identification.

A number of basic security issues require
concepts such as reputation, trust and
authorization. All of them require identifying
the individual being involved.

SESIL,
BPCS, DA

ACEs must provide secure hooks to let
other components monitor and supervise
their behaviour. This is fundamental to find
security breaches and enact security
policies. However, this must not create
privacy issues (some ACE can contain
sensible information) and must not open the
way to malicious control threats.

Security, survivability and self-preservation
issues implies an activity and a constraint
the clashes with each other. On the one
hand, it is important to be able to inspect
the behaviour of ACEs looking for
misbehaving components, and possibly
update their functionalities. On the other
hand, it is important to avoid that
misbehaving controller tamper ACEs that
are working correctly.

4.6 Requirements Involving ACE and WP5 (Knowledge
Networks)

The knowledge network work-package aims at supporting ACEs with suitable knowledge to
ease their application tasks. ACEs and knowledge network are deeply intertwined. On the
one hand, ACE should be able to access knowledge networks efficiently for the sake of
acquiring contextual information. On the other hand, knowledge networks will be
constituted by ACEs in turn, thus ACEs must provide the proper hooks to support the
development of knowledge networks.

Scenario Requirement Motivation

SESIL, BPCS,
DA

ACEs are required to be lightweight.

ACEs should be able to create an overlay
networks linking to one another

The knowledge network will be made of
ACEs each of them representing specific
information. For this reason, it is very
likely that the knowledge network will be
constituted of a large number of these
elements that, for scalability reasons,
should be lightweight. Moreover, the

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

20 / 74

Scenario Requirement Motivation

elements of the knowledge network are
expected to be able to organize
themselves in suitable knowledge
networks to link related concepts together.

SESIL, BPCS,
DA

Suitable mechanism to access the
knowledge network should be defined (to
be used by application ACE).

Suitable interfaces to export knowledge
information should be defined (to be used
by knowledge network ACE).

ACE will access the knowledge network to
achieve context awareness. Thus
knowledge network-ACEs have to provide
suitable interfaces to be accessed. In
addition, application-ACEs must be able
to access the knowledge network.

SESIL, BPCS,
DA

Knowledge network-ACEs should be able
to create mechanism enabling them to
combine and aggregate higher-level
knowledge. It is worth noticing that this
requirement is similar to the filtering
requirement asked by WP2.

A fundamental activity performed by
knowledge networks will be data
aggregation. A possibly large number of
data sources can be aggregated to create
a distilled summary. Such summary would
be much more easily understandable by
application ACE.

SESIL, BPCS,
DA

Knowledge network-ACEs will have to
propagate changing their content across
the network to enable field-like and
pheromone-like type of knowledge. It is
worth noticing that this requirement is
relevant in a number of self-organized
algorithms (e.g., WP3). This may require
code mobility.

Knowledge network ACE should support
autonomic and swarm-intelligent
algorithms. Since a number of these
algorithms require “diffusing” messages
(like in physical/chemical fields and
pheromones), It could be important to
have similar kind of mechanisms in
knowledge networks.

5 State-of-Art

The investigation and development of a model for situation-aware communication and
dynamically adaptable services is the main objective of the CASCADAS project. For that
reason we will describe the idea of autonomic computing as a basic principle for self-
managing computer systems. As an extension of autonomic computing we then present
the state of the art in autonomic communication. Thereafter, current activities and results of
projects thematically related to CASCADAS will be summarised to give an overview of
ongoing research in relevant or adjacent scientific areas. This chapter closes with a brief
description of component models related to the research performed in the CASCADAS
project.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

5.1 Related Projects

5.1.1 BIONETS
The goal of the BIONETS project is to provide a biologically-inspired open networking
paradigm for the creation, dissemination, execution, and evolution of autonomic self-
evolving services able to adapt to localised needs and conditions while ensuring the
maintenance of a purposeful system. The project addresses problems in pervasive
communication/computing environments characterised by an extremely large number of
embedded devices. Heterogeneity, Scalability and Complexity have been identified as the
three main challenges of such environments to the conventional networking approaches.

Heterogeneity
Heterogeneity results from the observation that there will be a huge differentiation in the
devices of future ubiquitous networks. The BIONETS project distinguishes between two
main device categories. On the one side there are complex portable devices with a large
amount of processing power (e.g., laptops, PDAs, smart phones etc.), and on the other
side miniaturised devices with sensing, identifying, and basic communication capabilities,
surrounding us in everyday lives.

The heterogeneity issue has been addressed by introducing two-tier SOCS (Service
Oriented Communication Systems) network architecture [Figure 2].The upper layer consist
of so called U-Nodes (User Nodes) which are basically devices running services. U-Nodes
may communicate among themselves and can communicate with T-Nodes. As depicted in
Figure 2.The resulting network topology is an “archipelago of connected islands of nodes”
([5]). The lower layer consists of T-Nodes (tiny sensor nodes) which represent cheap tiny
devices such as sensors, tags and RFIDs. T-Nodes do not communicate among
themselves. They simply answer to poll messages sent by U-Nodes which are interested in
getting the actual value of the random field they are sensing.

Figure 2 Two-tier SOCS network architecture [5]

21 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

22 / 74

Scalability
When applied to large scale wireless environments, the end-to-end communication
paradigm which is typical for internet-based communication, suffers from huge scalability
problems. The BIONETS project improves network scalability using two methods. The first
method works at the U-Node level and exploits the mobility of devices to convey
information. Information is exchanged either in a peer-to-peer manner through single hop
broadcasting, and is diffused by local relaying on packets [6] or opportunistic exchange
when mobile devices come into mutual communication range[7]. The second method
exploits the locality of information coming from the environment, where data originated
from sensors looses its usefulness as soon as they spread in both time and space domain.
BIONETS introduces information filtering principles and mechanisms which target the
scalability issues.

Complexity
Because of the dynamic nature of BIONETS network operations, the complexity issue
which is related to the need of controlling and maintaining the network functionalities
cannot be solved using conventional centralised solutions. Distributed mechanisms need to
be introduced which are able to predict and control the behaviour of large scale complex
heterogeneous systems. The BIONETS project follows the adaptation by evolution
approach where a one-to-one mapping between biological entities and their technological
counterparts is built, and introduces a framework for service evolution able to imitate what
happens in the living world.

BIONETS is “a network that looks like a living ecosystem, where services play the role of
organisms, evolving and combining them to successfully adapt to the environmental
characteristics” [5].

The Information filtering approach might be very interesting for the CASCADAS project to
improve network scalability and validity of information.

5.1.2 Autonomic Network Architecture (ANA)
The main goal of the ANA project is to explore novel way of organising and using networks
beyond today’s internet technologies. ANA aims at designing and developing an autonomic
network architecture capable of autonomously arranging network nodes as well as whole
networks. This novel network architecture should scale in time and functional way; that is,
the network can extend both horizontally (i.e., add more functionality) as well as vertically
(i.e., explore different ways of integrating abundant functionality) and change over time.

The target of the ANA project is to develop a functionally scaling self-aware network that
builds up the basis for the evolving network which includes self-* features and
functionalities such as self-management, self-monitoring, self-repair and self-protection.

One of the aspects analysed within this project, which could be of interest for CASCADAS,
is the service migration problem.[26] In the miniaturised networks where traditionally heavy
network elements (routers) are increasingly being supplemented by lighter network
elements that are contributed by traditional network users, the problem of placing the

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

service to the proper network elements is seen as a significant problem. Considering the
mobile ad hoc environment consisting of resource-limited mobile devices this problem
becomes very clear.

The optimal service placement problem in ad hoc networks consisting of p nodes can be
determined by formulating and solving the p-median problem [24].Unfortunately the p-
median problem has been shown to be NP-Hard for general graphs [22], and therefore
inappropriate for solving the service migration issue. In the ANA project a simplified
migration policy is proposed for unidirectional tree topologies where a service can migrate
only to the next neighbours. It is shown that the information available at the current node is
sufficient for determining the direction towards nodes with monotonically decreasing cost.
To decide on service movement, a service node simply needs to monitor and aggregate
the data exchanged among its neighbour nodes associated with the concerned service.
Hence, the movement decision is based exclusively on the information gathered through
the monitoring process (cf. [26]). The service moves from node to node until it reaches the
optimal service position.

5.1.3 Haggle
Haggle is an additional “Situated and Autonomic Communications” project which aims to
solve the connectivity and networking problems in mobile ad hoc environments while
introducing a new application-driven message forwarding approach. The project defines an
innovative system that uses best-effort, context aware message forwarding between
ubiquitous mobile devices, to provide services even when connectivity is local and
intermittent. The Haggle approach is more oriented to the human way of communicating,
rather than to other technological aspect of communication. It introduces a new autonomic
communication paradigm, based on advanced local message forwarding and sensitive to
realistic human mobility. It relies on a communication architecture that uses opportunistic
message relaying, and is based on privacy, authentication, trust and advanced data
handling [Figure 3Errore. L'origine riferimento non è stata trovata.].

 Figure 3 Current networking architecture vs. Haggle networking architecture [28]

23 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

The Haggle project introduces a Pocket Switched Networking (PSN) approach where two
types of applications are defined: (a) known-sender where one node needs to transfer data
to a user defined destination and (b) known-recipient where an application requires
particular data.

The Haggle project focuses on new autonomic networking architectures, whereas
CASCADAS focuses on situated services. Nevertheless there are some approaches
introduced in Haggles mobile networking principles that can be used in CASCADAS. For
example the intermediate nodes approach, where intermediate nodes keep the forwarded
data when exchanging information, can be applied to our messaging approach as well.

5.1.4 AutoMate
“The overall objective of the AutoMate project is to investigate key technologies to enable
development of autonomic Grid applications that are context aware as well as self-
configuring, self-composing, self-optimising, and self-adapting” [3] .AutoMate focuses on
autonomic components, the development of autonomic applications as dynamic
composition of autonomic components, and the design of runtime services to support these
applications. The AutoMate framework architecture is depicted in Figure 4

Figure 4 AutoMate Architecture Diagram [3]

As depicted in the figure above, the AutoMate framework builds on the Open Grid Service
Architecture (OGSA) [31] and is composed of the following components:

24 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

• Automate System Layer: The AutoMate system layer builds on Grid middleware
and OGSA. It extends core grid services to support autonomic behaviour. The
system layer also provides specialised services like peer-to-peer semantic
messaging, events and notification.

• AutoMate Component Layer: The AutoMate component layer defines autonomic
components and comprises functionalities required for their execution and runtime
management. Such functionalities are for example discovery, lifecycle
management, context awareness etc. (which are built on core OGSA services).

• AutoMate Application Layer: The AutoMate application layer implements
functionalities to support autonomic composition and dynamic interactions between
components.

• AutoMate Engines: In order to support certain features like for example access
control, inference and context awareness, AutoMate defines functionalities provided
by so called engines. Engines are realised as decentralised networks of agents.

• AutoMate Portals: The AutoMate portals provide users with secure, pervasive
access to the different entities of the AutoMate framework.

All AutoMate components exhibit information and policies about their behaviour, resource
requirements, performance, interactivity and adaptability, so that this information can be
used by other involved parties. A conceptual overview of an AutoMate component is
presented in figure 5.

Figure 5 AutoMate Autonomic Component[3]

Each component is described though it’s functional, operational and control aspects.
Functional aspects describe component functionality and can be used by the compositional
engine to select appropriate components based on application requirements. Operational
aspects describe component operational properties including computational complexity and
resource requirements, and can be used by the configuration and runtime engines to
optimise component selection and adaptation. Control aspects describe the adaptability of
a component and define sensors/actuators. Autonomic components encapsulate
management-, interaction-, control-, and access-policies as well as rules, a rule agent, and
an access agent.

AutoMate defines a dynamic service composition model that allows applications to adapt to
dynamic system and environment changes. The Service composition model is context
aware. It is based on policies and constraints that are defined as simple rules at runtime.
These rules are executed on the distributed deductive engine. There is no central authority
that manages the composition process.

25 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Looking from the perspective of the CASCADAS project two aspects of the AutoMate
framework are very interesting. On the one side the concept of the AutoMate components
and component description covers aspects that are relevant for our ACE design. On the
other side the autonomic service composition and the way this functionality is implemented
in the AutoMate project, might be of interest in CASCADAS as well.

5.1.5 Cortex
The overall objective of the CORTEX project [20] [27] is to investigate the theoretical and
engineering issues necessary to support the use of sentient objects in order to build large-
scale proactive applications. A sentient object [27] is a mobile, intelligent software
component that is able to sense its environment via sensors and react to sensed
information via actuators.

The goal is to develop a programming model able to support the development of proactive
applications constructed from mobile sentient objects. The programming model has to
address any issues arising in environments built of networked components that will act
autonomously in response to a myriad of events and which have to affect and control the
surrounding environment in order to operate independently from the human control.

The key elements of the model are the following:

• sentient object model: providing the internal structure of the component built by its
sensory capture, context awareness and intelligent interface.

• event-based framework: allowing the sentient objects to communicate each other
and controlling messages propagation by proximity rule and content filtering. The
main target of this specification is the need to address the requirements of
applications running in mobile environments.

• specification of QoS parameters: which may be mapped to the system level.

Sentient objects are the basic building blocks of applications developed following the
CORTEX programming model. This make such applications consisting of a very large
number of mobile software components accepting input from the environment via a variety
of sensors and autonomously acting upon the environment via a variety of actuators and
cooperating using different network technologies.

The following picture shows a basic view of the sentient object model:

Sensors Actuators

Rule (s)

Rule (s)

Rule (s)

Figure 6 Basic view of the sentient object model

26 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Sensors and actuators are the sentient object interface. Actuators are controlled by rules
based on inference engine.

The following picture gives a more detailed view of the sentient objects organisation in a
CORTEX model application.
 Sensors Sentient Objects Actuators

Real-world events
Software events

Figure 7 Sentient objects organization structure

We distinguish three major entities in the sentient object model:

 Sensor: entity that produces software events in reaction to a real-world stimulus
detected by some world hardware device;

 Actuator: entity that consumes software events, and reacts by attempting to change
the state of the real world in some way via some hardware device;

 Sentient object: entity that can both consume and produce software events, and lies
in some control path between at least one sensor and one actuator.

The most important feature of a sentient object is that it implements the control logic. This
control logic works on stimulus coming from the external environments. The importance of
the external environment events and states make context-awareness a key factor for the
sentient object.

CORTEX model defines context-awareness as:

“The use of context to provide information, to a sentient object, which may be used in its
interactions with other sentient objects and/or the fulfilment of its goals.” [33]

Three main components implement context-awareness in the sentient object:

 Sensory Capture: integrates the different events coming from sensors and filters
them to limit noise and errors coming from the environment.

 Context Representation: transform raw data in a format that is useful for the
sentient object.

27 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

28 / 74

 Inference engine: implements the reasoning capability of the sentient object which
has to be able to take the appropriate decision based on the incoming inputs. Such
engine is based on a knowledge-base built by a set of production rule (CORTEX
adopts CLIPS [16] as declarative language to specify rules and integrates it with
Context Based Reasoning mechanisms).

Coordination mechanisms implemented by sentient objects are based on interaction
through the environment (stigmergy), inspired to the behaviour of colonies of insects.

CORTEX ad hoc network target imposes limitations to the design of the event service,
considering the lack of a network infrastructure. The event model adopted by CORTEX is
STEAM [23] which addresses a number of core issues for publish/subscribe framework.
The key characteristic of the model is that it doesn’t require any event broker: brokering
functions are implemented both at consumer and producer side.

The key hypothesis which has driven STEAM model is that in a pervasive environment with
high mobility, entities are most likely to interact if they are in close proximity. So the rule is:
closer consumers are located to a producer the more likely they are to be interested in the
events propagated by the producer. This rule limits the forwarding of the event messages,
reducing the usage of the communication resources.

Event filters are the main tools to control the propagation of the messages. The novelty of
the approach is that subject and proximity filters are applied at the producer side, whilst
content filter are applied at consumer side. The significant advantage of this approach is
that consumers haven’t to forward content filter to producers when they change their
geographical area. This simplifies the dynamic reconfiguration requirements as far as
subscription and content filter is regarded.

The Sentient object, which represents the CORTEX main building block, seems to be very
close to the ACE concept. Indeed, CORTEX sentient object faces some key issues for the
ACE architecture success: the distribution of reasoning capability across the components
and the adoption of a communication paradigm which both properly scales and ensures
loosely coupled communication. On the other hand, ACE has to address wider objectives
then the Sentient Object in order to meet CASCADAS goals. The sentient object is
specifically conceived to provide the development environment to build proactive
application in order to control the environment. We think it is only a part of the CASCADAS
objectives; relevant aspects like the need for self-similarity, emergent collective behaviour,
self-organisation and the like seems not be so pertinent in CORTEX.

5.1.6 Runes
RUNES [17] is a middleware supporting the development and the execution of component-
based applications. The RUNES middleware leverages a small component-based
infrastructure able to provide at runtime modularised and customisable services to be
applied in the context of specific applications. The core entity in the RUNES model is the
component that is defined as an encapsulated unit of functionality and deployment.
Components foster a cross-layer approach to software development, in that each
component can be in charge of activities belonging to different abstraction layers of a
distributed application, ranging from operating-system layer to high-level user interfaces.

The basic architecture of RUNES is divided in two parts:

• A Middleware Kernel which is a run time reification of a simple well defined
software component model.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

29 / 74

• A set of Component Framework which provide a configurable and extendible set of
application services.

The Middleware Kernel
The aim of middleware kernel is to provide the underlying methods for the managing of
application components. All the operations provided by the middleware are accessed
through an interface of a particular component present in every node, the Capsule. The
main goal of the middleware and Capsule is to allow: (i) the dynamic loading/unloading of
components into the system; (ii) the instantiation of components and (later on) the
destruction of the instances created; (iii) the binding and unbinding of components, so that
a component can access the methods of another component.

The Component Framework
RUNES defines a Component Framework (hereafter CF) to support the development of
component-based applications. The CF aims to: (i) provide an intermediate abstraction
between components and the distributed system; (ii) increase the understandability and
maintainability of the system; (iii) support the developer during the creation and assembly
of components; (iv) enable the use of lightweight components (plug-ins).

In more detail, RUNES provides a framework of components to support the following
important services:

• Reflection Services. These services enable the representation (or meta-
representation) of the system. Such a representation, expressed as a tree of
objects, is machine-readable so that components can understand the system and
perform useful operations, such as adding or removing components, or intercepting
method calls to add behaviour to an existing system (e.g., logging and enforcing
security policies).

• Local OS Services. These services aim to provide the set of services to realise an
abstraction layer over operating system functionalities. Thanks to these services
RUNES components have a unified abstraction on top of which it is possible to
operate with OS-mechanisms ranging from the MAC layer up to the application
layer.

• Overlay Services. In order to enable flexible communication patterns, an overlay
network is often imposed on the underlying physical network. This overlay network
may span each device in the system to support routing and communication
activities. Overlay services support the creation and the maintenance of such
networks.

• Context and Location Sensing Services. These services, based on monitoring
the behaviour of suitable sensors, are used to provide high-level context information
to the components.

• Advertising and Discovery Services. These services allow components to
discover the functionalities provided by other components and advertise their own,
in order to efficiently bind and interact with each other.

• Logical Mobility Services: In dynamic scenarios, it is very difficult to have all the
application functionalities installed in each and every device since the beginning of
the application. For these reasons, services are needed to disseminate new
functionalities (code) in the system. This is the goal of Logical Mobility Services.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

30 / 74

• Coordination Services. Coordination of activities is needed between components
for a number of reasons: interaction, synchronisation, etc. The goal of Coordination
Services is to provide an efficient coordination mechanism to support components
activities.

On the basis of this brief presentation, it is rather easy to see that RUNES provides a lot of
functionalities that are amenable for ACEs’ definition. However, a number of important
aspects defined in the CASCADAS project (e.g., ACEs’ self-* and autonomic properties)
are not properly addressed by RUNES and thus require further investigation.

5.2 Component Models
Component models define solution directions for dynamic handling of components.
Component models consist of the abstract definition of the platform (the common high-level
functionalities that components access, inter-component communication model,
registration, etc.) and of the rules and regulations that components must comply with. The
following section describes relevant existing component models from the viewpoint of the
CASCADAS project.

5.2.1 JavaBeans and Enterprise JavaBeans (EJB)
JavaBeans technology is a component architecture, and JavaBeans are reusable software
components [34] [35]. The vision of the JavaBeans technology is that independent software
vendors (ISVs) offer their software components as standard JavaBeans and these beans
can easily be integrated with other beans and into a new software.

JavaBeans are simple. Most elements of the JavaBeans specification are optional to use,
only a few regulations are obligatory.

JavaBeans components are recommended to be of small or medium sized granularity (very
big components are not recommended because of the configuration difficulties).
JavaBeans components are portable – it is one of the main goals to provide platform
neutral architecture. Individual Java Beans vary in the functionality they support, but the
typical unifying features that distinguish a Java Bean are:

• Support for events as a simple communication metaphor than can be used to connect
up beans.

• Support for properties, both for customisation and for programmatic use.

• Support for persistence, so that a customised bean stores it settings and state in a
uniform way.

• When a bean is used in a builder application, it is recommended to

o Support introspection so that a builder tool can analyse how a bean works.

o Support customisation so that the user can easily customise its appearance
and behaviour.

In the life-cycle of a JavaBean we distinguish between design-time and run-time. Design-
time is when the component gets customised and gets integrated into a program. Run-time
is when the program is executed.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

31 / 74

The JavaBeans component platform is called container. Containers provide uniform,
platform-independent (operating system independent), high-level API, including the “usual”
Java Standard Edition API elements. On each OS platform, the high-level API is mapped
into platform-specific calls, for example, on a Microsoft platform, the JavaBeans API is
bridged through into COM (Component Object Model) and ActiveX. All JavaBeans
containers must support: JDBC (Java Database Connectivity) for database access,
CORBA IIOP (Internet Inter ORB Protocol) for CORBA object interoperability, and RMI
(Remote Method Invocation) for Java remote method calls. Multithreading and
internationalisation are also obligatory to support. Containers may include additional
network access mechanisms and services.

JavaBeans are subject to the standard Java security model. A JavaBeans component is
recommended to have “minimal assumptions”.

Enterprise JavaBeans is an extension of the JavaBeans component model, where–besides
other things–the containers support web technologies and transaction handling, too.

Enterprise JavaBeans (EJB) add additional functionality, relevant in enterprise computing,
to JavaBeans. The EJB component platform (EJB container) includes automated
persistence handling, transaction management, failure-safe operations, etc.[36]

Compared to the CASCADAS approach, EJB as well as JavaBeans do not provide
strategies to tackle issues like e.g., optimal resource use (it’s the responsibility of the
container only), self-reflection or autonomic communication. EJBs do not offer any specific
support for autonomic communication, e.g., adaptation, self-sustainability, self-healing
(fault-tolerance is a property of the container) etc. Though, those issues are covered by the
ACE model as it is researched in the CASCADAS project. Nevertheless, JavaBeans and
EJB are successful component models widely used within the Java Community. Concepts
that CASCADAS can borrow from EJBs are more related to aspects of enterprise
computing, e.g., reliability, load balancing, security and persistency.

5.2.2 CORBA Component Model
The Common Object Request Broker Architecture (CORBA) Component Model, short
CCM, is a general purpose component model for distributed computing systems, based on
the CORBA middleware [37][38] . CORBA provides platform independent communication
in distributed computing systems [38]. This is achieved by the standardised description of
software (application) programming interfaces (API) by the Interface Description Language
(IDL) and the transport protocol General Inter-Operation Protocol (GIOP).

The CORBA Component Model advances the concept of software in CORBA to the
concept of components [37]. For this purpose, CCM introduces the terms Basic
Component and Extended Component. Basic components are made of attributes and the
equivalent interface. Attributes are used to write and read the component configuration.
The equivalent interface represents the functionality of the component, i.e., its API. In
addition to basic components, extended components are made of facets, receptacles and
event source and sink. A facet is a single aspect of the component’s API, i.e., a particular
functionality implemented in the component. The sum of all facets results in the equivalent
interface. Receptacles allow other components to “plug into” the component to be notified
on events. The event source publishes defined events, whereas the event sink consumes
them.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

CCM supports platform independent, loosely-coupled communication between
components.

CASCADAS goes beyond CCM by introducing an ACE model capable of supporting
autonomic features like situation awareness, self-organisation, aggregation etc. Concepts
that CASCADAS can borrow from CCM are the communication principles of components,
i.e., attributes, facets, receptacles and event sources and sinks, and the concepts
envisioned for platform independent communication.

6 ACE component model

This section describes how the goals of the ACE component definition, the requirements
collected and the partners’ agreement has generated a conceptual and functional design of
the ACE.

6.1 The ACE conceptual model
The conceptual model describes the results of the WP1 partners’ discussions about the
main concepts that an ACE has to cover and support in order to implement the autonomic
communication principles as described in section 2. In Figure 8 it is depicted a conceptual
model of the ACE to fix all the architectural aspects the model of the ACE has to deal with.

Figure 8 Conceptual UML diagram of the ACE base model

32 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

33 / 74

As seen in this diagram, ACEs may be composed in two different ways: externally and
internally. Externally composed ACEs collaborate loosely to provide a service, while every
single ACE remains visible as an independent entity. Internal composition aims at providing
a service by mutual collaboration of ACEs through binding them more strictly: a new ACE
emerges that is representing the whole ensemble and ACEs which can be found to be
“within” this emerging ACE (in this section the emerging ACE is referenced as combined
ACE and all aggregated ACEs as contained ACEs).

There are at least two models an ACE knows. On the one hand a self-model, representing
its own context-dependent behaviour and caring for self-awareness; on the other hand an
environment model, used for situation-awareness. The environment model may be the set
of available self-models from other ACEs in combination with any other information
communicated by the knowledge network. If during the course of the CASCADAS project, it
turns out that other ACEs solely generate context information, these two models may
collapse into a single one. This seems to be happening in the case of internal composition:
the self-model of a combined ACE seems to be the environment model of all contained
ACEs.

Communication between ACEs is message based, facilitating a time and spatial
decoupling of the communication partners, for example by following mechanisms as
surveyed by the authors of [11]. Messages may be buffered when their receivers are
unavailable, they could be multiplexed for point-to-multipoint communication, they may be
routed for indirect communication between ACEs, and they can be delivered
asynchronously avoiding the requirement for synchronisation among ACEs. Messaging
may include semantic routing which means that a recipient may be addressed via its
semantic properties instead of a logical or physical address.

Every ACE resides in a location, which marks a position within the knowledge network,
giving it access to the stigmergic information within that area. ACEs are supposed to be
able to move between locations and are free to migrate to any place where at least one
ACE is already in existence. The purpose of moving ACEs between locations is to optimise
resource use. Examples are that ACEs may move closer to their clients to reduce
communication costs, or to locations where they might be executed more efficiently to
increase service quality. ACEs decide autonomously when and where to move,
consequently they might have other reasons to move other than the ones given above.

Furthermore, we have identified the notion of a Plan, which is an explicit formulation of the
way an ACE is supposed to act. ACEs are not only executing plans (which in turn dictates
their behaviour), but also managing plans by creating, choosing, changing, rearranging,
and removing them and thereby effectively changing their potential behaviour. The
planning concept promises to enable adaptation and self-organisation capabilities.

6.2 The ACE functional model
This section points out how the concepts described in the previous section are mapped on
to the main functional blocks contained in an ACE.

ACEs are structured in two parts. A common part is exposed through a so-called “common
interface”, which needs to be offered by every ACE and serves as the basic mechanism for
enabling self-similarity and a specific part, available through a “specific interface” that
contains the specific functionality of an ACE. This concept is influenced by previous work of
some partners as published in [12]. As we do not expect every ACE to implement the
common functionality by itself, a mechanism has to be researched that is able to relay

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

access of an interface transparently to another interface (e.g., by propagating functionality
binding information like an updated service access point location from one ACE to another
or by offering a proxy role and relaying messages). This will be of importance when
migrating ACEs, using internal composition or creating ACEs based on other ones. A
convenient way of creating ACEs would be the cloning of existing ACEs, resulting in
inheritance of all common bindings from the parent ACE.

The Figure 9 shows the proposal for an ACE structure: every element will be described and
detailed in the following sections.

Specific Part

Self-Model

Reasoning Engine Message
handler

GA Facilitator Common Interface

Figure 9 ACE structure
For a better understanding, Figure 10 lists the meaning of the graphical symbols used in
Figure 9

Specific Interface

Specific feature

Goal Achievable

Goal Needed
Figure 10 ACE structure legenda
The following table summarizes the correlation of the functional blocks defined in Figure 9
with the concepts described in the ACE conceptual model:

Concept
Architectural
element Description

ACE ACE

The ACE concept is implemented as
a basic component which contains
all the elements needed to

34 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

35 / 74

Concept
Architectural
element Description

implement the ACE features.

Message Message Handler

Messages exchanged in a given
format (e.g. XML) which carry the
information needed to implement
self-organization and other group
features among ACEs. The
MessageHandler is the ACE element
capable to parse the incoming
messages/outcoming messages,
forwarding them to the proper ACE
element.

Behaviour GN/GA

A formal semantic description (e.g.
xml) of the goal the ACE is able to
achieve and of the goal the ACE
need in order to achieve its own
goals.

Model - Self-Model Self-Model

A representation of the ACE
behaviour that comprises the way in
which features of the specific part
have to be called to achieve the goal.

Model - Environment Reasoning
Engine/Facilitator

The environment is represented in
the internal state of ACE contained
in the Reasoning Engine component.
The Facilitator, defines alternatives
to the basic plan in order to face
changing conditions.

Plan Self-Model The Self-Model describes the plan to
achieve a given goal by the ACE.

6.3 The Common Interface
The Common Interface is basically the way ACEs communicate and interact with the world
outside (i.e., other ACEs or the environment). The communication is message-based and
then the Common Interface is implemented by a Message Handler which is able to
understand a fixed set of messages. The ACE collaborations and aggregations are
exclusively carried out by the exchange of these messages.

The basic set of messages addressed by the Common interface is:

o Goal needed (GN): a sort of request, with a semantic description attached, which
specifies what kind of functionalities the ACE needs from other ACEs, to achieve
its goals.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

o Goal Achievable (GA): this message is used by an ACE to state what kind of task
it is able to provide. It has also a semantic description and typically will be used to
communicate to other ACEs what an ACE is able to do.

The figure 11 below is a simple example of a call-flow with a proposal sent by ACE1 (i.e.,
GA) to a certain number of ACEs and the dialog between the ACE1 and an ACE receiver
(e.g., ACE2) which needs the advertised features of the ACE1.The ACE2 discovers a
semantic matching of a received goal-achievable with its goal-needed, it sends back a kind
of acknowledgment to the ACE1.

 ACE1 ACE2 ACE3 ACEn

Send(GA)

Send(GA)

Send(GA)

SendAnswer(MatchFound)

Figure 11 Call-flow
The GN-GA protocol does not generate a flood of GN request to all the ACEs. The GN-GA
protocol is a semantic advertisement protocol by which ACEs advertise their capabilities
through the GA message. One solution to limit the flooding overhead is the implementation
of a sort of semantic time-to-live: if the incoming GA (i.e., the features described) belongs
to the same semantic domain of the receiver ACE then the GA is propagated otherwise it is
discarded as it is possible that ACE’s neighbours are not interested in that GA as well.

The mechanism described above is based on the following main assumption: if the GA
received doesn’t pertain to the semantic domain of the receiver ACE, it would be high
probable that neither the receiver's neighbours are interested in that GA, so in most cases
it is better not to forward the message.

The semantic domain is defined by all the ACES where the GA/GN matching is satisfied.

6.4 The Specific Part
The Specific Part contains the ACE specific functions. It exposes these functions through
the Specific Interface.

The Specific Interface contains a description of each function of the ACE Specific Part: the
set of features which characterize the ACE behaviour. For each feature a semantic
description of the job the ACE is able to do (GA) and the indispensable and essential
actions and conditions to accomplish it (GN) are specified.

For example, given a specific function which executes a query on a DB containing personal
data information, the semantic description of the GA could be something like: “get people
profile” and the GN could be something like: “a connection with a database is necessary”.

Besides the two main component of an ACE as explained above we envision some
additional elements necessary to support the ACE as described in the following sections.

36 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

37 / 74

6.5 The Self Model
The Self-Model describes the possible states for the ACE and the possible transitions
between pairs of states. In other terms, it could be defined as a state machine. Therefore
the Self-Model is a description of the steps the ACE will execute to achieve its goals.

Any state is described by a semantic description used by the ACE to reason about its
current state with the help of the Reasoning Engine.

The transition functions are the specific features which must be invoked during a state
transition.

The ACE Self-Model is published to the outside world using the GN – GA protocol i.e., a
semantic advertisement protocol by which ACEs advertise their capabilities.

6.6 The Reasoning Engine
The reasoning engine executes (the implementation of) the self-model and its main role is
to keep trace of:

 The state reached in the Self-Model execution. Eventually, it may take trace of the
history, storing the previous states.

 The environment: any GA coming from other ACEs.

Mainly, it has to be able to run the state machine representing the self-model. It should
check if a transition may take place invoking the proper specific features if specified, and it
has to properly represent the semantic description of the new state reached.

Briefly the reasoning engine:
• Tracks the Environment Model
• Runs the Self-Model.

6.7 The Facilitator

The Facilitator will be the core autonomic part of the ACE, adapting its behaviour to the

changing conditions, situations or faults.
The adaptation of the behaviour means changing the self-model state machine when a

specific feature exhibits different behaviour depending on its state.
 In order to achieve this, the self-model “developer”, or any autonomic mechanism should

insert in the original self-model some additional transition to adapt the ACE behaviour. We
call such additional transition Join Point (JP) added on the fly to modify dynamically the
behaviour of the self-model.

The activity of the Facilitator could be summarized as follows:
• The Reasoning Engine will trigger any changes perceived in the environment or in

the ACE’s internal state (self-model) to the Facilitator.
• The Facilitator is able to identify the proper action i.e., JPs in order to adapt the self-

model to the sensed environment modification.

The following picture shows a simple template based example implementing the previous

schema:

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Facilitator

state1 state2

state3

state4

state5

state6

state7

JP1
<template1, Join-point 1>

<template2, Join-point 2 >
JP2

Figure 12 Schema of the facilitator interaction mechanisms

For example, let us have a self-model state machine with 7 states (figure 12) and a

facilitator configuration with a change condition defined when state 3 is reached. If template
1 is matched, the JP1 is activated and the self-model is modified (from state 3 to state 6
skipping state 5).

The complex situation what we have in mind is quite close an inference engine to face
any problem arisen during the ACE activity.

6.8 Example1: ACE Personal
This section is devoted to an example to explain the ideas behind the ACE components.

Let us suppose that we have an ACE, called ACE Personal, running on a mobile device
(e.g., PDA) whose main task is to collect data from the user’s mobile when she/he comes
in a specific geographical area. The ACE Personal starts:

 Collecting data when a specific SMS is received by the mobile device.

 Advertising other ACEs interested in personal data when the user comes into a
specific area.

The GA/GN messages for the ACE personal data are:

GN: SMS received from a Service Provider Localization System

GA: get Personal Data.

We do not cover the case when the user goes out from the interested area. In that case, an
additional message should be sent by the ACE, advertising that the personal data of the
user is no longer valid. Obviously, in a real world such a situation should be monitored and
managed in a proper way.

6.8.1 Self-Model
The following picture shows a representation of the Self-Model for the ACE Personal:

38 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Position checked Personal Data
Achieved

In Geographic
Area

Personal Data
Sent

f1

f1 f2

f3

This example doesn’t contain any implementation details. The semantic description is
given in a natural language and the self-model states are described with simple tuples

State State desc. Description
Position
Checked

<Position, Lon, Lat,
Reached>

The ACE has checked its
position (location)

In
Geographic
Area

<Area, X,Y,Z,W, In> When the ACE is in the
geographic area covered by
the Ads Screen service it
receives a star-up sms
message.

<Data, Personal, Age,
Achieved>
<Data, Personal,
Gender, Achieved>

The ACE has read data from
the handset device.

Personal
Data
Achieved

The ACE has sent the
personal data to interested
ACEs (ACE population
aggregator).

Personal
Data Sent

<Data, Personal, Age,
Sent>
<Data, Personal,
Gender, Sent>

6.8.2 Specific Part and Specific Interface
The following table describes all the specific functions contained in the specific part of the
ACE and referenced in the Self-Model above:

39 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

40 / 74

ID Name Description GN GA

F1.GN1: Location-
based APIs installed
on the handset

F1 checkPosition Poll the location
system through the
handset APIs in
order to understand
its geographic
position.

F1.GN2: UMTS
coverage

Position X,Y is
Reached

F2.GN1: Personal
data management
APIs installed on the
handset

F2 getPersonalData Retrieve the
personal data from
the handset device.

F2.GN2: personal
data store enabled;

Personal Data
retrieved

F3 sendPersonalData Send the personal
data to the interested
ACEs.

None Personal Data
Sent

F4 resetData Reset the data
collected in the
previous execution

None Data reset

The Facilitator should be equipped to face any exceptional case arisen during the
execution: for example when the user turns off the device before the ACE sends the data
or the user goes out from the specific area. The Facilitator should recognize the situation
described and it has to modify the self-model to avoid, in this case, any data inconsistency.
In order to recognize the special situation described, the facilitator should monitor the
states held by the reasoning engine and has to do a matching of such states on its
templates. The states of the Self Model are recorded in the reasoning engine. So,
conditions as:

 the handset is turned off and the user is still in the specific geographic area,

 the handset is turned on and the user is out of the geographic area

should be recognized and managed by the facilitator.

The following picture shows the modified Self-Model needed to adapt to the situation
above:

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Position checked Personal Data
Achieved

In Geographic
Area

Personal Data
Sent

f1

f1 f2

f3

Personal Data
Achieved

JP1

f4

The Facilitator should be configured in the following way:

Template Self-Model Join Point

<Handset, turned off> JP1

<Data, Personal, *, Achieved>

<Position, Lon, Lat, Not Reached>

7 Supportive Technologies

The objective of this section is to elaborate about the technologies that might be adopted
for developing the ACE architectural model that is described in chapter 5. This section has
been structured in sub-sections per each block of the ACE architectural model where the
potential implementing technologies are described.

7.1 Inter-ACE communication
As CASCADAS is focusing on highly distributed and dynamically changing networks, inter-
ACE communication is built exclusively on message-based communication. The basic
building blocks of communication flow are Messages, which can be transmitted using
various types of low-level protocols, transparently to the ACE. On the technical level, the
Message Handler implementation realizes and carries out concerning low-level tasks.

41 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

42 / 74

The Message Handler provides high-level interfaces for sending and receiving messages,
supporting several addressing schemes and reliability models.

7.1.1 Message Format
Messages are XML documents in order to support interoperability and independent
implementation. Messages are defined in the name space “CASCADAS/ACE” and have to
adhere to a specific message format as detailed in the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:ace="CASCADAS/ACE" xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="CASCADAS/ACE">

 <!-- Base type for addresses -->
 <xs:complexType name="Address">
<xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>

 <!-- Base type for messages -->
 <xs:complexType name="Message">
 <xs:sequence>
 <xs:element name="Destination" type="ace:Address" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Source" type="ace:Address" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="reliable" type="xs:boolean" default="false"/>
 </xs:complexType>

 <!-- Example Text Message -->
 <xs:element name="TextMessage">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="ace:Message">
 <xs:sequence>
 <xs:element name="Text" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <!-- Further message types follow here -->

</xs:schema>

As the XML Schema syntax is rather lengthy and counter-intuitive, please consider the
picture 13 for an explanation of the structure’s specification.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Figure 13 Structure of an ace:TextMessage

Any message processed by a Message Handler extends the basic ace:Message type. The
same is valid for Addresses; they are deriving from the ace:Address type. A fictitious
ace:TextMessage type has also been declared to demonstrate how the basic messages
types are supposed to be extended.

Minimally an XML Message consists of the following:
- A mandatory message root element. It is fully qualified name defines the unique type

of the message.
- An optional "reliable" attribute which requires the Message Handler to use a

reliable transport mechanism.
- 0..* "Destination" tags referring to addresses where the message should be sent.

Message Handlers may use optimisations when transmitting (e.g., if the given list of
destinations is identical to a set of participants in a multicast communication group,
the Message Handler might send the message only once using multicast). If no
"Destination" tags are found in the XML message the Message Handler tries to
reach as many other ACEs as possible (e.g., broadcast). Different addressing
schemes may be used.

- 0..* "Source" tags referring to addresses the message originated from. As a single
sender might have multiple addresses (aliases) or a group of senders might
cooperate to send a certain message, we allow for several source addresses. It is
also possible that no source address is given; in this case the sender might want to
remain anonymous or has no identity of its own.

43 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

44 / 74

- Any number of other tags depending on the type of message. The exact tag/attribute
names must be specified in the XML Schema for a message type.

The Message root, reliable, Destination and Source tags/attributes of the
Message are often referred to as the “header fields” even if they are not explicitly wrapped
by a “header” tag. Using an explicit “header” tag would not be of any advantage, as data in
structured XML does not need to use explicit delimiters (as in e.g., frame or packet based
protocols) but would only increase the size of the message and slow down processing.

Following is an exemplary text message that would be sending to two destinations, on the
one hand a given IPv4 address and on the other a single destination out of a group of
aliases. The source of the message would be known as the alias “Home” and the payload is
a string.

<?xml version="1.0" encoding="UTF-8"?>
<ace:TextMessage xmlns:ace="CASCADAS/ACE" reliable="false">
 <Destination>
 <IP version="4" host="example.com" port="4711"/>
 </Destination>
 <Destination>
 <OneOf>
 <Alias>foo</Alias>
 <Alias>bar</Alias>
 </OneOf>
 </Destination>
 <Source>
 <Alias>Home</Alias>
 </Source>
 <Text>Hello World!</Text>
</ace:TextMessage>

7.1.2 Message Handler
The Message Handler is responsible for sending and receiving messages.
- The Message Handler accepts Messages from the environment and hands them to

the Reasoning Engine.
- The Message Handler takes over Messages from the Reasoning Engine and delivers

them to other ACEs.

The way the Message Handler realizes the former tasks is defined on the high level only;
we will not prescribe or specify certain protocols to use.

For better clarity, we shall differentiate between the abstract Message Handler and the
concrete Message Handler Implementation. The abstraction describes high-level
functionalities and workflow while the implementation is responsible for the mapping to the
actual implementation. The Message Handler Implementation is responsible for the
address resolution and for the selection of the appropriate transport protocol.

If the Message Handler is not able to fulfil a request; an error is reported (e.g., a message
that is marked as "reliable" is given to a Message Handler that is only able to transport
messages in an unreliable fashion).

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

45 / 74

Message Handlers shall use the header fields5 of the message and must not touch
(modify, resolve, copy, etc.) other parts. Message Handlers may add extra fields to the
header – dedicated for inter-Message-Handler purposes only (e.g., stamps, statistics) – but
these fields shall be removed before handing the Message to the recipient.

Message Handlers are not used as an abstraction of an overlay network. Overlay networks
shall be built up from ACEs and not from Message Handlers.

The Message Handler specification has mandatory and optional parts.

Message Handlers must support the followings:
- Non-reliable message sending.
- Takeover of a Message from another Message Handler.
- Check whether an incoming Message matches the ACE (recipient comparison) and

hand the Message to the ACE.
- Report errors in case of non-supported requests.

Message Handlers may support the followings:
- Reliable message sending.
- Transactions.
- QoS.
- Security.
- Other functionalities.

The Message Handler Implementation must specify the followings:
- The protocol for delivering the Message to the recipient.

7.1.3 Addressing schemes
ACE communication must ensure the possibility for both anonymous communication and
addressing-based communication. We presume to have an ACE ID (ACE identifier) which
is not defined more closely (it may be unique or non-unique, may be a name, an alias,
group identifier or a set of attributes/the self-model, etc.) It is assumed that the ACE knows
its ID(s).

So far, the following addressing schemes have been defined:

Broadcasting. Message is delivered to as many ACEs as possible. Missing recipient tag
indicates broadcast.

Recipient (list). The recipient(s) are listed (e.g., via their Aliases or IDs). Only those ACEs
matching the recipient(s) will receive the message.

NEARBY. Only the nearby ACEs receive the message. In this case, we make use of the
topology of the network. The semantics of this addressing scheme also matches the

5 “field” may mean tag or attribute

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

46 / 74

principle of locality (e.g., for pervasive services). Practically, “nearby” may mean the 1-hop
paradigm or a similar extension (e.g., 2-hops, 3-hops).

OneOf (list). One of the ACEs from the recipients list will receive the message.

The addresses used in the Message can be compared with the ACE ID, and comparison
results in matching or non-matching.

The result of the comparison depends on the actual compositional state of the ACE, e.g.,
tightly composed ACEs are not allowed to receive Messages directly from the outside
world.

Normally, the address used in the message matches the ACE if:
- the message is a broadcast message;
- the message is sent to the NEARBY ACEs;

at least one of the listed recipients matches at least one of the own Ids.

The addressing schema will be object of deep investigation in the next phase of the project.

7.1.4 Message Types
The exact list of message types will be defined in the next phase of the project. Messages
will be based on the GN-GA conceptual model (or may extend it)

7.1.5 Communication flow
From the theoretical viewpoint, the interaction of ACEs (such as service usage,
composition, etc.), can be divided into three phases:

1. Discovery: the parties locate each other

2. Contracting: the parties agree on the conditions of the interaction

3. Interaction: the real interaction

Phases may be explicit or implicit.
In simple cases, two messages are enough for the whole interaction process (a question
broadcasted in a GN and the answer sent back in a GA). This is a good example for
implicit phases: the first message implicitly includes the discovery, a null-contract and the
first step of the real interaction, while the second message implicitly acknowledges the null-
contract (by answering the question) and completes the interaction phase.

In complex cases (e.g., such as in pervasive supervision) explicit contracting is required to
ensure that the parties bound themselves to the explicitly specified points (e.g., the ACE
gives access to its Message Handler for the Supervision ACE). Contracting may become
more important in case of non-free services (charging).

7.2 Reasoning Engine
The reasoning engine is an automaton that executes the Self-Model, based on the
received messages. Context information that enabled ACEs to show context-sensitive
behaviour is also tracked by the reasoning engine.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

47 / 74

The basic operation of the reasoning engine could be depicted as an infinite loop that can
be described with the following meta-code.

loop
 receive message
 determine possible transitions in the self-model
 choose transition(s) to be performed
 perform transition(s) & execute the side-effects(s)
end loop

The way a message is received and processed raises questions regarding parallel
execution, synchronization and queuing. Regarding the message sources, not only
external sources are possible but also internal ones (because of proactive behaviour and
ability for self-configuration).

A matching operation is needed on order to determine the effect6 of the Message on the
Self-Model. As the matching operation is understood to be intrinsic to the self-model (or
rather to the meta-self-model) model, that is why it is not examined in details here.

Selecting that transition (or those transitions) which is (are) going to be performed is the
result of planning. The simplest “plan” is to choose randomly from the possible transitions.
Reasoning engines may allow the self-model to be active in a single state only or in
multiple states at the same time.

Transitions may trigger actions referring to the outside world (e.g., message sending) or to
the specific part.

Besides “normal mode” there is an additional, distinguished operational mode of the
reasoning engine, called “supervision mode”. If the ACE is supervised (pervasive
supervision), the reasoning engine switches to supervision mode enabling the supervisor to
access the internal part.

This section discusses the possible, most important characteristic properties of the
Reasoning Engine. Further research in this field is scheduled for next year.

7.2.1 Parallelism, synchronization, queuing
Reasoning engines may operate in single-threaded mode or in parallel mode. As for now,
the single threaded model seems to be enough, but to assure the generality of the model,
also the multithreaded model is discussed.

Single threaded execution
Single-threaded execution means that the receiving and the work-up of the message
happens in the same thread, consequently, the reception of the next message is blocked
as long as the processing of the current message is not finished. Single-threaded
behaviour prevents hard-to-reproduce synchronization problems such as cross-effects of
independent but overlapping processed messages. On the other hand, single-threaded
systems are more sensitive to order-related faults and deadlocks. In distributed systems,
the delivery delay of messages may vary, depending on the actual network conditions. The

6 “effect” is meant on a low level, e.g. a transition becomes enabled

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

following figure shows a deadlock situation: because of unlucky delivery delays, both
parties are waiting for the other one’s reply while the processing of the incoming messages
is blocked so the other party is not able to reply.

A:
send out QA
wait for RA

B:
send out QB
wait for RB

A B

QA

QB

waiting
for RA

waiting
for RB

Figure 14 Deadlock situation
Timers and watchdogs are the simplest tools in deadlock detection. Deadlock prevention
methods typically need prior knowledge about the other party and the message delivery
times, which is not the case in a dynamically changing distributed system.

Multi-threaded execution
In case of multi-threaded execution, the reasoning engine can decide to process the
incoming message on a new thread, which means that further messages can be processed
at the same time. Obviously, a “smart” reasoning engine can detect and resolve certain
deadlock situations (such as the one pointed out above)7. Even though this direction
seems to be beneficial, the dummy solution is – to start a new thread for each incoming
message – may result in cross-relationship faults. Independent messages that are
processed overlappingly may put the self-model into corrupt/invalid states. A possible
solution is to protect the synchronization-sensitive parts of the self-model with other tools,
e.g., with monitor-based exclusive access.

 Clearly, the multi-threaded execution model shall not be made “obligatory” for all ACEs, as
it may be unnecessarily complex for some ACEs. On the other hand, in case of intrinsically
complex ACEs (e.g., aggregated ACEs), this model may help in keeping the component
model simple and lightweight.

7.2.2 Message sources, proactive manner, timing
Messages processed by the reasoning engine may originate from several sources. The
most important sources are:
- External sources:

• ACE (either independent or in composition with the receiver ACE)
• Proprietary/ Legacy devices

- Internal sources:

7 It’s a possible research area how to make the reasoning engine smart enough, based on its Self- and
Environment-Models.

48 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

49 / 74

• Specific part (return value)
• Internal timer

Received messages are inserted into the processing queue of the Reasoning Engine,
where they wait to be processed.

External message sources
Inter-ACE communication is discussed in details in other sections of this document.

Messages originating from proprietary/legacy devices are translated into “standard” inter-
ACE messages so technically, they do not differ from the real inter-ACE ones.

External messages are received via the Message Handler.

Internal message sources
The Message Handler receives internal messages directly from the originating source.

A message arriving from the Specific Part may be a response to former specific-part-call or
may be produced freely, without former impulse. As the communication is strictly message-
based and is supervised by the Reasoning Engine, we think that allowing the Specific Part
to freely generate messages does not limit the autonomy or the Self-* properties of the
ACE, and makes it theoretically easier to show proactive behaviour. As the Specific Part
cannot directly communicate with the ACE environment, message sending to the external
world is also realised via a special message to the Reasoning Engine.

Timers are used as special tools to trigger proactive behaviour. When a timer expires, it
generates a message that can initiate processes in the Self-Model. The timer is the only
internal element that can generate messages independently, without prior trigger. With the
help of set-and-expire timers – which can be set to a certain amount of time and expires
when it is over – timed and/or periodic behaviour can be realised. A special case of using a
timer is the Null Timer when the timer is set to an infinitesimally small amount of time so
that it expires immediately. Null Timers can be used to generate proactive behaviour.

7.2.3 Single-state vs Multi-state engines
From the Reasoning Engine point of view, it is an important question how many states of
the Self-Model can be active at the same time.

The simplest case is the Single-State model when the Self-Model is in a definite, single
state in each moment. Single-State Reasoning Engines are simple: they use the single-
threaded model – multi-threading has no sense – with all positive and negative
consequences (e.g., deadlock-sensitivity).

In a Multi-State model, several states of the Self-Model can be active at the same time, and
incoming messages are cross-probed with each active state. The Self-Model must describe
the rules of how to maintain consistency (e.g., hierarchical states, multi-level state-
machines). In case of Multi-State Reasoning Engines, the multi-threaded message
processing seems to be adequate, especially if the messages processed in parallel affect

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

50 / 74

independent state sets. The simplest Multi-State model is to execute all possible allowed8
transitions, and not to care about how many states will become active.

Please note that in this issue similar considerations should be taken as in the case of multi-
threaded model: it shall not be obligatory to support multi-state execution in order to keep
simple ACEs as lightweight as possible.

7.2.4 Determinism, planning
Determinism becomes important if more than one transitions are allowed and the
reasoning Engine has to choose which one(s) to perform. This choice can be understood
as the “plan”. From the Reasoning Engine point of view, the best plan is if no choice is
needed (e.g., because the Facilitator disabled all possible but unnecessary transitions).

7.2.5 Supervised mode
For supervision purposes, an ACE can be put into a contractually agreed supervised mode,
meaning that instances of certain message types specified in the supervision contract may
be intercepted, changed or removed. The supervision authority needs access to the
internal message triggering and relay mechanisms of the supervised ACEs and may also
override the decision of the Reasoning Engine and Facilitator, requiring access to the
supervision model (e.g., currently executing Self-Model) and internal state assessment
information.

7.3 Self-model
The goal of the Self-Model is to describe possible behaviours of the ACE. First of all the
Self-Model defines the internal states and the transition among them. Transitions may have
input and output. Output may be the result of the assigned action, e.g., call to the specific
part or message sending to another ACE.

Several descriptive formalisms can be used for the Self-Model. CASCADAS is focusing on
three selected alternatives: extended finite state machine based description, Petri net
based description, and SXL based description. The descriptive power of the model may
vary depending on the formalism.

The last subsection deals with meta-properties of the Self-Model such as determinism and
number of active states at the same time.

7.3.1 Extended finite state machine based model
Finite state machines (FSMs) are well-known and simple tools to describe state-based
(context-sensitive) behaviour. The bottleneck of the model lays in its simplicity: the
descriptive power of a “normal” state machine is often not enough for real-life problems. A
wide range of extensions are known to increase the descriptive power. Basic FSMs have
the same descriptive power as Regular Grammars (Chomsky 3 class).

8 Note that the Facilitator can turn the transitions on/off. This means that the allowedness of the
transition does not exclusively depend on the match with the incoming message.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

51 / 74

Due to the age and popularity of the FSM model, slightly different things are meant by the
same name. In order to prevent misunderstandings, we give formal descriptions first.

Syntax
The basic final state automaton is a 5-tuple.

(1) Finite State Automaton = (S, Σ, δ, q0, F)
- S: finite set of states
- Σ: alphabet
- δ: set of transitions (S * Σ → S)
- q0: initial state (q0 ∈ S)
- F: finite set of accept states (F ⊂ S)

In CASCADAS, we are considering the following extension directions: output, actions and
guard conditions.

The FSM extended with output is a 6-tuple:

(2) FSM extension with O = (S, Σ, δ, q0, F, O)
- S: finite set of states
- Σ: input alphabet
- δ: set of transitions
- q0: initial state (q0 ∈ S)
- F: finite set of accept states (F ⊂ S)
- O: finite set of outputs

Compared to the basic model, the introduction of the output is a big difference. The
automaton is able to affect its environment, so it can show behaviour not only internally, but
also externally.
- δ = (S * Σ → S) / O, where / demarks output

The FSM extended with actions is a 6-tuple.

(3) FSM extension with A = (S, Σ, δ, q0, F, A)
- S: finite set of states
- Σ: input alphabet
- δ: set of transitions
- q0: initial state (q0 ∈ S)
- F: finite set of accept states (F ⊂ S)
- A: finite set of actions

The novelty of this extension – compared to the output model – is that actions are not static
but dynamic elements. Actions can produce more complex and more flexible behaviour,
too (e.g., the reaction depends on the actual input of the action).

Theoretically, four action types are possible, from which we are focusing on two: namely
the Transition Action and Input Action. The Figure 15 shows the possible action types:

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

State Entry Action is executed when entering a state, State Exit Action when exiting it,
Input Action depends on the actual state and input, and Transition Action is executed when
performing a certain transition. Provisionally, input actions can be used by the Facilitator,
and Transition Actions are the tools to refer to the specific interface, for example.

S1 S2Exit
Action

Entry
Action

x

Input
Action

Transition
Action

 Figure 15 Action types
To be formally complete, here is the missing formal definition of the transition.

- δ = (S * Σ → S) // A, where // demarks the side-effect

Actions are functions with range and domain which are not defined in details at this point.

Please note that this model is quite similar to the basic one (1) as it doesn’t send response
to the outside.

The FSM extended with actions and output capturing is a 7-tuple.

(4) FSM extension with I/A/O = (S, Σ, δ, q0, F, A, O)
- S: finite set of states
- Σ: input alphabet
- δ: set of transitions
- q0: initial state (q0 ∈ S)
- F: finite set of accept states (F ⊂ S)
- A: finite set of actions
- O: finite set of outputs

In this extension, the output of the transition is generated by the action. Of course, static
answers (no action just constant output) are also possible. Using this extension, the ACE is
able to show dynamic and context-sensitive behaviour.

Action and output seem to be similar but are different. Output is a data (message,
information), while action is a call to an executable code (method call, script).

Assuming that the input alphabet of the actions is I and the output alphabet is X:
- A = (I → X) / O

We are not using the A = (I → O) notation because it is confusing. The action may result
in changes in the internal state of the specific part (which is independent of the Self-Model),
and as a side-effect, produces some output.

There is a special case when the output alphabet of the action is part of the input alphabet
of the automaton (O ⊂ Σ). In this case, actions trigger further actions.

52 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

53 / 74

From security viewpoint, it is recommended that truly external output is produced at a few
points of the automaton only. Other parts of the automaton should trigger these points to
produce the desired external output message. So, normally, the output alphabet of “normal
actions” should be a subset of Σ (O ⊂ Σ), while a limited number of selected actions may
have different output (O ∩ Σ ≠ ∅).

The FSM extended with guard conditions is a 6-tuple.

(5) FSM extension with G = (S, Σ, δ, q0, F, G)
- S: finite set of states
- Σ: input alphabet
- δ: set of transitions
- q0: initial state (q0 ∈ S)
- F: finite set of accept states (F ⊂ S)
- G: a finite set of functions with Boolean return values

In the guard condition based model, transitions can be executed if the guard condition
allows it.
- δ = (S * Σ → S / A | g(S * Σ)), where | demarks condition

Guard conditions raise interesting theoretical questions. If the guard condition is complex
enough, it can substitute the whole “state” concept, so it may be possible to create an
identical 1-state-and-complex-guard-condition automaton for each many-states-normal
FSM. Of course if we restrict not only the range of the function but also the domain of it,
then such non-orthogonal cases can be excluded9.

Guard conditions can help in the state explosion problem. If the state consists of n state
factors (fi), and the actual value of fx is only interesting in the aspect if it is above or below a
border. In this case, it is a good idea to remove fx from the state and check it using a guard
condition.

Guard conditions can also help if the possible number of states is infinite.

Usability in CASCADAS
As ACEs must show some behaviour (through sending messages), the basic FSM model
(1) is definitely not enough.

For very simple ACEs, the FSM with output (2) could be enough. The problem of this
model is that it is inflexible, it is not much able to adapt to the situation, as outputs are
statically predefined. Another problem is that type (2) FSMs must have finite state space,
which means that e.g., no floating point number or non-ranged integer can be in its state
descriptor.

For more complex ACEs, where more descriptive power is needed and there is the danger
of the state explosion, too, the combination of type (4) and type (5) FSMs are encouraged.
The guard condition helps in managing the originally infinite state space, and actions with
output make it possible to produce dynamically adaptable responses.
A possible mapping is:

9 It’s a different question if we gain anything with the restriction or not.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

54 / 74

- The Self-Model is a type (4,5) extended FSM, managed by the Reasoning Engine.
- In case of non-determinism, the Facilitator has to select the transition(s) that should

be executed (by disabling the others).
- The Facilitator should be triggered by Input Actions.
- There should be two types of Transition Actions: Call to the specific interface and

External message sending. Calls to the specific interface should be able to produce
(O ⊂ Σ) outputs. External message sending should be able to produce outgoing
messages and hand it to the Message Handler for delivery.

- Guard conditions should help in keeping the state space finite (technically, guard
conditions “fake” those state factors that are excluded from the state space).

Other considerations
Meta-properties of the FSM may describe further attributes of the model:
- Behaviour in case of non-determinism, which is important if the Facilitator didn’t

make the model (or more precisely the model part) deterministic. A choice number
can define how many transitions should be executed (1 or *) of the possible ones.

- Number of active states (1 or *). In a simple FSM, exactly one state is active at each
time. In an extended model, any number of states can be active.

- Parallel planes of the FSM. It is possible that the self-model consists of several
parallel FSMs (e.g., one of them can produce the outgoing messages), which are
working independently of each other. Parallel planes may have different descriptors
(meta-properties).

Other extension possibilities.
- Trust/probability/credibility values assigned to transitions. As a future connection

point with the security domain Reputation/Trust system, values may be assigned to
transitions describing the prospective consequences (for example, , for a cheating
partner, the transition will sooner or later lead me into S1 with the probability of 0.8
and to S2 with the probability of 0.2; while for a reliable partner, S1/0.01and S2/0.99.)
This can help in planning and optimization tasks. Values might be defined on the
Self-Model itself, or on the abstraction of the Self-Model (where a series of transitions
is represented by a single one).

7.3.2 Petri net based model

Syntax
The Petri nets (PN) are networks consisting of places, transitions and directed arcs. An arc
always runs between one place and one transition, never between transitions nor between
two places. The place from where the arc is pointed to the transition is the input place of
the transition, the place where the arc points to from the transition is the output place of the
transition. A transition can have any number of input and output places.

The places may contain any number of tokens. The distribution of the tokens over the
places of the network is the marking of the network.

A transition is enabled and can fire, whenever every input places of it contain at least one
token. When the transition fires, it consumes tokens from every input places, performs

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

some internal processing, and outputs tokens to each output place of it. The firing is a
single non-preemptable event. Although multiple transitions can be enabled at the same
time, only one of them can be fired. The enabled transitions are fired automatically and
non-deterministically. No transition is required to fire – the enabled transition fires
whenever it will, between T=0...∞.

p1

p2

t1

p4

p3

t2

p5

t3
Figure 16 A basic Petri net

The formal description of the basic Petri net is a 4-tuple , where),,,(0MFTP
- P is the set of places.
- T is the set of transitions.
- F is the set of directed arcs, also known as the flow relations. This set is subject to

the restriction: , namely that no arcs may connect two places or
two transitions.

)()(PTTPF ×∪×⊆

- is the initial marking, where each ΝPM →:0 Pp∈ places contain tokens. Nn∈

There are two widely used extensions to this basic model.

- is the set of arc weights, which assigns to every +→ NFW : Ff ∈ arcs an
weight meaning that when the transition is fired, it consumes weight number of
tokens from the arbitrary input place, and puts weight number of tokens to the
arbitrary output place.

+∈ Nn

- +NS:K → is the set of place capacity restrictions, which assigns to each Ss∈
places an +Nn∈ capacity restriction, the maximum number of tokens the place can
hold. As a result, a PN can be called a k-bounded PN, when every places of it
possibly can contain maximally k tokens.

Important properties
Petri nets have some important properties: reachability, liveliness and boundedness.

55 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Reachability)MR(N, 0 means all the possible states (markings) that can be reached in
network N from an initial M0 marking. In modelling, reachability can be used to check
whether the system gets ever into a desired or even an unwanted state.

Liveliness is defined by means of the execution of transitions. Five levels of liveliness are
defined: a t transition is L0 live (or dead) if there is no)ML(N,σ 0∈→ firing sequence
(trajectory), where t can be executed. L1 live for t means, that there is at least one
trajectory, in which t can be fired. The PN is live (L4 level), if in any reachable M markings
()MR(N,M 0∈∀) any t transition is L1 live.

As seen previously, boundedness can be explicitly defined for a Petri net if capacity
restrictions are introduced. However, boundedness can also be a possible property of PNs
without this explicit definition. A PN having no explicit capacity restrictions for its places is
k-bounded, if the k is maximum number of tokens that any place can possibly contain in
any reachable states. A PN is safe if it is 1-bounded.

Extensions
There are several extensions to the basic model; we mention some of them possibly
interesting in CASCADAS.

Guard conditions: the arcs can have a guard conditions defined; which means an additional
precondition to be fulfilled before the transition can fire. If the guard condition evaluates
false, the transition is disabled, even if it contains the required number of tokens on all
input places of it.

Colouring: the basic PN utilises only one type of tokens that cannot be differentiated. The
coloured Petri net introduces the token colouring: every token has an additional colour or
value property. Transitions then can classify tokens based on their values. This extension
makes possible e.g., flowing different packets through the network.

Prioritized Petri net: in such a PN the transitions have priorities. A transition can then be
fired only if there are no competing transitions having a higher priority.

Usability in CASCADAS
The Petri net comes to scope of CASCADAS at the description of the self-model; the
usability of this formalism is currently under discussion.

Compared to the FSM, PN basically makes it possible to have the same action-result
oriented execution. Guard conditions can function the same way as in the FSM case. In
fact, with the restriction that each transition of the PN has exactly one input and exactly one
output place, we define an FSM.

However, utilizing the full spectrum of PN’s descriptive power, we can have more
sophisticated models in some ways. The multiple prerequisites of a transition (multiple
input places) allow for a more detailed precondition description of the state-to-state
transitions.

The non-deterministic execution of the firing of transitions makes the Petri net a good tool
to describe execution of concurrent and competitive tasks. Desired properties of the
modelled system can be checked by validating the properties of the network, e.g., the
system can never get locked if the Petri net is live or the effect of a bounded system
resource can be examined by defining a k-bounded place.

56 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

57 / 74

7.3.3 SXL based model
SXL [32] is an executable language for modelling simple behaviour. The basic idea is to
give the description of the behaviour in a black box format, called pre-conditions and post-
conditions. The model presented here is motivated by SXL but is not completely identical to
it.

Syntax
The SXL based model is a 4-tuple:

SXL model = (S, I, O, T)
- S: set of states
- I: input alphabet of tasks
- O: output alphabet of tasks
- T: set of tasks

The goal of SXL is to describe the behaviour of tasks in sense of input-output,
preconditions and side-effects.

The description of a task is a 4-tuple: t = (pre, i, o, post)
- pre ⊂ S, pre-conditions of the task
- i: input of the task
- o: output of the task
- post ⊂ S, post-conditions of the task (side-effects)

The task description is two-faced: it can describe simple (even state insensitive) black box
behaviour through input-output relationships, while keeping the possibility to describe state-
sensitive behaviour and side-effects as well.

Originally, SXL was to model finite-state problems. But with applying similar extensions as
in the case of FSM (e.g., guard conditions), it is possible to extend it so that to describe
infinite state problems, accordingly.

Usability in CASCADAS
For CASCADAS, SXL can be of relevance when describing the behaviour of the specific
interface. As the specific interface acts as a quasi-black-box (only observable through its
input-output), the SXL based task description seems to provide enough descriptive power
for it. In case of non-state-preserving specific part functions, post-conditions are empty
sets, and preconditions are guard conditions on the input parameters. For state-preserving
specific part functions, preconditions may refer to more than the input parameters, and
post-conditions are non-empty.

Using SXL for the specific interface makes it possible for the Facilitator to re-design the
self-model (assign/un-assign actions to the transitions of the extended FSM, or rather re-
design the given part of the FSM according to the effects of the transitions). As SXL is a
formal description, classical deduction techniques and reasoning can be used. For
example, if an incoming request asks for a value that can be calculated as f○g○h (f,g,h are

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

58 / 74

specific part calls), the Facilitator can deduce it using the pre-and post-conditions of f,g,h,
and create a corresponding state and transition sequence in the FSM.

SXL is only formalism; so it is not meant to substitute GN-GA descriptors but to provide a
descriptive syntax/semantics to them.

7.4 Facilitator
As being the core autonomic component of the ACE architecture, the Facilitator is in
charge of ensuring the autonomic behaviour. To “ensure the autonomic behaviour” means
that the Facilitator is able to review the Self-Model: add/remove transitions, add/remove
states, and assign/modify transition actions.

The Facilitator is put in action when the Reasoning Engine receives a Message. Based on
its knowledge, the Facilitator may initiate changes in the Self-Model (e.g., make it
deterministic for the Message) or may not intervene. The input of the facilitator is at least:
the Self-Model (and the actual state of it), the description of the available Specific Part
functionalities, and the incoming message. The Facilitator shall be able to formally process
(“understand”?) all these information.

The Facilitator may include complex inner procedures/tools like simulation, environment
modelling (e.g., history database, probability assignment), self-modelling (e.g., re-working
of the Self-Model after aggregation), simulation, planning or optimization.

Adding a new transition to the Self-Model is often mentioned as Join Point concept in this
document (the new transition is called Join Point).

7.5 Specific part
The specific part of the ACE contains executable code, and is executed in a container, also
known as sandbox. This means that the specific part has limited access to resources, and
has no control about its own instantiation, or assignment to clients.

Specific part functions have abstract interface descriptions, where input/output
relationships, preconditions and side-effects are given. The abstract description should be
written in a language/formalism that is understandable for the Facilitator/Reasoning
Engine/Self-Model.

7.5.1 Resource access
Specific interface semantically describes the specific part of an ACE and allows the internal
part of the ACE to access the features implementing the specific part. The specific part can
provide output for the incoming call, which (the output) may be a request to send a
message to the external world, but the last decision still remains in the hands of the
Reasoning Engine only, and they can be invoked through the Reasoning Engine only.
Technically, there might be one exception: when the function is meant to wrap/abstract a
simple but low-level resource access (e.g., a database call), it may open legacy
communication channels to do so, but as it is outside of the ACE architecture, nothing can
be guaranteed. In order to get guarantees, the low-level communication shall be performed
using a Specific Message Handler which is able to translate ACE-understandable
Messages to the resource-specific low-level messages and vice versa.

The specific part can be accessed through the Reasoning Engine, exclusively.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

59 / 74

7.6 Interfaces
There are some interfaces identified so far which will be detailed and enriched during the
future activities of the work package:
- Inter-ACE communication: Message Handler and GN-GA protocol
- ACE – Legacy protocols: Specific Interface
- Intra-ACE technical interfaces:

o Message Handler – Reasoning Engine
o Specific Part – Reasoning Engine
o Facilitator – Reasoning Engine

8 Realising Autonomicity

This section aims to explain how the key autonomic features are supported by the
architecture described in the previous sections.

8.1.1 Self-Similarity
Self-similarity is about aggregating components while the aggregate is identical to its parts.
The purpose may be to increase scalability, ease configuration or re-use solutions on
different levels of abstraction. A common example is a WWW server accessible via a
domain name, but actually distributing the load to a number of different computers that
serve the same content, have the same structure, address, etc. ACEs are not only self-
similar because their common interfaces are not allowed to be modified and have to be
implemented by every ACE, but also because of the way composition is handled, allowing
for an elegant use of group communication. For example consider an aggregated
ensemble of 10 ACEs whose functionality is accessible via 10 specific interfaces. Using a
composed ACE, the same functionality could still be accessible via a single common
specific interface using group communication primitives, like one-of or all. A composed
ACE would transparently delegate the task to either a single ACE or the whole group.
Please refer to [14] on how such primitives may be implemented.

A controversially discussed topic refers to the difference between the hosting environment
of an ACE and the ACE itself. If one refers to a system exhibiting the self-similarity
property, wouldn’t that also mean that both, execution environments as well as ACEs
would need to expose this property? A solution was found within the so-called “Service
Execution Environment ACE’s”. SEE ACEs are elements that implement the container
functionality used to host other ACEs. They create a homogeneous environment
independent of the underlying platform by realising the common interface and the
functionality described by the specific interface of a SEE ACE. Realising the hosting
container as an ACE itself ensures the principle of self-similarity and enables the hosting
code to benefit from all other functionality available via the common part of ACEs.

SEE functionality is specific to the underlying platform (e.g., certain communication
primitives) and the code realising it is found in the specific part of an SEE ACE. Every ACE
needs to expose a similar common part; the SEE ACE does this by exporting its specific
functionality through the common interface, enabling other ACEs to bind to its specific
functionality by using the common interface. This mechanism is depicted in Figure 17.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Figure 17 Concept of the Service Execution Environment ACE

As SEE ACEs are highly dependent on the underlying platform it may be assumed that
they will not be able to migrate because of their dependence on immobile functionality.
Regarding bootstrapping, we will not prescribe a standard way of bootstrapping SEE
ACEs, but leave this question open to the decision of implementers. A certain
implementation has to decide in a proprietary way on how to supply the initial binding
information to the bootstrapped element.

8.1.2 Self-Healing by Using Dynamic Binding
Automated repair of functional dependencies among cooperating ACEs is the most
prominent example for self-healing aspects. Figure 18 shows an example of binding
dependencies between two ACEs: A SEE ACE and a hypothetical “My” ACE as a
placeholder for any other ACE. The Common Interface is understood as the access point
to the Common Part, exposing bindings to the functionality that is shared among both
ACEs. The Common Part contains functionality that implements the Common Interface. In
the case of a SEE ACE the SEE Interface is used to realise the Common Interface
functionality.

60 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Figure 18 Dependencies of ACE bindings

The SEE Interface gives an access point to the platform dependent code of the SEE ACE,
realised in the SEE Specific Part. The SEE Interface is a Specific Interface. “My” Interface
is also a Specific Interface and realised in the “My” Specific Part, which is a Specific Part.
The “My” ACE consists of a Common Part and the “My” Specific Part.

Implementing a new ACE, i.e., “My” ACE, requires a definition of the “My” Interface and its
realisation in the “My” Specific Part. If “My” ACE would be realised as an internal
composition of existing ACEs, then “My” ACE would inherit all bindings from its contained
ACEs. It would then be possible for it to substitute existing bindings with appropriate ones
from its own Specific Part.

As we expect an SEE ACE to be the first available element on a host, several ACEs would
be created with functional bindings depending on this element (e.g., during a migration or
copy of the SEE ACE). If we consider the case of termination of such an ACE, then a direct
consequence would be the invalidation of functional bindings of any dependent ACEs
which would lead to the termination of the cooperating ensemble of ACEs. Automatically
repairing such functional bindings, e.g., by redistributing components as proposed in [13],
re-assigning roles of the provisioned cooperation or by automatically searching and using
ersatz bindings are understood to contribute to the self-repair capabilities of ACE based
systems.

61 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

62 / 74

8.1.3 Self-Organisation
Self-organisation means that the structural and functional organisation of ACEs is done by
the ACEs themselves. This has to include the discovery of other ACEs and provisioning of
transport-level communication primitives and addressing; negotiation of rules, policies,
roles, and constraints of the cooperation; instantiation and supervision of the cooperation.
As the CASCADAS project has a complete work package (WP 3) devoted to self-
organisation, the results of this work package will be used for selection of appropriate
strategies and optimal parameterisation of the cooperative models.

Key features of ACEs to enable self-organisation capabilities are found in the composition
mechanisms (both external and internal one), by exploiting context information accessible
through the knowledge network, and in the potential ability to migrate between different
locations.

8.1.4 Self-Awareness and Self-Description
Regarding to ACEs, the term “Self-Awareness” is used in reference to the concepts of
introspection and reflection. “Self-Description” is a necessary prerequisite for achieving
self-awareness, as it gives an ACE the ability to communicate models of behaviour among
ACEs using common semantics.

Introspection refers to the capability of an ACE to gain information about its structural and
functional constitution, e.g., the interfaces of services exposed by itself or contained ACEs
or certain operational data. This information is to be accessed at runtime through analysis
of the self-model that every ACE has access to.

Reflection aims at enabling an ACE to obtain information about how its behaviour is
perceived by other ACEs, in other words to obtain an external view about itself. This is
useful for example in scenarios where an ACE becomes a victim of a hostile program (e.g.,
a virus). In this case an ACE using introspection might conclude wrongly that it is working
in a normal operation mode, whereas other ACEs might notice that it started to transmit a
huge amount of malformed messages on the network. Using reflection would enable an
ACE to ask its neighbours about their opinion of the situation, in the example leading the
ACE to realise that it has been compromised. Reflection is to be implemented as part of
the protocol that enables ACEs to exchange models and reason about the abilities.

8.2 Interaction models and communication primitives
ACEs need to interact with each others in order to establish collaborations, aggregation
and to get knowledge about other ACEs features and the information. Moreover ACEs
need to deal with different degree of dynamicity avoiding any centralized control.

8.2.1 The importance of the interaction model
In order to achieve the goals mentioned above we need an interaction model which allows
ACEs to coordinate each others, access the right information from other ACEs and
invoking the right ACEs without any centralized orchestration, planning or directory service.

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

8.2.2 The basic assumption
The interaction model outlined in this section is mainly based on the assumption that if two
ACEs are close (using a proper distance heuristic) we can state that the two ACEs deal
with correlated topics.

The assumption above should allow facing one of the key challenges in avoiding
centralized control: limiting the overhead due to the interactions among ACEs needed to
reach an agreement and to plan the right organisation.

The implementation of a “semantic time to live” (STT) is needed to avoid that each time an
ACE advertise its goal this is forwarded to any other ACEs without any filter. This STT
works on the following assumption: if an ACE receives a GA related to its GN, it would be
proper to forward that information to neighbour ACEs.

The following example should briefly clarify what we would like to achieve. The picture
below contains 4 ACEs, A1 and A2 provided by the service provider 1 and B1 and B2
provided by service provider 2. These are the GAs provided by the different ACEs:

 A1: it is able to run a query to get the Italian city;

 A2: query to get a list of restaurant given a city name;

 B1: it runs a simple web server;

 B2: it is able to produce HTML pages given information about cities;

A1

A2

B1

B2

GA: query to get restaurants in a given city

GA: send web page to a web site

GA: query to get Italian city

GA: produce web page with italian cities info

A2.GA

SP1

SP2

Figure 19 interaction example
What we need in the example above is that the semantic distance between A1 and B1 is
such as A1 doesn’t forward any information to B1 about A2’s GAs. On the other hand if the
example is that in the picture below, where the service provider 2 contains a node B3
which is able to produce HTML pages containing restaurant information, it is needed that
B1 forward the A2’s GA information to ACEs in service provider 2.

63 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

A1

A2

B1

B2

GA: query to get restaurants in a given city

GA: send web page to a web site

GA: query to get Italian city

GA: produce web page with italian cities info

A2.GA

SP1

SP2

B3

GA: produce web page with italian restaurant info

A2.GA

Figure 20 interaction example

8.2.3 A metaphor behind the interaction model
We can describe the key aspect of the interaction model using a simple metaphor: the ACE
interaction model is fully based on a “pull” semantic which generates a sort of altruistic
environment. Each ACE is altruistic: if it is able to do something and it is available to do it,
the ACE will propose its help other ACEs as much as possible.

The key challenge in this case is to ensure that the information about ACEs availability and
capability reaches the proper ACEs in a proper time. In order to achieve this we think it is
needed to define a P2P protocol aimed to diffuse the information about ACEs capability
and availability in a proper time and without unacceptable overhead.

The interaction model based on the above mentioned metaphor works in the following way:

 If an ACE is able to do something (expressed by means of GAs) and it is ready to
do it, it advertises this information to all its neighbours (the information is flooded
through the network).

 When an ACE needs something (expressed by means of GNs), it doesn’t need to
start any search. The ACE only need to check if someone has already advertised a
feature (GA) which can address its need: this mechanism may be based on a
blackboard metaphor.

8.2.4 Self-aggregation by means of P2P interactions
As stated in previous sections, the current vision is based on the idea that a certain service
(to be created, executed and provided to a User) could be described in terms of a set of so-
called goals.

As specified in the previous section, the key idea for enabling self-aggregation is the
propagation of specific information (in terms of GAs) rather than “needs” (in terms of GNs).
For achieving that, we introduce a so-called virtual board (distributed over the ACEs) where
both goals (needed and achievable) could be semantically described and reported:
Specifically the part of this DVB reporting the ACE GNs is exposed externally, and then
accessible, via the so-called common interface, by other ACEs; the part of the ACE virtual

64 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

board reporting the GAs is kept internal the ACE and it is necessary to make the semantic
matching GN – GA.

In summary, each ACE contributes to the overall virtual board (of the ACE population)
reporting an internal portion of this distributed board subdivided into two parts:

• A public part, accessible via the common interface by other ACEs, listing the GN;
given a semantic matching GN – GA, the GN will be taken by the proper ACE enabling the
self-aggregation.

• An internal part listing the GA propagated; it should be noted that the key concept
enabling the autonomic self-aggregation is the propagation of specific information (in terms
of goal achievable) rather needs (in terms of GN).

As mention, the key concept is the peering propagation of a semantic representation of
goal achievable.

The second main assumption is that each ACE receiving such information (semantic
representation of goal achievable from another peer ACE) makes three actions: first it
checks the semantic matching with its GN; second it elaborates the received information
combining it with a semantic description of its GAs; third it properly propagates the resulted
information (combination of the received GAs with its own GAs) to other peers.

The figure below shows the sort of GAs wave which is created among ACEs based on the
defined mechanism.

Figure 21 Self-aggregation of ACEs by distributing semantic information

65 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

66 / 74

Furthermore, it should be noted that:

In case an ACE discovers a semantic matching of a received GA with its GN, it sends back
a kind of acknowledgment to the ACE in charge of the matching GA; the next step is a take
of such GN by the tail-end ACE.

When an ACE elaborates the received information and it combines it with a semantic
description of its GA, it modulates the “intensity” of the “wave” of information (to be
propagated); for example it may reduce the level of details of the semantic description of
the list of GA. This should allow scaling in the distributed information and a natural smooth
decade of the propagation.

An ACE expected to propagate the elaborated information (combination of the received
goal-achievable with its goal achievable) to other ACEs belonging to the same semantic
domain. Anyway from time to time, randomly, an ACE has to propagate the information to
other domain in order to allow the potential cross-correlation of different domains. This
cross-connection of domain may enable satisfying new unpredicted emerging needs
(creation of new services). As a matter of fact, randomness and fluctuations (or noise) play
an important part in allowing the system to find optimal solutions and/or lead to the
emergence of the right type of collective pattern. In some cases, it is even possible to
identify an optimal level of noise that is most likely to result in the discovery of optimal
solutions. Optimality is largely achieved through a balance between fluctuations leading to
innovation and accuracy of communications or behaviour. Emergent collective behaviour
can be robust with respect to other sources of noise like, for example, fluctuations caused
by small populations of atypical individuals. Noise can be present either at the level of the
individuals themselves or in the interactions among them. Since it appears to play a key
role in natural self-organizing phenomena, incorporating a controlled noise level into the
design of artificial systems and determining its optimal intensity should be given a high
priority if such systems are expected to exhibit similar emergent properties.

Another aspect of this approach, is allowing a best-fitting competition among ACEs offering
the similar GA to match a certain GN. Even if there might be more than one ACE making a
take of a GN, there will be a natural selection of the “best” ACE matching the GN (also in
terms of performance or other criteria). Another aspect, strictly related to this, is ACE
replication (cloning): when an ACE self-detects some internal degradation may self-
replicate itself and self-exclude itself from participating (with expected performances) to a
certain aggregation.

8.2.5 A use case: behavioural pervasive advertisement
This section describes the application of the self-aggregation solution proposal for BPA
scenario introduced in chapter 3.

The description doesn’t contain any implementation details and for sake’s clarity every
semantic description of the ACE goals needed and achievable reported in DVB is given in
natural language using XML tags to make a distinction between the types of goal.

The picture below is the representation scenario in which ACEs act and collaborate to
realize the application: it will be the result of the ACEs aggregation mechanism based on
the semantic matching GA-GN among ACEs. Four different actors take part to the
scenario: 1 telecommunication operator and 3 service providers. The service provider 3 is
needed to start the scenario, sending a SMS to the user’s device: this match with the GN of
the ACE aboard the user handset. The same mechanism is valid toward other ACEs .The

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

arrows in the following pictures are useful to understand the wave of GAs among ACEs to
achieve the main goal of the scenario i.e., to personalize the Screen Window with the Ads
images based on the population preferences deduced from the information gathered from
user’s handsets.

Figure 22 Scenario representation

The picture below shows the blackboard (DVB) made available by each ACE participating
to the application. Each blackboard contains the GN needed by the ACE to reach its goal.
The publication of the blackboard allows each ACE to take part to the application as soon
as an ACE, able to meet the need exposed, sends that information by the GA wave and
this latter is able to reach the blackboard through the inter-domains links.

67 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Figure 23 ACE Distributed Virtual Board
As soon as the ACEs Personal receive the activation SMS, they start to propagate the
wave with their goal achievable. As the ACEs are properly connected to an ACEs network
and an inter-domain links exist, the wave should be able to propagate until the right ACEs
are reached. The figure below shows the waves propagation in the scenario.

68 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Figure 24 Wave propagation
The two following pictures show how the random mechanism introduced in the model
enables an autonomous behaviour. The unpredictable event is that a new handset with
new capabilities is introduced in the operator network. Such handset is able to show
images so in its blackboard the GN = “Images needed” appears. As soon as this GN
appears and the wave containing the GA = Ads Images is randomly propagated a new
inter-domain link is created: images and operator handset start to deal each other so the
ACEs of the service provider 2 start to sent images to the operator handset too.

The following picture shows the new propagation of the GA = Ads Images wave due to the
introduction of a new handset with video capability in telecommunication operator network.

69 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

Figure 25 The new wave propagation

The key idea for enabling component self-aggregation by the propagation some specific
information (in terms of goal achievable) rather needs (in terms of goal needed). For doing
that a so-called virtual board (distributed over the components) is introduced. Both goals
(needed and achievable) could be semantically described and reported in such distributed
virtual board (DVB): specifically the part of this virtual board reporting the component goal
needed is exposed externally, and as such it is accessible, via the so-called common
interface, by other components; the part of the virtual board reporting the goal achievable is
kept internal the components and it is necessary to make the semantic matching goal
needed – goal achievable.

70 / 74

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

71 / 74

8. Conclusion

The overall objective of CASCADAS is to develop and to validate an autonomic framework
for the creating, executing and provisioning situation-aware and dynamically adaptable
communication services. Particularly the project development activities aims at prototyping
a toolkit based on distributed self-similar components (Autonomic Communication
Elements) characterised by autonomic features (self-configuration, self-optimization, self-
healing, self-protection, etc.) The Autonomic Communication Element (ACE) is the basic
component abstraction over which the CASCADAS vision is built. Services are being
created and executed (in a distributed way) by the self-aggregation of ACEs

This document, constituting the Deliverable 1.1 “Report on state-of-art, requirements and
ACE model”, reports the main results (achieved during the first year of the project) about
the definition of the ACE model and its interactions mechanisms.

CASCADAS adopted an application-oriented approach: starting from scenarios and related
use-cases, high level requirements have been defined and are being used by WPs
activities.

The project vision aims at validating a so-called Open Autonomic Service Environment
defined as a highly distributed platform for composing, executing and providing situation-
aware and dynamically adaptable communication and content services.

The essence of the innovation stands in exploiting highly distributed resources (even
commodity servers of low-cost) running autonomic S/W solutions based on distributed self-
aggregating, self-organising components (ACEs). The overall self-similar architecture (both
pizza-box servers and clusters of servers have the same functional architecture) supporting
a distributed replication of data. This will allow high levels of availability also starting from
low-cost commodity H/W.

 The tool-kit developed in the project will be used to demonstrate such vision specifically
referring to some use-cases of particular interest (such as pervasive communications, etc).

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

72 / 74

References

[1] Annex 1 – CASCADAS Description of Work
[2] Autonomic Communication Forum (ACF), available online: www.autonomic-

communication-forum.org
[3] Parashar, M., Liu, H., Li, Z., Matossian, V., Schmidt, C., Zhang, G., Hariri, S.:

“AutoMate: Enabling Autonomic Grid Applications”, Cluster Computing: The Journal
of Networks, Software Tools, and Applications, Special Issue on Autonomic
Computing, Kluwer Academic Publishers, Vol. 9, No. 1, pp. 161-174, 2006

[4] Horn, P.: “Autonomic Computing: IBM’s Perspective on the State of Information
Technology”, IBM T.J. Watson Labs, New York 2001, available online:
www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

[5] Carreras, I., Chlamtac, I., De Pellegrini, F., Mionardi, D.: “BIONETS: Bio-Inspired
Networking for Pervasive Communication Environments”, 2005, available online:
www.bionets.org.

[6] Chlamtac, I., Conti, M., Liu, J.: “Mobile ad hoc networking: imperatives and
challenges”, Ad-Hoc Networks Journal, Vol. 1, pp. 13-64, 2003.

[7] Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: “Pocket switched
networks: Real-world mobility and its consequences for opportunistic forwarding”,
University of Cambridge, Technical Report Number 617, 2005

[8] F. Sestini, "Situated and Autonomic Communication an EC FET European
initiative.", ACM SIGCOMM Computer Communication Review, Vol. 36, 2006, pp.
17–20

[9] F. Saffre, H. Blok, "SelfService: a theoretical protocol for autonomic distribution of
services in P2P communities.", Proc. IEEE Workshop on Engineering of Autonomic
Systems, Washington DC, USA, 2005, pp. 528–534

[10] H. Liu, M. Parashar, S. Hariri, "A Component Based Programming
Framework for Autonomic Applications.", Proc. IEEE International Conference on
Autonomic Computing, New York NY, USA, 2004, pp. 10–17

[11] P.T. Eugster, P.A. Felber, R. Guerraoui, A. Kermarrec, "The Many Faces of
Publish / Subscribe.", ACM Computer Surveys, Vol. 35, 2003, pp. 114–131

[12] O. Droegehorn, F. Carrez, K. David, H. Helin, S. Arbanowski, et al.,
"Generic Service Elements and Enabling Middleware Technologies.", Wireless
World Research Forum (WWRF), Working Group 2, Whitepaper

[13] M. Mikic-Rakic, N. Medvidovic, "Support for Disconnected Operation via
Architectural Self-Reconfiguration.", Proc. International Conference on Autonomic
Computing, New York NY, USA, 2004, pp. 114–121

[14] C. Reichert, D. Witaszek, "An Implementation of the Group Event
Notification Protocol.", Fraunhofer FOKUS Technical Report TR-2002-0301, Berlin,
Germany, 2002

http://www.autonomic-communication-forum.org/
http://www.autonomic-communication-forum.org/
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.bionets.org/

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

73 / 74

[15] Chaouchi, H., Smirnov, M., “Autonomic Communication: Business-Driven
Revolution”, IEEE Intelligent Systems, Vol. 21, Issue 2, pp. 57-58, 2006.

[16] Clips - Online resource: www.ghg.net/clips/CLIPS.html.
[17] Costa, P., Coulson, G., Mascolo, C., Picco, G. P., Zachariadis, S.: “The

RUNES Middleware: A Reconfigurable Component-based Approach to Networked
Embedded Systems”, 16th Annual IEEE International Symposium on Personal
Indoor and Mobile Radio Communications (PIMRC'05), 2005.

[18] Smirnov, M.: “Autonomic Communication: Research Agenda for a New
Communication Paradigm”, Fraunhofer FOKUS White Paper, 2004, available
online: www.autonomic-communication.org/publications/doc/WP_v02.pdf.

[19] Ganek, A. G. and Corbi, T. A.: “The dawning of the autonomic computing
era.” IBM Systems Journal, Vol. 42, No. 1, 2003.

[20] IBM: “An architectural blueprint for autonomic computing”, IBM White Paper,
2003

[21] Internet World Stats, available online: www.internetworldstats.com/stats.htm
[22] Kariv, O., Hakimi, S. L.: “An algorithmic approach to network location

problems, II: The p-medians”, SIAM Journal on Applied Mathematics, Vol. 37, No.
3, pp. 539-560, 1979

[23] Meier, R., Cahill, V.: “STEAM: Event-Based Middleware for Wireless Ad
Hoc Networks”, 22nd International Conference on Distributed Computing Systems,
Workshops (ICDCSW '02), pp. 639-644, 2002

[24] Mirchandani, P. B., Francis, R. L.: “Discrete Location Theory”, Wiley, 1990
[25] Nolle, T.: “A New Business Layer for IP networks”, Business

Communications Review Magazine, pp. 24-29, 2005
[26] Oikonomou, K., Stavrakakis, I.: “Scalable Service Migration: The Tree

Topology Case”, IFIP Fifth Annual Mediterranean Ad Hoc Networking Workshop,
2006

[27] Kaufman, J., Lehman, T., Deen, G., Thomas, J.: “OptimalGrid – Autonomic
Computing on the Grid“, IBM article, 2003, available online: www-
128.ibm.com/developerworks/grid/library/gr-opgrid/

[28] Scott, J., Hui, P., Crowcroft, J., C. Diot, “Haggle: a Networking Architecture
Designed Around Mobile Users” Third Annual Conference on Wireless On-demand
Network Systems and Services (WONS 2006), Les Menuires, France, 2006

[29] Strassner, J. C., Agoulmine, N., Lehtihet, E.: “FOCALE – A Novel
Autonomic Networking Architecture”, Latin American Autonomic Computing
Symposium (LAACS), 2006

[30] Sterritta, R., Parasharb, M., Tianfieldc, H., Unland, R.: “A concise
introduction to autonomic computing”, Elsevier, Advanced Engineering Informatics
19, pp. 181–187, 2005

[31] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C.:
“Grid service specification”, 2002

[32] S. Lee, S. Sluizer, "An Executable Language for Modeling Simple Behavior,"
IEEE Transactions on Software Engineering, vol. 17, no. 6, pp. 527-543, Jun.,
1991.

http://www.ghg.net/clips/CLIPS.html
http://www.autonomic-communication.org/publications/doc/WP_v02.pdf
http://www.internetworldstats.com/stats.htm

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware
Communications, And Dynamically

Adaptable Services” "

Bringing Autonomic Services to Life

Editor: Antonio Manzalini

74 / 74

[33] Fitzpatrick, A., Biegel, G., Clarke, S., and Cahill, V.: "Towards a Sentient
Object Model", Workshop on Engineering Context-Aware Object Oriented Systems
and Environments (ECOOSE), 2002.

[34] Sun Microsystems: “JavaBeans specification”, available online:
java.sun.com/beans.

[35] Englander, R.: “Developing Java Beans”, O'Reilly, 1997.
[36] Armstrong, E., Ball, J., Bodoff, S., Bode Carson, D., Evans, I., Green, D.,

Haase, K., and Jendrock, E.: ”The J2EE™ 1.4 Tutorial”, Addison Wesley, 2005,
available online: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/.

[37] Lewandowski, S. M.: “Frameworks for Component-Based Client/Server
Computing”, ACM Computing Surveys, Vol. 30, No. 1, pp. 3-27, ACM Press, 1998.

[38] The Object Management Group (OMG): “Common Object Request Broker
Architecture: Core Specification”, Version 3.0.3, 2004, available online:
http://www.omg.org/cgi-bin/apps/doc?formal/04-03-12.pdf.

[39] Stephen E. Arnold “The Google Legacy” (Infonortics, Tetbury, England;
September 2005) Chapter3 -
http://www.infonortics.com/publications/google/technology.pdf

Acronyms

ACE Autonomic Communication Element

ACF Autonomic Communication Forum

AutoComm Autonomic Communication

HSDPA High-Speed Downlink Packet Access

GPS Global Positioning System

GSM Global System for Mobile Communication

HSDPA High-Speed Downlink Packet Access

HSUPA High-Speed Uplink Packet Access

PDA Personal Digital Assistant

P2P Peer to Peer

QoS Quality of Service

RFID Radio Frequency Identification

TMF Telemanagement Forum

UMTS Universal Mobile Telecommunications Services

UWB Ultra-Wideband

Wi-Max Worldwide Interoperability for Microwave Access

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://www.omg.org/cgi-bin/apps/doc?formal/04-03-12.pdf
http://www.infonortics.com/publications/google/technology.pdf

	1 Document overview
	2 Introduction to Autonomic principles
	2.1 Situated and Autonomic Communication
	3 Project Vision at a glance: the Open Autonomic Service Environment
	3.1 The Autonomic Communication Element

	4 Application scenario and requirements
	4.1 Motivating Examples for Autonomic Communications
	4.2 Requirements
	General (Foundational) Requirements

	4.3 Requirements Involving ACE and WP2 (Pervasive Supervision)
	4.4 Requirements Involving ACE and WP3 (Self-organized Component Aggregation and Emergent System properties)
	
	4.5 Requirements Involving ACE and WP4 (Security, Survivability and Self-Preservation)
	
	4.6 Requirements Involving ACE and WP5 (Knowledge Networks)

	5 State-of-Art
	5.1 Related Projects
	5.1.1 BIONETS
	5.1.2 Autonomic Network Architecture (ANA)
	5.1.3 Haggle
	5.1.4 AutoMate
	5.1.5 Cortex
	5.1.6 Runes

	5.2 Component Models
	5.2.1 JavaBeans and Enterprise JavaBeans (EJB)
	5.2.2 CORBA Component Model

	6 ACE component model
	6.1 The ACE conceptual model
	6.2 The ACE functional model
	6.3 The Common Interface
	6.4 The Specific Part
	6.5 The Self Model
	6.6 The Reasoning Engine
	6.7 The Facilitator
	6.8 Example1: ACE Personal
	6.8.1 Self-Model
	6.8.2 Specific Part and Specific Interface

	7 Supportive Technologies
	7.1 Inter-ACE communication
	7.1.1 Message Format
	7.1.2 Message Handler
	7.1.3 Addressing schemes
	7.1.4 Message Types
	7.1.5 Communication flow

	7.2 Reasoning Engine
	7.2.1 Parallelism, synchronization, queuing
	7.2.2 Message sources, proactive manner, timing
	7.2.3 Single-state vs Multi-state engines
	7.2.4 Determinism, planning
	7.2.5 Supervised mode

	7.3 Self-model
	7.3.1 Extended finite state machine based model
	7.3.2 Petri net based model
	7.3.3 SXL based model

	7.4 Facilitator
	7.5 Specific part
	7.5.1 Resource access

	7.6 Interfaces

	8 Realising Autonomicity
	8.1.1 Self-Similarity
	8.1.2 Self-Healing by Using Dynamic Binding
	8.1.3 Self-Organisation
	8.1.4 Self-Awareness and Self-Description

	8.2 Interaction models and communication primitives
	8.2.1 The importance of the interaction model
	8.2.2 The basic assumption
	8.2.3 A metaphor behind the interaction model
	8.2.4 Self-aggregation by means of P2P interactions
	8.2.5 A use case: behavioural pervasive advertisement

	8. Conclusion
	References
	Acronyms

