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Abstract 
The overall objective of IST Project CASCADAS (http://www.cascadas-project.org/) is to 
develop and validate an autonomic framework for creating, executing and provisioning 
situation-aware and dynamically adaptable communication services. Particularly the project 
development activities aim at prototyping a toolkit based on distributed self-similar 
components characterised by autonomic features (self-configuration, self-optimization, self-
healing, self-protection, etc.). 

This document constitutes the Deliverable 1.1 “Report on state-of-art, requirements and 
ACE model”.

http://www.cascadas-project.org/
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1 Document overview 

The overall objective of CASCADAS is to develop and validate an autonomic framework for 
creating, executing and provisioning situation-aware and dynamically adaptable 
communication services. Particularly the project development activities aims at prototyping 
a toolkit based on distributed self-similar components (Autonomic Communication 
Elements) characterised by autonomic features (self-configuration, self-optimization, self-
healing, self-protection, etc). The Autonomic Communication Element (ACE) is the basic 
component abstraction over which the CASCADAS vision is built. Services are being 
created and executed (in a distributed way) by the self-aggregation of ACEs 

This document, constituting the Deliverable 1.1 “Report on state-of-art, requirements and 
ACE model”, report the main results (achieved during the first year of the project) about the 
definition  of the ACE model and its interactions mechanisms.  

CASCADAS has adopted an application-oriented approach: starting from scenarios and 
related use-cases, high level requirements have been defined and are being used by WPs 
activities.   

In particular, the document is structured as follows after the introduction to Autonomic 
definition; the chapter 3 describes the project vision; the chapter 4 describes the 
application scenario and the requirements collected through the interaction with the other 
WPs.  Chapter 5 is devoted to a review of some existing architectural models and platforms 
offering autonomic features by highlighting commonalities and differences with respect to 
the CASCADAS objectives. Chapter 6 describes the components envisioned for the 
Autonomic Communication Element, the core of this deliverable while chapter 7 illustrates 
an overview of techniques/tools that might be adopted for developing the ACE architectural 
model.  Chapter 8 focuses mainly on the autonomic aspects addressed by the project.   

2 Introduction to Autonomic principles 

If computer systems manage themselves, if networks organise themselves to establish a 
wide-ranging, high-quality communication, if outages are reduced to zero because of 
reliable error detection and correction systems, and if IT-professionals do not have to keep 
such systems running but just have to further improve them, then we have reached the era 
of autonomic computing.  

The problem we are faced with is the fact, that IT systems become more and more 
complex. In order to permanently increase the efficiency in our everyday work, to advance 
comfort and to continually create new services, we develop faster, cheaper and smaller 
computer systems. The price for this improvement is a drastic rise in complexity affecting 
hardware as well as software. This, if not limited, will lead to a situation in which the 
installation, configuration and administration of a system cannot be efficiently realised even 
by a team of IT professionals.  

Autonomic computing systems are considered to be a potential solution to this problem. 
IBM introduced the “Autonomic Computing Initiative” in the year 2001, with the aim of 
developing self-managing systems (cf. [4] , [19]). “Autonomic” is derived from the human 
autonomic nervous system. Its property to act self dependent and without being controlled 
by any other entity, but controlling itself was taken as model to be applied to future 
technical computer systems. In this context, “IBM defined four general properties a system 
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should have to constitute self-management: self-configuring, self-healing, self-optimising 
and self-protecting. These are accompanied by four enabling properties or attributes, 
namely self-awareness, environment-awareness, self-monitoring and self-adjusting” ([30], 
also cf. [19]).1 The IBM vision of autonomic computing implies that implementing self-
managing attributes involves an intelligent control loop which collects information from the 
system, makes decisions, and then adjusts the system where required. 

 
Managed element 

Autonomic 
manager 

Sensors Effector

Monitor Knowledge 

Analyze Plan 

Execute

 
Figure 1 IBM-MAPE architecture 
 

The MAPE-K architecture organises the control loop into two main elements: a managed 
element and an autonomic manager. Thereby, a managed element is what the autonomic 
manager is controlling and an autonomic manager is a component that implements a 
particular control loop. Figure 1 illustrates the MAPE-K (Monitor, Analyze, Plan, Execute 
and Knowledge) reference architecture proposed by IBM within the autonomic computing 
initiative. 

The managed element is a controlled system resource, which can be either a single 
resource (e.g., a web server, database server or router) or a collection of resources (e.g., a 
pool of servers, cluster or business application). The managed element is monitored 
through its sensors, providing mechanisms to collect information about the state of an 
element. Effectors, which are mechanisms that change the state of an element, allow for 
controlling the managed element. A combination of sensors and effectors forms the 
management interface that is available to an autonomic manager. 

The autonomic manager is a component that implements the control loop as consisting of 
four stages that share knowledge: 
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1  This first set of attributes is now enriched with the inclusion of features such as self-
anticipating, self-adapting, self-critical, self-defining, self-destructing, self-diagnosis, self-governing, 
self-organized, self-recovery, self-reflecting, and self-simulation[30]. Yet the initial set still represents 
the general goal.  
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The monitor stage collects, aggregates, filters, manages and reports details (metrics and 
topologies) collected from sensors related to a managed element, to provide both self-
awareness and awareness of the external environment. 

The analyze stage provides the mechanisms for modelling and correlating complex 
situations (e.g., time-series forecasting and queuing models). These mechanisms allow the 
autonomic manager to learn about its environment and help to predict future situations. 

The plan stage organises the actions needed to achieve goals and objectives. 

The execute stage controls the execution of a plan (considering also on-the-fly updates). 

The plan and execute parts decide on the necessary self-management behaviour that will 
be executed through the effectors. 

The four functions - monitor, analyze, plan, and execute - consume and generate 
knowledge. A large amount of this knowledge comes from the first step of the control loop: 
monitoring. It is important to consider the type of data that is necessary. If large amounts of 
data are stored, performance might deteriorate because even if data has no relevance for 
the system, it is constantly being monitored. All known information about the system is 
provided to the knowledge part which can grow as the autonomic manager learns more 
about the characteristics of the managed resources. The gathered knowledge is 
continuously shared among the four functions in order to improve their decision making 
processes. The monitor-, analyze-, plan-, and execute-parts collaborate and exploit the 
common knowledge to provide the control loop functionality. 

The IBM MAPE-K architecture is not related to a specific technology. Instead its purpose is 
to work with existing computing technologies, as well as with new technologies that will 
emerge in the future. 

The idea of autonomic computing offers interesting aspects to be further investigated in the 
CASCADAS project. Nevertheless, the situation we are faced with in the scope of 
CASCADAS differs significantly from the IBM perspective in the following points. 

Autonomic computing systems, as they are considered by IBM, are seen to be complex 
and integrated. ACEs (Autonomic Communication Elements), the central components in 
CASCADAS are partially expected to be light weighted. The envisaged environment will 
contain a variety of ACEs, all acting autonomic themselves. For that reason, autonomic 
behaviour will not be realised by large and computational expensive subsystems but will 
emerge as an effect of ACE aggregation and cooperation among different system 
components, e.g., interaction with the knowledge network. This last point is the main 
aspect which mostly differentiates the IBM approach from the CASCADAS approach: in the 
latter not only each component is autonomic, but even components interactions at system 
level are autonomic. 

The consequence of the distributed character of a network of ACEs is a very high degree 
of heterogeneity and dynamic. Different ACEs experience different environments and 
varying situations. So, they have to be aware of the situation they are in to be able to 
autonomically adapt themselves to occurring changes. 

Heterogeneity, variability, and the light weighted and distributed character of ACEs require 
a high communication effort among ACEs. The ideas of autonomic computing have to be 
further investigated and developed. They serve as a source of inspiration and a basis to 
build on. Nevertheless, for the purpose of the CASCADAS project this basis has to be 
extended and focused on strategies of autonomic communication to manage the given 
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challenges. The following section describes what autonomic communication is and how it is 
related to CASCADAS. 

 

2.1 Situated and Autonomic Communication 
The term “situated and autonomic communication” (short AutoComm hereafter) refers to a 
long-term research effort that is projected in leading to a radical paradigm shift towards 
self-organising; self-managing and context-aware autonomous networks (see Fokus 
AutoComm whitepaper [18]). Networks are envisaged as being built of large amounts of 
structurally simple and self-similar autonomic building blocks that are able to connect in an 
ad-hoc manner, forming new networking primitives for service provisioning that potentially 
may exhibit complex behaviour. AutoComm systems are adaptive: Changes in the usage 
pattern, formation or any other environmental circumstances may initiate the elements to 
re-configure and adjust their behaviour, trying to optimise service provisioning with regard 
to a new situation. 

The aims of AutoComm are similar to the one’s of IBM‘s initiative on Autonomic Computing 
[4], because the underlying problem is the same: How to manage the complexity of future 
computing systems (in the case of AutoComm that is telecommunication systems). 

Complexity of connected systems is constantly increasing. For example the bandwidth 
available on wireless, coupled with ad-hoc networking, could in perspective rival the 
capacity of backbones. A plethora of interwoven devices that form a ubiquitous, mobile 
information access layer based on a various technologies (e.g., Wi-Fi IEEE 802.11n, 
WiMax IEEE 802.16e, Bluetooth UWB or UMTS HSDPA / HSUPA), all bundled within the 
same case, is quickly emerging.  

Providers are investing large amounts of management and maintenance effort to enable a 
smooth operation of current-day internet with its more than 1 billion users, nearly half a 
billion registered domains and several hundreds of protocols in use. But bandwidth is 
cheap and users are accustomed to flat-rate price models, making it hard for carriers to 
invest capital in the network infrastructure, operating on a best-effort base and making 
revenues disappear when provider-specific streams are converging in the internet. To stay 
in the market, telecommunication providers are coming up with a multitude of diverse and 
innovative services, which on the one hand need to be constantly maintained and on the 
other hand call for intra-provider settlement interfaces that need to be standardised and 
managed, as well (see [25]). Coping with this growing complexity will become more and 
more problematic, so ‘Keep it simple’ should be one of the basic principles of a future 
communication paradigm. For AutoComm this is in regard to single network elements and 
centred on networking Selfware. Selfware is the common name for all the “self” system 
properties, i.e., for a number of tightly coupled processes – sensing, data handling, 
decision making and communication – that are used to achieve system properties of self-
awareness, self-healing, self-configuration, self-optimisation, etc. and that can be 
instantiated in a multitude of variations. 

AutoComm studies “the individual network element as it is affected by and affects other 
elements and the often numerous groups to which it belongs as well as the network in 
general”. The “goals are to understand how desired element’s behaviours are learned, 
influenced or changed, and how, in turn, these affect other elements, groups and 
networks”(cf.[18])  The idea is to engineer micro-properties in order to cause a desired 
macro-behaviour, optimally without any human interference and in a self-organised and 



 

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware 
Communications, And Dynamically 

Adaptable Services” " 

Bringing Autonomic Services to Life 

 

Editor: Antonio Manzalini  

8 / 74 

                                                

evolutionary way.  To accomplish this, AutoComm research has to find general principles 
enabling this kind of behaviour by building upon results from diverse scientific fields like 
control theory, cybernetics, machine learning or social and human sciences. The 
discovered principles have to be verified, evaluated and cast in a shape that is making 
them useful for the wider autonomic community. That is, new approaches to system 
modelling have to be devised that can cope with incomplete information and that will 
support evolution; engineering processes have to be re-thought along with their associated 
tools, languages, methods and metrics. Checking for validity of systems would need to be 
done in new ways, requiring not only a pervasive approach for verification or for 
guaranteeing certain system properties, but also requiring new test infrastructure and tools.  

First prototypes are already visible (for example the FOCALE architecture from Motorola 
[29], but generally efforts are concentrated on research, rather than implementation as 
deduced from the member list of the Autonomic Communication Forum [2]). 

3 Project Vision at a glance: the Open Autonomic Service 
Environment  

Providers’ Service Framework (as we know it today) is that set of platforms, functionalities, 
systems and data for the creation and execution of services; furthermore current solutions 
includes also related interfaces towards a control layer and towards systems for 
management and provisioning. 

In order to save CAPEX/OPEX2 and to generate new potential sources of revenues, 
technologies and solution for next generation service frameworks are required. Innovative 
proposals are expected to be characterised by distribution of resources and de-
centralization of functionalities. The requirements above are likely to be met by a 
dynamically configurable architectures using a P2P overlay network (generally IP-based, 
both Internet and Service Providers’ networking solutions). 

On the other hand, Web 2.0 is bringing a shift of business models thus forcing players of 
the service arena to look for frameworks capable of following rapidly market trends (even 
with new approaches, e.g., including advertisers in the value-chain) for composing and 
providing even short-life personalized services (beta versions à la Google). 

Given that context, there is the need of finding solutions capable, for example, of 
composing and running complex services starting from highly distributed basic components 
(even outside the Operators’ domain, e.g. including Service Brokering capabilities).  
Services may be executed starting from the dynamic self-aggregation of distributed self-
managing autonomic components. This approach would allow also managing the huge 
amount of heterogeneous data and information, making knowledge available, in the proper 
form, where and when it is necessary. Furthermore the same component-based 
environment may be capable of “handling” service-related knowledge and data. 

CASCADAS is adopting an application-oriented approach: starting real application 
scenarios highlighting the above needs and requirements, project vision is proposing an 
Open Autonomic Service Environment for the future evolution of today service frameworks. 

 
2 CAPEX = Capital Expenditures, refers to the cost of developing or providing non-consumable parts for the 
product or system. OPEX = Operating Expenditures are the on-going costs for running a product, business, or 
system. 
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The Open Autonomic Service Environment is expected to be the highly distributed platform 
for composing, executing and providing situation-aware and dynamically adaptable 
communication and content services. The tool-kit developed in the project will be used to 
demonstrate such vision specifically referring to some use-cases of particular interest (such 
as pervasive communications, etc). 

The essence of the innovation stands in exploiting highly distributed resources (even 
commodity servers at low-cost) running autonomic S/W solutions based on distributed self-
aggregating, self-organising components. The overall architecture may enhance the self-
similarity of Google technology [39](both pizza-box servers and clusters of servers have 
the same functional architecture) supporting a distributed replication of data. This will allow 
high levels of availability also starting from low-cost commodity H/W. 

A first key characteristic of the Open Autonomic Service Environment is the distribution of 
resources and infrastructures at any level, introducing the distributed paradigm in 
traditionally monolithic field like a telecommunication company infrastructure. In principle a 
distributed system is a collection of independent sub-systems (linked with distributed 
software) that appear to the operators/users of the system as a single entity. Distributed 
software enables sub-systems to coordinate their activities and to share the resources of 
the system - hardware, software and data. Motivations for distributed systems are: 

• Functional distribution 
• Physical separation 
• Resource Sharing 
• Economics 

 

Another aspect of the Open Autonomic Service Environment is a P2P network that allows 
resources communications. This is dynamic network where peers resources can act as 
server and client indistinctly and peers might freely join and leave the network over the 
time. P2P communications enable large numbers of resources to share information and 
resource directly without dedicated central servers. P2P characteristics are: 

• De-centralization 
• Ad hoc behaviour 
• End-to-End communication 
• Shared ownership 
• Scalability/Reliability 

 

The above two characteristics together with the deployment of autonomic distributed S/W 
solutions is expected to allow executing and provisioning situation-aware and dynamically 
adaptable communication and content services; furthermore data and information broadly 
distributed may be effectively handled to make it available where and when it is necessary. 
Autonomic S/W components, distributed over the resources, should perform also 
“embedded” self-management behaviours (for fault, configuration, accounting, performance 
and security). 

The Open Autonomic Service Environment vision is expected to be capable of overcoming 
at least two serious bottlenecks (in current solutions): 
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 Software complexity and system heterogeneity: individual system are increasingly 
complex to maintain and operate; heterogeneous systems are becoming 
increasingly connected, and behaviours, execution context, interactions not known 
a priori 

 Huge amount of data and information that should be collected, handled, replicated, 
correlated and made available when and where it is necessary 

 

Regarding the former, self-management solutions as offered by autonomic behaviours of 
the environment may represent a sound solution. The self-managing characteristics of the 
distributed resources made them capable of hiding completely such complexity to 
operators and users: e.g., systems may make decisions on its own, using high-level 
policies from operators, constantly checking and optimizing status and automatically 
adapting to changing conditions. 

Concerning the need to deploying solution capable of collecting, handling, replicating and 
managing the huge amount of data and information available, again an autonomic and 
highly-distributed environment is providing key features such us hiding complexities and 
high scalability (mandatory in a context such rich of data). 

Concerning some of the advantages produced by the development of such vision, from the 
Customer viewpoint, an Open Autonomic Service Environment can offer: 

• “Simpler and better approach” to service 
• Customization of services (Customers’ profile, context, etc.) 
• Services meeting better(or even anticipating) Customers’ needs 
• Pervasiveness of contents and communications service 

 

From the Service Provider viewpoint an Open Autonomic Service Environment can offer: 

• Cost Optimization 
• Enabling an horizontal TLC-IT integration 
• Using low-cost H/W and smart autonomic S/W 
• Adopting self-management (self-configuration, self-healing, self-optimization etc.) 
• Generating New Revenues 

o Picking the opportunities offered by some ongoing trends (and the future 
related evolutions) of the web (e.g., Web2.0, Web3.0, etc.) with more 
flexible and open solution for executing services 

o Enabling new business models based on sharing resources, service enabler 
(TLC and IT) and data highly distributed 

 

The CASCADAS tool-kit will be used to validate such project vision (i.e., Open Autonomic 
Service Framework). Use-cases have been selected to demonstrate (into the test-beds) 
executing and provisioning situation-aware and dynamically adaptable communication and 
content services. 

3.1 The Autonomic Communication Element 
The key ideas of the project is to identify and rely on a new model of distributed 
components, called ACEs—Autonomic Communication Elements, able to autonomously 
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self-organize with each other towards the provisioning of specific user communication 
services, and able to self-adapt such provisioning to social and network contexts [1]. 

The ACE is the main building block needed to implement the vision of Autonomic 
Communication outlined above. It will provide the basic interfaces and mechanism aimed 
to support self-similarity, self-organization, situation awareness and any other key aspect 
needed to implement the Open Autonomic Service Framework. 

The basic structure of the Autonomic Communication Element as outlined in the following 
sections has been defined on common agreement among WP1 members and it is defined 
taking into account the requirements form CASCADAS application scenarios and the 
development of other CASCADAS WPs. 

4 Application scenario and requirements  

The purpose of this section is to describe the proposed application scenarios collecting 
among partners to define the requirements in order to provide an efficient support to the 
ACE model definition. 

4.1 Motivating Examples for Autonomic Communications 
In CASCADAS we have identified three main application scenarios to drive the projects 
activities and goals. Two scenarios come from the pervasive computing area and another 
one is from wide-area Internet computing.  

 

 Smart Environments Supporting Independent Living.  

As the population continues to grow, society is faced with the challenge of supporting those 
within the community who still remain within their own homes and are not fully 
independent. 

This scenario introduces novel techniques for person-centric services in pervasive spaces. 
From a technical perspective, It proposes, how such services could be realised based on a 
distributed network of knowledge, facilitating dynamically combined and flexible service 
provision that engenders service continuity. This proposal assumes that individuals are 
equipped with some devices (e.g., a smart phone or a PDA) able to determine the user 
localization (using GPS or less expensive local hardware) and to interact with a wireless 
network that should be provided by the ambient. One of the challenges for future smart 
environmental infrastructures is the need to reason about “situation” and to understand the 
deduced behaviour. To do this they are required (both at the level of individual components 
and as a whole) to be introspective, and to feed back the results to improve performance. 
While this process provides the knowledge with which they can, eventually, manage and 
configure themselves it does also make them more self-aware or in short it makes them 
smarter. 

 

 Behavioural Pervasive Content Sharing.  

Several pervasive computing applications are rooted on providing personalized content to 
users anytime and anywhere. This scenario is based on devising suitable mechanisms to 
provide the user with the best available content given information such as the user profile, 
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his/her location, the device being used to access the content, the user current activity, etc. 
Two exemplary applications of this general scenario are behavioural pervasive 
advertisement and pervasive tourist information. 

1. Behavioural Pervasive Advertisement (BPA) applies pervasive computing techniques 
and technologies to the nowadays emerging advertisement technique called 
behavioural advertisement (or behavioural targeting) which tries to ensure that 
advertisers reach the target audience in a more effective way. This application 
proposes to extend such technique to any communication context where user interests 
and needs can be grasped. Moreover, exploiting the pervasive nature of CASCADAS 
based applications, BPA may provide customized contents and advertisement, not only 
during web navigation, but different channels may be personalized to the single user or 
to groups of users (e.g., digital screens in the road may autonomously provide 
advertisement customized according the users’ profiles moving by the screen position). 

2. Pervasive Tourist Information considers that people, using handheld devices, can 
connect to a tourist guide system of a city/museum/exhibition and receive useful 
information such as nearby objects, ‘what-to-visit- next’ or “how-to-get-to” suggestions, 
hints about public transport etc. The location of the tourist, together with his/her profile 
and current activity are used to differentiate the content being presented (e.g., tourist 
information, transportation facilities, etc.) In addition, if transportation means (buses, 
trams) do have electronic location tracking (which predicts the arrival of the next 
vehicle) then tourist ACEs can choose the hopefully optimal path to the destination. 
Using similar techniques, one could also use the system for searching friends or profile-
matching people in overcrowded places: mobile devices owned by each person could 
connect to a network (possibly ad-hoc) and to inject signals there to find persons and 
things.   

 

 Distributed Auctions 
Auctions are a class of negotiation protocols for allocating goods based upon competition 
among the interested parties. 

Autonomic components are well-suited for dynamic, constrained and real-time 
environments such as electronic marketplaces. In such environments, components 
representing their customers negotiate for goods and services following negotiation 
protocols.  

The idea at bottom line of the above scenarios is that the wide spectrum of application they 
contain is a reasonable guarantee that the models and abstractions we are going to 
develop in the project will be general enough and still application-driven. 

4.2 Requirements 
In this section we are going to derive requirements from the scenarios described above. 
First, general –foundational – requirements are listed and explained: they are the basic 
characteristics to consider in the ACE model. These requirements are the ones allowing 
ACEs to “live” in the selected scenarios. Then, we present those requirements involving 
advanced and autonomic ACEs functionalities that are the core of the other WPs. These 
requirements ensure that ACEs will be ready to integrate such functionalities in a coherent 
model. 
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The ACE model described in the next sections takes these requirements in considerations 
to build an effective model that will be suitable to address the challenges of the presented 
scenarios. 
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General (Foundational) Requirements 
 

In the following table we identify the main general requirements for ACEs. Such 
requirements derive basically from the open, dynamic and heterogeneous scenarios that 
CASCADAS tries to address.  

 

Scenario 3 Requirement Motivation 

SESIL, BPCS ACEs must be very lightweight with 
lightweight interfaces, suitable for 
lightweight devices  

In pervasive scenarios the 
implementations of distributed 
communication services involve a plethora 
of devices (e.g., wireless sensors, PDAs 
laptops,etc.) The ACE architecture should 
fit for different extent to all of them. 

SESIL, BPCS, 
DA 

ACEs must support interoperability 
between the different levels of the ISO-
OSI stack (network-level, the service-level, 
as well as the user level). 

 

ACEs should be capable of handling both 
users-level events as well as network-level 
and device-level events. 

The goal of CASCADAS is to build 
autonomic communication services 
spanning different layers of the network 
stack. All the above scenarios require 
performing activities both at the network 
level (e.g., routing in sensor network in 
SESIL) and at the application level (e.g., 
supporting high-level policy in DA). ACE 
should be able to deal seamlessly with all 
of them. 

SESIL, BPCS ACEs must tolerate execution over 
unreliable devices and unreliable network 
links. 

 

ACEs should count with a dynamically, 
unpredictably and frequently changing 
network structure 

All considered scenarios, but mainly 
SESIL and BPCS, consider possibly faulty 
devices interconnected with low 
bandwidth, unreliable networks links. 

BPCS, DA ACEs must support for dynamic and 
spontaneous aggregation and 
composition, even in absence of 
centralised control. 

Mostly in BPCS and DA scenarios ACE's 
networks will be diffused over a large 
spatial scale in a highly decentralized 
fashion. Because of this and considering 
the fact that a central control is not feasible 
adequate tools to control, self configure
and make secure ACEs ensemble are 
required (this is mainly a WP3 concern). 

                                                 
3  SESIL = Smart Environment Supporting Independent Living, BPCS = Behavioural Pervasive 
Content Sharing, DA = Distributed Auctions. 
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Scenario 3 Requirement Motivation 

SESIL, BPCS, 
DA 

ACEs' aggregation model should support 
self-similarity, in which a group of ACEs 
can be accessed as a single entity. 

 

Support for transparent aggregation from 
the outside 

ACEs should contemplate very large scale 
systems composed by a huge number of 
different devices in which services could 
be composed by a large number of 
components. 

In addition, software reuse and 
component-oriented design are 
fundamental principles to build complex, 
large-scale system such as those required 
by the presented scenarios. ACEs should 
be able to provide advanced composite 
services without changing ACE internal 
behaviour. 

SESIL, BPCS, 
DA 

ACEs should be able to communicate with 
each other in various means (point-to-
point, any cast and multi cast, local multi 
cast, probability multi cast). 

 

ACEs should be able to implement both 
simple and stateless communication 
protocols (e.g., value queries), and 
complex and stateful protocols (e.g., 
negotiations). 

The variety of the identified application 
scenarios and the possible applications 
within them requires that ACEs should be 
able to create and use a number of 
communication services. Such services 
should sustain and support the dynamic 
distributed scenario by providing high-
level, powerful communication channels 
that are also robust and scalable. 

BPCS, DA ACEs do not necessarily have a clearly 
identifiable name/identifier, or a specific 
stakeholder, and must be able to interact 
in an anonymous way. 

Mostly in BPCS and DA scenarios ACE's 
networks will be diffused over a large 
spatial scale in a high decentralized 
fashion. Because of this and considering 
that a central control/registry is not feasible 
due to the dynamism of the scenarios 
novel tools to control and enable 
interaction will be required. 

SESIL, BPCS, 
DA 

ACEs should support dynamic interfaces 
(i.e., should be able to dynamically adapt 
the provided functionalities). 

 

ACE should share a common ontology or 
be able to access services translating from 
one ontology to another. 

A big challenge in open scenarios like the 
ones being considered relates to 
interoperability between heterogeneous 
components. This challenge involves both 
the syntactic level (interface definition) and 
the semantic one (meaning of an interface)

BPCS, DA ACE should be able to include 
mechanisms to support the building and 
maintenance of various structures of 
overlay networks. ACE overlays must be 

In large scale scenarios, interaction 
mechanisms must be tuned for specific 
application needs. Overlay networks are 
flexible and powerful mechanisms to tie 
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Scenario 3 Requirement Motivation 

lightweight and scalable. together related components, while 
avoiding information overflow. 

BPCS, DA ACE should support mechanisms for 
dynamic life cycle management (grow, 
swarm, & shrink...) 

In BPCS and DA scenarios, developers 
cannot easily foresee the amount of 
resources needed to achieve a task, or the 
load conditions upon which their 
components will have to operate. Thus, 
the implementation of any distributed 
services must consider to handle available 
resources in an autonomic and situation-
aware way, by replicating its components 
on need, and have them start 
autonomously to increase the quality of 
services by properly exploiting the 
enlarged resource availability as a 
collective (i.e., as a swarm). On the 
opposite, whenever such resources 
appear excessive, the distributed swarm of 
ACEs should properly shrink itself to 
accommodate the new need. 

BPCS, DA ACEs should be able to provide services 
with various and tuneable QoS, and also 
should support for QoS evaluation 

In dynamic scenarios, QoS must be 
constantly monitored and pre-emptive 
actions must be enforced to guarantee 
suitable levels of QoS. This would allow 
both to better comply with contracts, and 
also to optimize resource usage. 



 

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware 
Communications, And Dynamically 

Adaptable Services” " 

Bringing Autonomic Services to Life 

 

Editor: Antonio Manzalini  

17 / 74 

 

4.3 Requirements Involving ACE and WP2 (Pervasive 
Supervision) 

The pervasive supervision work-package deals with the creation of dynamic, online 
feedback and control loops over an ensemble of ACEs. Such control loops will be a 
fundamental mechanism to manage ACEs activities in a decentralized and autonomic way. 
To this end, ACEs have to provide suitable hooks to let controller ACEs to supervise their 
operations. 

 

Scenario Requirement Motivation 

SESIL, BPCS, 
DA 

ACEs must provide hooks to let other 
components to monitor and supervise 
their behaviour. This can be achieved 
either by some kind of reflective
operation, or by aspects programming, or 
by suitable connector components.  

Pervasive supervision requires monitoring 
the ACEs behaviour and to possibly 
change it. This kind of supervision should 
be as transparent as possible from the 
ACE point of view, in order to advoid 
complexity and foster separation on 
concerns. In addition, a given supervision 
mechanism (e.g., controlling resource 
consumption) should be general and 
should be applicable to different ACE 
ensembles with minimal changes.   

SESIL, BPCS, 
DA 

ACEs can be asked to perform some 
operations to ease the supervision task. 
For example, ACEs can be asked to 
aggregate, filter and report the operations 
they are undertaking to the supervisors. 
This can require aspects, and/or mobile 
code. 

Supervising large ACE ensembles with 
fine-grained logs (e.g., the trace of 
operation of every ACE) would be 
unfeasible because too complex. 
Aggregated and filtered information are 
required to enforce an effective high-level 
and robust supervision.  

 

4.4 Requirements Involving ACE and WP3 (Self-organized 
Component Aggregation and Emergent System properties) 

The self-organized component aggregation and emergent system properties work-package 
aims at identifying a repertoire of self-organized algorithm useful for a number of tasks. The 
inherent decentralized and large-scale nature of ACE applications will take advantage of 
these algorithms. To enable a fruitful integration of WP3 activities, it is important that the 
ACE model supports the implementation of self-organized and emergent algorithms. 

Scenario Requirement Motivation 

SESIL, 
BPCS, 
DA 

ACEs have to be possibly lightweight as 
ant-based components.  

A great number of self-organized/emergent 
algorithms is based on a huge number of tiny 
components doing something smart together. 
The ACE framework has to enable scenario 
with a huge number of tiny components without 
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Scenario Requirement Motivation 

incurring in scalability problems. 

SESIL, 
BPCS, 
DA 

ACEs have to interact in various ways: 
direct communication, epidemic 
communication,stigmergic4 
communication, and also simply by 
observing each other behaviour (i.e., BIC 
Behavioural Implicit Interaction). It is worth 
noticing that this last form of interaction 
presents strong analogies to the 
“observable” requirement required by 
WP2.   

The key point in a number of swarm-intelligent 
and emergent algorithms is in mimic the way in 
which components (e.g., insects) interact with 
one another. To support the development of 
such kind of algorithms, it is thus fundamental 
that ACEs are able to interact in various kinds 
of ways. 

SESIL, 
BPCS,D
A 

ACEs should have a concept of location 

 

ACEs should be able to organize in a 
overly network 

A number of swarm and emergent algorithms 
are based on the location of the components 
according to some metric space ACEs should 
be able to link together to create cluster and 
groups as requested by swarm algorithms. 

SESIL, 
BPCS, 
DA 

Mechanisms to assess the similarity 
between ACEs need to be provided.  

Mechanisms exploiting the similarity between 
components are involved in many swarm 
algorithms. In particular, these are needed to 
support the creation of WP3 calls clusters (i.e., 
groups of ACEs offering the same functionality) 
and reverse clustering (i.e., groups of ACEs 
offering different functionalities). 

SESIL, 
BPCS, 
DA 

ACEs should have proper places where to 
plug-in reconfiguration algorithms. 

 

It is important to plug swarm algorithms in ACEs 
to enforce autonomic and self-organizing 
functionalities. 

 

4.5 Requirements Involving ACE and WP4 (Security, 
Survivability and Self-Preservation) 

The security, survivability and self-preservation work-package deals with security and self-
healing mechanisms. This WP has many points in common with WP2, in that the 
mechanisms proposed by WP2 can naturally be applied for security purposes. However, 
the fact of controlling and modifying a running system cause privacy and security problems 
in turn. ACE should provide mechanisms to effectively enforce security constraints. 

 

                                                 
4  stigmergy refers to communication by modification of the environment. It is an often observed 
strategy in emergent systems. 
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Scenario Requirement Motivation 

SESIL, 
BPCS, DA 

ACE communication has to be encrypted, 
and not all ACEs can interact freely with 
each other. 

The goal of WP4 is to develop high-level 
and flexible protocols to enforce security 
constraints at the application level. The 
ACE architecture must support the creation 
of such services. To achieve this ACE has 
to create a secure foundation on which to 
enforce higher level policies. With this 
regard, the fundamental requirement is that 
ACEs communication cannot be 
eavesdropped. 

SESIL, 
BPCS, DA 

ACEs need some kind of unique 
identification. 

A number of basic security issues require 
concepts such as reputation, trust and 
authorization. All of them require identifying 
the individual being involved. 

SESIL, 
BPCS, DA 

ACEs must provide secure hooks to let 
other components monitor and supervise 
their behaviour. This is fundamental to find 
security breaches and enact security 
policies. However, this must not create 
privacy issues (some ACE can contain 
sensible information) and must not open the 
way to malicious control threats.    

Security, survivability and self-preservation 
issues implies an activity and a constraint 
the clashes with each other. On the one 
hand, it is important to be able to inspect 
the behaviour of ACEs looking for 
misbehaving components, and possibly 
update their functionalities. On the other 
hand, it is important to avoid that 
misbehaving controller tamper ACEs that 
are working correctly.   

 

4.6 Requirements Involving ACE and WP5 (Knowledge 
Networks) 

The knowledge network work-package aims at supporting ACEs with suitable knowledge to 
ease their application tasks. ACEs and knowledge network are deeply intertwined. On the 
one hand, ACE should be able to access knowledge networks efficiently for the sake of 
acquiring contextual information. On the other hand, knowledge networks will be 
constituted by ACEs in turn, thus ACEs must provide the proper hooks to   support the 
development of knowledge networks. 

Scenario Requirement Motivation 

SESIL, BPCS, 
DA 

ACEs are required to be lightweight. 

 

ACEs should be able to create an overlay 
networks linking to one another 

The knowledge network will be made of 
ACEs each of them representing specific 
information. For this reason, it is very 
likely that the knowledge network will be 
constituted of a large number of these 
elements that, for scalability reasons, 
should be lightweight. Moreover, the 
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Scenario Requirement Motivation 

elements of the knowledge network are 
expected to be able to organize 
themselves in suitable knowledge 
networks to link related concepts together.  

SESIL, BPCS, 
DA 

Suitable mechanism to access the 
knowledge network should be defined (to 
be used by application ACE). 

 

Suitable interfaces to export knowledge 
information should be defined (to be used 
by knowledge network ACE). 

ACE will access the knowledge network to 
achieve context awareness. Thus 
knowledge network-ACEs have to provide 
suitable interfaces to be accessed. In 
addition, application-ACEs must be able 
to access the knowledge network. 

SESIL, BPCS, 
DA 

Knowledge network-ACEs should be able 
to create mechanism enabling them to 
combine and aggregate higher-level 
knowledge. It is worth noticing that this 
requirement is similar to the filtering 
requirement asked by WP2. 

A fundamental activity performed by 
knowledge networks will be data 
aggregation. A possibly large number of 
data sources can be aggregated to create 
a distilled summary. Such summary would 
be much more easily understandable by 
application ACE. 

SESIL, BPCS, 
DA 

Knowledge network-ACEs will have to 
propagate changing their content across 
the network to enable field-like and 
pheromone-like type of knowledge. It is 
worth noticing that this requirement is 
relevant in a number of self-organized 
algorithms (e.g., WP3). This may require 
code mobility.  

Knowledge network ACE should support 
autonomic and swarm-intelligent 
algorithms. Since a number of these 
algorithms require “diffusing” messages 
(like in physical/chemical fields and 
pheromones), It could be important to 
have similar kind of mechanisms in 
knowledge networks. 

 

5 State-of-Art  

The investigation and development of a model for situation-aware communication and 
dynamically adaptable services is the main objective of the CASCADAS project. For that 
reason we will describe the idea of autonomic computing as a basic principle for self-
managing computer systems. As an extension of autonomic computing we then present 
the state of the art in autonomic communication. Thereafter, current activities and results of 
projects thematically related to CASCADAS will be summarised to give an overview of 
ongoing research in relevant or adjacent scientific areas. This chapter closes with a brief 
description of component models related to the research performed in the CASCADAS 
project. 
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5.1 Related Projects 

5.1.1 BIONETS 
The goal of the BIONETS project is to provide a biologically-inspired open networking 
paradigm for the creation, dissemination, execution, and evolution of autonomic self-
evolving services able to adapt to localised needs and conditions while ensuring the 
maintenance of a purposeful system. The project addresses problems in pervasive 
communication/computing environments characterised by an extremely large number of 
embedded devices. Heterogeneity, Scalability and Complexity have been identified as the 
three main challenges of such environments to the conventional networking approaches. 

 

Heterogeneity 
Heterogeneity results from the observation that there will be a huge differentiation in the 
devices of future ubiquitous networks. The BIONETS project distinguishes between two 
main device categories. On the one side there are complex portable devices with a large 
amount of processing power (e.g., laptops, PDAs, smart phones etc.), and on the other 
side miniaturised devices with sensing, identifying, and basic communication capabilities, 
surrounding us in everyday lives.  

The heterogeneity issue has been addressed by introducing two-tier SOCS (Service 
Oriented Communication Systems) network architecture [Figure 2].The upper layer consist 
of so called U-Nodes (User Nodes) which are basically devices running services. U-Nodes 
may communicate among themselves and can communicate with T-Nodes. As depicted in 
Figure 2.The resulting network topology is an “archipelago of connected islands of nodes” 
([5]). The lower layer consists of T-Nodes (tiny sensor nodes) which represent cheap tiny 
devices such as sensors, tags and RFIDs. T-Nodes do not communicate among 
themselves. They simply answer to poll messages sent by U-Nodes which are interested in 
getting the actual value of the random field they are sensing. 

 

 
Figure 2 Two-tier SOCS network architecture [5]
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Scalability  
When applied to large scale wireless environments, the end-to-end communication 
paradigm which is typical for internet-based communication, suffers from huge scalability 
problems. The BIONETS project improves network scalability using two methods. The first 
method works at the U-Node level and exploits the mobility of devices to convey 
information. Information is exchanged either in a peer-to-peer manner through single hop 
broadcasting, and is diffused by local relaying on packets [6] or opportunistic exchange 
when mobile devices come into mutual communication range[7]. The second method 
exploits the locality of information coming from the environment, where data originated 
from sensors looses its usefulness as soon as they spread in both time and space domain. 
BIONETS introduces information filtering principles and mechanisms which target the 
scalability issues.  

 

Complexity 
Because of the dynamic nature of BIONETS network operations, the complexity issue 
which is related to the need of controlling and maintaining the network functionalities 
cannot be solved using conventional centralised solutions. Distributed mechanisms need to 
be introduced which are able to predict and control the behaviour of large scale complex 
heterogeneous systems. The BIONETS project follows the adaptation by evolution 
approach where a one-to-one mapping between biological entities and their technological 
counterparts is built, and introduces a framework for service evolution able to imitate what 
happens in the living world.  

BIONETS is “a network that looks like a living ecosystem, where services play the role of 
organisms, evolving and combining them to successfully adapt to the environmental 
characteristics” [5].  

The Information filtering approach might be very interesting for the CASCADAS project to 
improve network scalability and validity of information. 

 

 

5.1.2 Autonomic Network Architecture (ANA) 
The main goal of the ANA project is to explore novel way of organising and using networks 
beyond today’s internet technologies. ANA aims at designing and developing an autonomic 
network architecture capable of autonomously arranging network nodes as well as whole 
networks. This novel network architecture should scale in time and functional way; that is, 
the network can extend both horizontally (i.e., add more functionality) as well as vertically 
(i.e., explore different ways of integrating abundant functionality) and change over time. 

The target of the ANA project is to develop a functionally scaling self-aware network that 
builds up the basis for the evolving network which includes self-* features and 
functionalities such as self-management, self-monitoring, self-repair and self-protection. 

One of the aspects analysed within this project, which could be of interest for CASCADAS, 
is the service migration problem.[26] In the miniaturised networks where traditionally heavy 
network elements (routers) are increasingly being supplemented by lighter network 
elements that are contributed by traditional network users, the problem of placing the 
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service to the proper network elements is seen as a significant problem. Considering the 
mobile ad hoc environment consisting of resource-limited mobile devices this problem 
becomes very clear.  

The optimal service placement problem in ad hoc networks consisting of p nodes can be 
determined by formulating and solving the p-median problem [24].Unfortunately the p-
median problem has been shown to be NP-Hard for general graphs [22], and therefore 
inappropriate for solving the service migration issue. In the ANA project a simplified 
migration policy is proposed for unidirectional tree topologies where a service can migrate 
only to the next neighbours. It is shown that the information available at the current node is 
sufficient for determining the direction towards nodes with monotonically decreasing cost. 
To decide on service movement, a service node simply needs to monitor and aggregate 
the data exchanged among its neighbour nodes associated with the concerned service. 
Hence, the movement decision is based exclusively on the information gathered through 
the monitoring process (cf. [26]). The service moves from node to node until it reaches the 
optimal service position. 

 

 

5.1.3 Haggle  
Haggle is an additional “Situated and Autonomic Communications” project which aims to 
solve the connectivity and networking problems in mobile ad hoc environments while 
introducing a new application-driven message forwarding approach. The project defines an 
innovative system that uses best-effort, context aware message forwarding between 
ubiquitous mobile devices, to provide services even when connectivity is local and 
intermittent. The Haggle approach is more oriented to the human way of communicating, 
rather than to other technological aspect of communication. It introduces a new autonomic 
communication paradigm, based on advanced local message forwarding and sensitive to 
realistic human mobility. It relies on a communication architecture that uses opportunistic 
message relaying, and is based on privacy, authentication, trust and advanced data 
handling [Figure 3Errore. L'origine riferimento non è stata trovata.]. 

  

 Figure 3 Current networking architecture vs. Haggle networking architecture [28]
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The Haggle project introduces a Pocket Switched Networking (PSN) approach where two 
types of applications are defined: (a) known-sender where one node needs to transfer data 
to a user defined destination and (b) known-recipient where an application requires 
particular data. 

The Haggle project focuses on new autonomic networking architectures, whereas 
CASCADAS focuses on situated services. Nevertheless there are some approaches 
introduced in Haggles mobile networking principles that can be used in CASCADAS. For 
example the intermediate nodes approach, where intermediate nodes keep the forwarded 
data when exchanging information, can be applied to our messaging approach as well.  

 

5.1.4 AutoMate  
“The overall objective of the AutoMate project is to investigate key technologies to enable 
development of autonomic Grid applications that are context aware as well as self-
configuring, self-composing, self-optimising, and self-adapting” [3] .AutoMate focuses on 
autonomic components, the development of autonomic applications as dynamic 
composition of autonomic components, and the design of runtime services to support these 
applications. The AutoMate framework architecture is depicted in Figure 4 

 
Figure 4  AutoMate Architecture Diagram [3]
 

As depicted in the figure above, the AutoMate framework builds on the Open Grid Service 
Architecture (OGSA) [31]  and is composed of the following components:  
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• Automate System Layer: The AutoMate system layer builds on Grid middleware 
and OGSA. It extends core grid services to support autonomic behaviour. The 
system layer also provides specialised services like peer-to-peer semantic 
messaging, events and notification. 

• AutoMate Component Layer: The AutoMate component layer defines autonomic 
components and comprises functionalities required for their execution and runtime 
management. Such functionalities are for example discovery, lifecycle 
management, context awareness etc. (which are built on core OGSA services). 

• AutoMate Application Layer: The AutoMate application layer implements 
functionalities to support autonomic composition and dynamic interactions between 
components. 

• AutoMate Engines: In order to support certain features like for example access 
control, inference and context awareness, AutoMate defines functionalities provided 
by so called engines. Engines are realised as decentralised networks of agents. 

• AutoMate Portals: The AutoMate portals provide users with secure, pervasive 
access to the different entities of the AutoMate framework.  

 
All AutoMate components exhibit information and policies about their behaviour, resource 
requirements, performance, interactivity and adaptability, so that this information can be 
used by other involved parties. A conceptual overview of an AutoMate component is 
presented in figure 5.  

 

 
Figure 5 AutoMate Autonomic Component[3]
 

Each component is described though it’s functional, operational and control aspects. 
Functional aspects describe component functionality and can be used by the compositional 
engine to select appropriate components based on application requirements. Operational 
aspects describe component operational properties including computational complexity and 
resource requirements, and can be used by the configuration and runtime engines to 
optimise component selection and adaptation. Control aspects describe the adaptability of 
a component and define sensors/actuators. Autonomic components encapsulate 
management-, interaction-, control-, and access-policies as well as rules, a rule agent, and 
an access agent. 

AutoMate defines a dynamic service composition model that allows applications to adapt to 
dynamic system and environment changes. The Service composition model is context 
aware. It is based on policies and constraints that are defined as simple rules at runtime. 
These rules are executed on the distributed deductive engine. There is no central authority 
that manages the composition process. 
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Looking from the perspective of the CASCADAS project two aspects of the AutoMate 
framework are very interesting. On the one side the concept of the AutoMate components 
and component description covers aspects that are relevant for our ACE design. On the 
other side the autonomic service composition and the way this functionality is implemented 
in the AutoMate project, might be of interest in CASCADAS as well.  

 

5.1.5 Cortex 
The overall objective of the CORTEX project [20] [27]  is to investigate the theoretical and 
engineering issues necessary to support the use of sentient objects in order to build large-
scale proactive applications. A sentient object [27] is a mobile, intelligent software 
component that is able to sense its environment via sensors and react to sensed 
information via actuators. 

The goal is to develop a programming model able to support the development of proactive 
applications constructed from mobile sentient objects. The programming model has to 
address any issues arising in environments built of networked components that will act 
autonomously in response to a myriad of events and which have to affect and control the 
surrounding environment in order to operate independently from the human control. 

The key elements of the model are the following: 

• sentient object model: providing the internal structure of the component built by its 
sensory capture, context awareness and intelligent interface. 

• event-based framework: allowing the sentient objects to communicate each other 
and controlling messages propagation by proximity rule and content filtering. The 
main target of this specification is the need to address the requirements of 
applications running in mobile environments. 

• specification of QoS parameters: which may be mapped to the system level. 

 

Sentient objects are the basic building blocks of applications developed following the 
CORTEX programming model. This make such applications consisting of a very large 
number of mobile software components accepting input from the environment via a variety 
of sensors and autonomously acting upon the environment via a variety of actuators and 
cooperating using different network technologies. 

The following picture shows a basic view of the sentient object model: 

Sensors Actuators

Rule (s)

Rule (s)

Rule (s)

 
Figure 6  Basic view of the sentient object model 
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Sensors and actuators are the sentient object interface. Actuators are controlled by rules 
based on inference engine. 

The following picture gives a more detailed view of the sentient objects organisation in a 
CORTEX model application. 
 Sensors Sentient Objects Actuators

Real-world events
Software events  

Figure 7  Sentient objects organization structure 
 

We distinguish three major entities in the sentient object model: 

 Sensor: entity that produces software events in reaction to a real-world stimulus 
detected by some world hardware device; 

 Actuator: entity that consumes software events, and reacts by attempting to change 
the state of the real world in some way via some hardware device; 

 Sentient object: entity that can both consume and produce software events, and lies 
in some control path between at least one sensor and one actuator. 

The most important feature of a sentient object is that it implements the control logic. This 
control logic works on stimulus coming from the external environments. The importance of 
the external environment events and states make context-awareness a key factor for the 
sentient object. 

CORTEX model defines context-awareness as: 

“The use of context to provide information, to a sentient object, which may be used in its 
interactions with other sentient objects and/or the fulfilment of its goals.”  [33]

Three main components implement context-awareness in the sentient object: 

 Sensory Capture: integrates the different events coming from sensors and filters 
them to limit noise and errors coming from the environment. 

 Context Representation: transform raw data in a format that is useful for the 
sentient object. 
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 Inference engine: implements the reasoning capability of the sentient object which 
has to be able to take the appropriate decision based on the incoming inputs. Such 
engine is based on a knowledge-base built by a set of production rule (CORTEX 
adopts CLIPS [16]  as declarative language to specify rules and integrates it with 
Context Based Reasoning mechanisms).  

Coordination mechanisms implemented by sentient objects are based on interaction 
through the environment (stigmergy), inspired to the behaviour of colonies of insects. 

CORTEX ad hoc network target imposes limitations to the design of the event service, 
considering the lack of a network infrastructure. The event model adopted by CORTEX is 
STEAM [23] which addresses a number of core issues for publish/subscribe framework. 
The key characteristic of the model is that it doesn’t require any event broker: brokering 
functions are implemented both at consumer and producer side. 

The key hypothesis which has driven STEAM model is that in a pervasive environment with 
high mobility, entities are most likely to interact if they are in close proximity. So the rule is: 
closer consumers are located to a producer the more likely they are to be interested in the 
events propagated by the producer. This rule limits the forwarding of the event messages, 
reducing the usage of the communication resources. 

Event filters are the main tools to control the propagation of the messages. The novelty of 
the approach is that subject and proximity filters are applied at the producer side, whilst 
content filter are applied at consumer side. The significant advantage of this approach is 
that consumers haven’t to forward content filter to producers when they change their 
geographical area. This simplifies the dynamic reconfiguration requirements as far as 
subscription and content filter is regarded. 

The Sentient object, which represents the CORTEX main building block, seems to be very 
close to the ACE concept. Indeed, CORTEX sentient object faces some key issues for the 
ACE architecture success: the distribution of reasoning capability across the components 
and the adoption of a communication paradigm which both properly scales and ensures 
loosely coupled communication. On the other hand, ACE has to address wider objectives 
then the Sentient Object in order to meet CASCADAS goals. The sentient object is 
specifically conceived to provide the development environment to build proactive 
application in order to control the environment. We think it is only a part of the CASCADAS 
objectives; relevant aspects like the need for self-similarity, emergent collective behaviour, 
self-organisation and the like seems not be so pertinent in CORTEX. 

5.1.6 Runes 
RUNES [17] is a middleware supporting the development and the execution of component-
based applications. The RUNES middleware leverages a small component-based 
infrastructure able to provide at runtime modularised and customisable services to be 
applied in the context of specific applications. The core entity in the RUNES model is the 
component that is defined as an encapsulated unit of functionality and deployment. 
Components foster a cross-layer approach to software development, in that each 
component can be in charge of activities belonging to different abstraction layers of a 
distributed application, ranging from operating-system layer to high-level user interfaces. 

The basic architecture of RUNES is divided in two parts:  

• A Middleware Kernel which is a run time reification of a simple well defined 
software component model. 
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• A set of Component Framework which provide a configurable and extendible set of 
application services.  

 
The Middleware Kernel  
The aim of middleware kernel is to provide the underlying methods for the managing of 
application components. All the operations provided by the middleware are accessed 
through an interface of a particular component present in every node, the Capsule. The 
main goal of the middleware and Capsule is to allow: (i) the dynamic loading/unloading of 
components into the system; (ii) the instantiation of components and (later on) the 
destruction of the instances created; (iii) the binding and unbinding of components, so that 
a component can access the methods of another component. 

 
The Component Framework 
RUNES defines a Component Framework (hereafter CF) to support the development of 
component-based applications. The CF aims to: (i) provide an intermediate abstraction 
between components and the distributed system; (ii) increase the understandability and 
maintainability of the system; (iii) support the developer during the creation and assembly 
of components; (iv) enable the use of lightweight components (plug-ins).  

In more detail, RUNES provides a framework of components to support the following 
important services: 

• Reflection Services. These services enable the representation (or meta-
representation) of the system. Such a representation, expressed as a tree of 
objects, is machine-readable so that components can understand the system and 
perform useful operations, such as adding or removing components, or intercepting 
method calls to add behaviour to an existing system (e.g., logging and enforcing 
security policies). 

• Local OS Services. These services aim to provide the set of services to realise an 
abstraction layer over operating system functionalities. Thanks to these services 
RUNES components have a unified abstraction on top of which it is possible to 
operate with OS-mechanisms ranging from the MAC layer up to the application 
layer. 

• Overlay Services. In order to enable flexible communication patterns, an overlay 
network is often imposed on the underlying physical network. This overlay network 
may span each device in the system to support routing and communication 
activities. Overlay services support the creation and the maintenance of such 
networks. 

• Context and Location Sensing Services. These services, based on monitoring 
the behaviour of suitable sensors, are used to provide high-level context information 
to the components.  

• Advertising and Discovery Services. These services allow components to 
discover the functionalities provided by other components and advertise their own, 
in order to efficiently bind and interact with each other. 

• Logical Mobility Services: In dynamic scenarios, it is very difficult to have all the 
application functionalities installed in each and every device since the beginning of 
the application. For these reasons, services are needed to disseminate new 
functionalities (code) in the system. This is the goal of Logical Mobility Services. 
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• Coordination Services. Coordination of activities is needed between components 
for a number of reasons: interaction, synchronisation, etc. The goal of Coordination 
Services is to provide an efficient coordination mechanism to support components 
activities. 

On the basis of this brief presentation, it is rather easy to see that RUNES provides a lot of 
functionalities that are amenable for ACEs’ definition. However, a number of important 
aspects defined in the CASCADAS project (e.g., ACEs’ self-* and autonomic properties) 
are not properly addressed by RUNES and thus require further investigation. 

5.2 Component Models 
Component models define solution directions for dynamic handling of components. 
Component models consist of the abstract definition of the platform (the common high-level 
functionalities that components access, inter-component communication model, 
registration, etc.) and of the rules and regulations that components must comply with. The 
following section describes relevant existing component models from the viewpoint of the 
CASCADAS project. 

5.2.1 JavaBeans and Enterprise JavaBeans (EJB)  
JavaBeans technology is a component architecture, and JavaBeans are reusable software 
components [34] [35]. The vision of the JavaBeans technology is that independent software 
vendors (ISVs) offer their software components as standard JavaBeans and these beans 
can easily be integrated with other beans and into a new software.  

JavaBeans are simple. Most elements of the JavaBeans specification are optional to use, 
only a few regulations are obligatory. 

JavaBeans components are recommended to be of small or medium sized granularity (very 
big components are not recommended because of the configuration difficulties). 
JavaBeans components are portable – it is one of the main goals to provide platform 
neutral architecture. Individual Java Beans vary in the functionality they support, but the 
typical unifying features that distinguish a Java Bean are: 

• Support for events as a simple communication metaphor than can be used to connect 
up beans.  

• Support for properties, both for customisation and for programmatic use. 

• Support for persistence, so that a customised bean stores it settings and state in a 
uniform way. 

• When a bean is used in a builder application, it is recommended to  

o Support introspection so that a builder tool can analyse how a bean works. 

o Support customisation so that the user can easily customise its appearance 
and behaviour. 

 
In the life-cycle of a JavaBean we distinguish between design-time and run-time. Design-
time is when the component gets customised and gets integrated into a program. Run-time 
is when the program is executed.  
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The JavaBeans component platform is called container. Containers provide uniform, 
platform-independent (operating system independent), high-level API, including the “usual” 
Java Standard Edition API elements. On each OS platform, the high-level API is mapped 
into platform-specific calls, for example, on a Microsoft platform, the JavaBeans API is 
bridged through into COM (Component Object Model) and ActiveX. All JavaBeans 
containers must support: JDBC (Java Database Connectivity) for database access, 
CORBA IIOP (Internet Inter ORB Protocol) for CORBA object interoperability, and RMI 
(Remote Method Invocation) for Java remote method calls. Multithreading and 
internationalisation are also obligatory to support. Containers may include additional 
network access mechanisms and services.  

JavaBeans are subject to the standard Java security model. A JavaBeans component is 
recommended to have “minimal assumptions”. 

Enterprise JavaBeans is an extension of the JavaBeans component model, where–besides 
other things–the containers support web technologies and transaction handling, too. 

Enterprise JavaBeans (EJB) add additional functionality, relevant in enterprise computing, 
to JavaBeans. The EJB component platform (EJB container) includes automated 
persistence handling, transaction management, failure-safe operations, etc.[36]  

Compared to the CASCADAS approach, EJB as well as JavaBeans do not provide 
strategies to tackle issues like e.g., optimal resource use (it’s the responsibility of the 
container only), self-reflection or autonomic communication. EJBs do not offer any specific 
support for autonomic communication, e.g., adaptation, self-sustainability, self-healing 
(fault-tolerance is a property of the container) etc. Though, those issues are covered by the 
ACE model as it is researched in the CASCADAS project. Nevertheless, JavaBeans and 
EJB are successful component models widely used within the Java Community. Concepts 
that CASCADAS can borrow from EJBs are more related to aspects of enterprise 
computing, e.g., reliability, load balancing, security and persistency. 

5.2.2 CORBA Component Model 
The Common Object Request Broker Architecture (CORBA) Component Model, short 
CCM, is a general purpose component model for distributed computing systems, based on 
the CORBA middleware [37][38] . CORBA provides platform independent communication 
in distributed computing systems [38]. This is achieved by the standardised description of 
software (application) programming interfaces (API) by the Interface Description Language 
(IDL) and the transport protocol General Inter-Operation Protocol (GIOP). 

The CORBA Component Model advances the concept of software in CORBA to the 
concept of components [37]. For this purpose, CCM introduces the terms Basic 
Component and Extended Component. Basic components are made of attributes and the 
equivalent interface. Attributes are used to write and read the component configuration. 
The equivalent interface represents the functionality of the component, i.e., its API. In 
addition to basic components, extended components are made of facets, receptacles and 
event source and sink. A facet is a single aspect of the component’s API, i.e., a particular 
functionality implemented in the component. The sum of all facets results in the equivalent 
interface. Receptacles allow other components to “plug into” the component to be notified 
on events. The event source publishes defined events, whereas the event sink consumes 
them. 
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CCM supports platform independent, loosely-coupled communication between 
components. 

CASCADAS goes beyond CCM by introducing an ACE model capable of supporting 
autonomic features like situation awareness, self-organisation, aggregation etc. Concepts 
that CASCADAS can borrow from CCM are the communication principles of components, 
i.e., attributes, facets, receptacles and event sources and sinks, and the concepts 
envisioned for platform independent communication. 

 

6 ACE component model  

This section describes how the goals of the ACE component definition, the requirements 
collected and the partners’ agreement has generated a conceptual and functional design of 
the ACE. 

6.1 The ACE conceptual model 
The conceptual model describes the results of the WP1 partners’ discussions about the 
main concepts that an ACE has to cover and support in order to implement the autonomic 
communication principles as described in section 2. In Figure 8 it is depicted a conceptual 
model of the ACE to fix all the architectural aspects the model of the ACE has to deal with. 

  

 
Figure 8 Conceptual UML diagram of the ACE base model 
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As seen in this diagram, ACEs may be composed in two different ways: externally and 
internally. Externally composed ACEs collaborate loosely to provide a service, while every 
single ACE remains visible as an independent entity. Internal composition aims at providing 
a service by mutual collaboration of ACEs through binding them more strictly: a new ACE 
emerges that is representing the whole ensemble and ACEs which can be  found to be 
“within” this emerging ACE (in this section the emerging ACE is referenced as combined 
ACE and all aggregated ACEs as contained ACEs). 

There are at least two models an ACE knows. On the one hand a self-model, representing 
its own context-dependent behaviour and caring for self-awareness; on the other hand an 
environment model, used for situation-awareness. The environment model may be the set 
of available self-models from other ACEs in combination with any other information 
communicated by the knowledge network. If during the course of the CASCADAS project, it 
turns out that other ACEs solely generate context information, these two models may 
collapse into a single one. This seems to be happening in the case of internal composition: 
the self-model of a combined ACE seems to be the environment model of all contained 
ACEs. 

Communication between ACEs is message based, facilitating a time and spatial 
decoupling of the communication partners, for example by following mechanisms as 
surveyed by the authors of [11]. Messages may be buffered when their receivers are 
unavailable, they could be multiplexed for point-to-multipoint communication, they may be 
routed for indirect communication between ACEs, and they can be delivered 
asynchronously avoiding the requirement for synchronisation among ACEs. Messaging 
may include semantic routing which means that a recipient may be addressed via its 
semantic properties instead of a logical or physical address. 

Every ACE resides in a location, which marks a position within the knowledge network, 
giving it access to the stigmergic information within that area. ACEs are supposed to be 
able to move between locations and are free to migrate to any place where at least one 
ACE is already in existence. The purpose of moving ACEs between locations is to optimise 
resource use. Examples are that ACEs may move closer to their clients to reduce 
communication costs, or to locations where they might be executed more efficiently to 
increase service quality. ACEs decide autonomously when and where to move, 
consequently they might have other reasons to move other than the ones given above. 

Furthermore, we have identified the notion of a Plan, which is an explicit formulation of the 
way an ACE is supposed to act. ACEs are not only executing plans (which in turn dictates 
their behaviour), but also managing plans by creating, choosing, changing, rearranging, 
and removing them and thereby effectively changing their potential behaviour. The 
planning concept promises to enable adaptation and self-organisation capabilities. 

6.2 The ACE functional model 
This section points out how the concepts described in the previous section are mapped on 
to the main functional blocks contained in an ACE. 

ACEs are structured in two parts. A common part is exposed through a so-called “common 
interface”, which needs to be offered by every ACE and serves as the basic mechanism for 
enabling self-similarity and a specific part, available through a “specific interface” that 
contains the specific functionality of an ACE. This concept is influenced by previous work of 
some partners as published in [12]. As we do not expect every ACE to implement the 
common functionality by itself, a mechanism has to be researched that is able to relay 
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access of an interface transparently to another interface (e.g., by propagating functionality 
binding information like an updated service access point location from one ACE to another 
or by offering a proxy role and relaying messages). This will be of importance when 
migrating ACEs, using internal composition or creating ACEs based on other ones. A 
convenient way of creating ACEs would be the cloning of existing ACEs, resulting in 
inheritance of all common bindings from the parent ACE. 

The Figure 9 shows the proposal for an ACE structure: every element will be described and 
detailed in the following sections. 

 

Specific Part

Self-Model

Reasoning Engine Message
handler

GA Facilitator Common Interface

 
Figure 9 ACE structure 
For a better understanding,  Figure 10 lists the meaning of the graphical symbols used in 
Figure 9 

Specific Interface

Specific feature

Goal Achievable

Goal Needed  
Figure 10 ACE structure legenda 
The following table summarizes the correlation of the functional blocks defined in Figure 9 
with the concepts described in the ACE conceptual model: 

Concept 
Architectural 
element Description 

ACE ACE 

The ACE concept is implemented as 
a basic component which contains 
all the elements needed to 
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Concept 
Architectural 
element Description 

implement the ACE features. 

Message Message Handler 

Messages exchanged in a given 
format (e.g. XML) which carry the 
information needed to implement 
self-organization and other group 
features among ACEs. The 
MessageHandler is the ACE element 
capable to parse the incoming 
messages/outcoming messages, 
forwarding them to the proper ACE 
element. 

Behaviour GN/GA 

A formal semantic description (e.g. 
xml) of the goal the ACE is able to 
achieve and of the goal the ACE 
need in order to achieve its own 
goals. 

Model - Self-Model Self-Model 

A representation of the ACE 
behaviour that comprises the way in 
which features of the specific part 
have to be called to achieve the goal. 

Model - Environment Reasoning 
Engine/Facilitator

The environment is represented in 
the internal state of ACE contained 
in the Reasoning Engine component. 
The Facilitator, defines alternatives 
to the basic plan in order to face 
changing conditions. 

Plan Self-Model The Self-Model describes the plan to 
achieve a given goal by the ACE. 

 

6.3 The Common Interface  
The Common Interface is basically the way ACEs communicate and interact with the world 
outside (i.e., other ACEs or the environment). The communication is message-based and 
then the Common Interface is implemented by a Message Handler which is able to 
understand a fixed set of messages. The ACE collaborations and aggregations are 
exclusively carried out by the exchange of these messages. 

The basic set of messages addressed by the Common interface is: 

o Goal needed (GN): a sort of request, with a semantic description attached, which 
specifies what kind of functionalities the ACE needs from other ACEs, to achieve 
its goals.  
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o Goal Achievable (GA): this message is used by an ACE to state what kind of task 
it is able to provide. It has also a semantic description and typically will be used to 
communicate to other ACEs what an ACE is able to do. 

  

 
The figure 11 below is a simple example of a call-flow with a proposal sent by ACE1 (i.e., 
GA) to a certain number of ACEs and the dialog between the ACE1 and an ACE receiver 
(e.g., ACE2) which needs the advertised features of the ACE1.The ACE2 discovers a 
semantic matching of a received goal-achievable with its goal-needed, it sends back a kind 
of acknowledgment to the ACE1. 

 
 ACE1 ACE2 ACE3 ACEn 

Send(GA) 

Send(GA) 

Send(GA)

SendAnswer(MatchFound)

 
Figure 11 Call-flow  
The GN-GA protocol does not generate a flood of GN request to all the ACEs. The GN-GA 
protocol is a semantic advertisement protocol by which ACEs advertise their capabilities 
through the GA message. One solution to limit the flooding overhead is the implementation 
of a sort of semantic time-to-live: if the incoming GA (i.e., the features described) belongs 
to the same semantic domain of the receiver ACE then the GA is propagated otherwise it is 
discarded as it is possible that ACE’s neighbours are not interested in that GA as well.   

The mechanism described above is based on the following main assumption: if the GA 
received doesn’t pertain to the semantic domain of the receiver ACE, it would be high 
probable that neither the receiver's neighbours are interested in that GA, so in most cases 
it is better not to forward the message.  

The semantic domain is defined by all the ACES where the GA/GN matching is satisfied.   

6.4 The Specific Part 
The Specific Part contains the ACE specific functions. It exposes these functions through 
the Specific Interface. 

The Specific Interface contains a description of each function of the ACE Specific Part: the 
set of features which characterize the ACE behaviour. For each feature a semantic 
description of the job the ACE is able to do (GA) and the indispensable and essential 
actions and conditions to accomplish it (GN) are specified. 

For example, given a specific function which executes a query on a DB containing personal 
data information, the semantic description of the GA could be something like: “get people 
profile” and the GN could  be something like: “a connection with a database is necessary”. 

Besides the two main component of an ACE as explained above we envision some 
additional elements necessary to support the ACE as described in the following sections. 
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6.5 The Self Model 
The Self-Model describes the possible states for the ACE and the possible transitions 
between pairs of states. In other terms, it could be defined as a state machine. Therefore 
the Self-Model is a description of the steps the ACE will execute to achieve its goals. 

Any state is described by a semantic description used by the ACE to reason about its 
current state with the help of the Reasoning Engine.  

The transition functions are the specific features which must be invoked during a state 
transition. 

The ACE Self-Model is published to the outside world using the GN – GA protocol i.e., a 
semantic advertisement protocol by which ACEs advertise their capabilities. 

6.6 The Reasoning Engine 
The reasoning engine executes (the implementation of) the self-model and its main role is 
to keep trace of: 

 The state reached in the Self-Model execution. Eventually, it may take trace of the 
history, storing the previous states. 

 The environment: any GA coming from other ACEs. 

Mainly, it has to be able to run the state machine representing the self-model. It should 
check if a transition may take place invoking the proper specific features if specified, and it 
has to properly represent the semantic description of the new state reached. 

Briefly the reasoning engine:  
• Tracks the Environment Model  
• Runs the Self-Model. 
 

6.7 The Facilitator 
 
The Facilitator will be the core autonomic part of the ACE, adapting its behaviour to the 

changing conditions, situations or faults. 
The adaptation of the behaviour means changing the self-model state machine when a 

specific feature exhibits different behaviour depending on its state.  
 In order to achieve this, the self-model “developer”, or any autonomic mechanism should 

insert in the original self-model some additional transition to adapt the ACE behaviour. We 
call such additional transition Join Point (JP) added on the fly to modify dynamically the 
behaviour of the self-model. 

The activity of the Facilitator could be summarized as follows: 
• The Reasoning Engine will trigger any changes perceived in the environment or in 

the ACE’s internal state (self-model) to the Facilitator. 
• The Facilitator is able to identify the proper action i.e., JPs in order to adapt the self-

model to the sensed environment modification.  
 
The following picture shows a simple template based example implementing the previous 

schema: 
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Facilitator

state1 state2

state3

state4

state5

state6

state7

JP1
<template1, Join-point 1>

<template2, Join-point 2 >
JP2

 

Figure 12 Schema of the facilitator interaction mechanisms 
 
For example, let us have a self-model state machine with 7 states (figure 12) and a 

facilitator configuration with a change condition defined when state 3 is reached. If template 
1 is matched, the JP1 is activated and the self-model is modified (from state 3 to state 6 
skipping state 5).  

The complex situation what we have in mind is quite close an inference engine to face 
any problem arisen during the ACE activity.   

6.8 Example1: ACE Personal 
This section is devoted to an example to explain the ideas behind the ACE components. 

Let us suppose that we have an ACE, called ACE Personal, running on a mobile device 
(e.g., PDA) whose main task is to collect data from the user’s mobile when she/he comes 
in a specific geographical area. The ACE Personal starts: 

 Collecting data when a specific SMS is received by the mobile device. 

 Advertising other ACEs interested in personal data when the user comes into a 
specific area. 

The GA/GN messages for the ACE personal data are: 

GN: SMS received from a Service Provider Localization System 

GA: get Personal Data.  

We do not cover the case when the user goes out from the interested area. In that case, an 
additional message should be sent by the ACE, advertising that the personal data of the 
user is no longer valid. Obviously, in a real world such a situation should be monitored and 
managed in a proper way. 

  

6.8.1 Self-Model 
The following picture shows a representation of the Self-Model for the ACE Personal: 
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Position checked Personal Data 
Achieved

In Geographic
Area

Personal Data
Sent

f1

f1 f2

f3

 
This example doesn’t contain any implementation details. The semantic description is 
given in a natural language and the self-model states are described with simple tuples 

 
 

State State desc. Description 
Position 
Checked 

<Position, Lon, Lat, 
Reached> 

The ACE has checked its 
position (location) 

In 
Geographic 
Area 

<Area, X,Y,Z,W, In> When the ACE is in the 
geographic area covered by 
the Ads Screen service it 
receives a star-up sms 
message. 

<Data, Personal, Age, 
Achieved> 
<Data, Personal, 
Gender, Achieved> 

The ACE has read data from 
the handset device. 

Personal 
Data 
Achieved 

The ACE has sent the 
personal data to interested 
ACEs (ACE population 
aggregator). 

Personal 
Data Sent 

<Data, Personal, Age, 
Sent> 
<Data, Personal, 
Gender, Sent> 

 

6.8.2 Specific Part and Specific Interface 
The following table describes all the specific functions contained in the specific part of the 
ACE and referenced in the Self-Model above: 
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ID Name Description GN GA 

F1.GN1: Location-
based APIs installed 
on the handset 

F1 checkPosition Poll the location 
system through the 
handset APIs in 
order to understand 
its geographic 
position. 

F1.GN2: UMTS 
coverage 

Position X,Y is 
Reached 

F2.GN1: Personal 
data management 
APIs installed on the 
handset 

F2 getPersonalData Retrieve the 
personal data from 
the handset device. 

F2.GN2: personal 
data store enabled; 

Personal Data 
retrieved 

F3 sendPersonalData Send the personal 
data to the interested 
ACEs. 

None Personal Data 
Sent 

F4 resetData Reset the data 
collected in the 
previous execution 

None Data reset 

 

The Facilitator should be equipped to face any exceptional case arisen during the 
execution: for example when the user turns off the device before the ACE sends the data 
or the user goes out from the specific area. The Facilitator should recognize the situation 
described and it has to modify the self-model to avoid, in this case, any data inconsistency. 
In order to recognize the special situation described, the facilitator should monitor the 
states held by the reasoning engine and has to do a matching of such states on its 
templates. The states of the Self Model are recorded in the reasoning engine. So, 
conditions as:  

 the handset is turned off and the user is still in the specific geographic area,  

 the handset is turned on and the user is out of the geographic area  

should be recognized and managed by the facilitator.  

The following picture shows the modified Self-Model needed to adapt to the situation 
above: 



 

IST IP CASCADAS “Component-
ware for Autonomic, Situation-aware 
Communications, And Dynamically 

Adaptable Services” " 

Bringing Autonomic Services to Life 

 

Editor: Antonio Manzalini  

Position checked Personal Data 
Achieved

In Geographic
Area

Personal Data
Sent

f1

f1 f2

f3

Personal Data 
Achieved

JP1

f4

 
The Facilitator should be configured in the following way: 

Template Self-Model Join Point 

<Handset, turned off> JP1 

<Data, Personal, *, Achieved> 

<Position, Lon, Lat, Not Reached> 

 

7 Supportive Technologies  

The objective of this section is to elaborate about the technologies that might be adopted 
for developing the ACE architectural model that is described in chapter 5. This section has 
been structured in sub-sections per each block of the ACE architectural model where the 
potential implementing technologies are described. 

7.1 Inter-ACE communication 
As CASCADAS is focusing on highly distributed and dynamically changing networks, inter-
ACE communication is built exclusively on message-based communication. The basic 
building blocks of communication flow are Messages, which can be transmitted using 
various types of low-level protocols, transparently to the ACE. On the technical level, the 
Message Handler implementation realizes and carries out concerning low-level tasks.  
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The Message Handler provides high-level interfaces for sending and receiving messages, 
supporting several addressing schemes and reliability models. 

7.1.1 Message Format 
Messages are XML documents in order to support interoperability and independent 
implementation. Messages are defined in the name space “CASCADAS/ACE” and have to 
adhere to a specific message format as detailed in the following XML Schema: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:ace="CASCADAS/ACE" xmlns:xs="http://www.w3.org/2001/XMLSchema" 
targetNamespace="CASCADAS/ACE"> 
 
 <!-- Base type for addresses --> 
 <xs:complexType name="Address"> 
<xs:complexContent> 
   <xs:extension base="xs:anyType"/> 
  </xs:complexContent> 
 </xs:complexType> 
 
 <!-- Base type for messages --> 
 <xs:complexType name="Message"> 
  <xs:sequence> 
   <xs:element name="Destination" type="ace:Address" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element name="Source" type="ace:Address" minOccurs="0" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="reliable" type="xs:boolean" default="false"/> 
 </xs:complexType> 
 
 <!-- Example Text  Message --> 
 <xs:element name="TextMessage"> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="ace:Message"> 
     <xs:sequence> 
      <xs:element name="Text" type="xs:string"/> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 
 <!-- Further message types follow here --> 
 
</xs:schema> 

 

As the XML Schema syntax is rather lengthy and counter-intuitive, please consider the 
picture 13 for an explanation of the structure’s specification. 
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Figure 13  Structure of an ace:TextMessage  

 

Any message processed by a Message Handler extends the basic ace:Message type. The 
same is valid for Addresses; they are deriving from the ace:Address type. A fictitious 
ace:TextMessage type has also been declared to demonstrate how the basic messages 
types are supposed to be extended. 

Minimally an XML Message consists of the following: 
- A mandatory message root element. It is fully qualified name defines the unique type 

of the message. 
- An optional "reliable" attribute which requires the Message Handler to use a 

reliable transport mechanism. 
- 0..* "Destination" tags referring to addresses where the message should be sent. 

Message Handlers may use optimisations when transmitting (e.g., if the given list of 
destinations is identical to a set of participants in a multicast communication group, 
the Message Handler might send the message only once using multicast). If no 
"Destination" tags are found in the XML message the Message Handler tries to 
reach as many other ACEs as possible (e.g., broadcast). Different addressing 
schemes may be used. 

- 0..* "Source" tags referring to addresses the message originated from. As a single 
sender might have multiple addresses (aliases) or a group of senders might 
cooperate to send a certain message, we allow for several source addresses. It is 
also possible that no source address is given; in this case the sender might want to 
remain anonymous or has no identity of its own.  
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-  Any number of other tags depending on the type of message. The exact tag/attribute 
names must be specified in the XML Schema for a message type. 

 

The Message root, reliable, Destination and Source tags/attributes of the 
Message are often referred to as the “header fields” even if they are not explicitly wrapped 
by a “header” tag. Using an explicit “header” tag would not be of any advantage, as data in 
structured XML does not need to use explicit delimiters (as in e.g., frame or packet based 
protocols) but would only increase the size of the message and slow down processing.  

Following is an exemplary text message that would be sending to two destinations, on the 
one hand a given IPv4 address and on the other a single destination out of a group of 
aliases. The source of the message would be known as the alias “Home” and the payload is 
a string. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<ace:TextMessage xmlns:ace="CASCADAS/ACE" reliable="false"> 
 <Destination> 
  <IP version="4" host="example.com" port="4711"/> 
 </Destination> 
 <Destination> 
  <OneOf> 
   <Alias>foo</Alias> 
   <Alias>bar</Alias> 
  </OneOf> 
 </Destination> 
 <Source> 
  <Alias>Home</Alias> 
 </Source> 
 <Text>Hello World!</Text> 
</ace:TextMessage> 

 

7.1.2 Message Handler 
The Message Handler is responsible for sending and receiving messages.  
- The Message Handler accepts Messages from the environment and hands them to 

the Reasoning Engine. 
- The Message Handler takes over Messages from the Reasoning Engine and delivers 

them to other ACEs. 
 

The way the Message Handler realizes the former tasks is defined on the high level only; 
we will not prescribe or specify certain protocols to use.  

For better clarity, we shall differentiate between the abstract Message Handler and the 
concrete Message Handler Implementation. The abstraction describes high-level 
functionalities and workflow while the implementation is responsible for the mapping to the 
actual implementation. The Message Handler Implementation is responsible for the 
address resolution and for the selection of the appropriate transport protocol.  

If the Message Handler is not able to fulfil a request; an error is reported (e.g., a message 
that is marked as "reliable" is given to a Message Handler that is only able to transport 
messages in an unreliable fashion).  
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Message Handlers shall use the header fields5 of the message and must not touch 
(modify, resolve, copy, etc.) other parts. Message Handlers may add extra fields to the 
header – dedicated for inter-Message-Handler purposes only (e.g., stamps, statistics) – but 
these fields shall be removed before handing the Message to the recipient. 

Message Handlers are not used as an abstraction of an overlay network. Overlay networks 
shall be built up from ACEs and not from Message Handlers. 

The Message Handler specification has mandatory and optional parts.  
 

Message Handlers must support the followings: 
- Non-reliable message sending. 
- Takeover of a Message from another Message Handler. 
- Check whether an incoming Message matches the ACE (recipient comparison) and 

hand the Message to the ACE. 
- Report errors in case of non-supported requests. 
 

Message Handlers may support the followings: 
- Reliable message sending. 
- Transactions. 
- QoS. 
- Security. 
- Other functionalities. 
 

The Message Handler Implementation must specify the followings: 
- The protocol for delivering the Message to the recipient. 
 

7.1.3 Addressing schemes 
ACE communication must ensure the possibility for both anonymous communication and 
addressing-based communication. We presume to have an ACE ID (ACE identifier) which 
is not defined more closely (it may be unique or non-unique, may be a name, an alias, 
group identifier or a set of attributes/the self-model, etc.) It is assumed that the ACE knows 
its ID(s). 

So far, the following addressing schemes have been defined: 

Broadcasting. Message is delivered to as many ACEs as possible. Missing recipient tag 
indicates broadcast. 

Recipient (list). The recipient(s) are listed (e.g., via their Aliases or IDs). Only those ACEs 
matching the recipient(s) will receive the message. 

NEARBY. Only the nearby ACEs receive the message. In this case, we make use of the 
topology of the network. The semantics of this addressing scheme also matches the 

 
5  “field” may mean tag or attribute 
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principle of locality (e.g., for pervasive services). Practically, “nearby” may mean the 1-hop 
paradigm or a similar extension (e.g., 2-hops, 3-hops). 

OneOf (list).  One of the ACEs from the recipients list will receive the message. 

The addresses used in the Message can be compared with the ACE ID, and comparison 
results in matching or non-matching.  

The result of the comparison depends on the actual compositional state of the ACE, e.g., 
tightly composed ACEs are not allowed to receive Messages directly from the outside 
world. 

Normally, the address used in the message matches the ACE if: 
- the message is a broadcast message; 
- the message is sent to the NEARBY ACEs; 

at least one of the listed recipients matches at least one of the own Ids. 

The addressing schema will be object of deep investigation in the next phase of the project. 

7.1.4 Message Types 
The exact list of message types will be defined in the next phase of the project. Messages 
will be based on the GN-GA conceptual model (or may extend it) 

7.1.5 Communication flow 
From the theoretical viewpoint, the interaction of ACEs (such as service usage, 
composition, etc.), can be divided into three phases: 

1. Discovery: the parties locate each other 

2. Contracting: the parties agree on the conditions of the interaction 

3. Interaction: the real interaction 
 

Phases may be explicit or implicit.  
In simple cases, two messages are enough for the whole interaction process (a question 
broadcasted in a GN and the answer sent back in a GA). This is a good example for 
implicit phases: the first message implicitly includes the discovery, a null-contract and the 
first step of the real interaction, while the second message implicitly acknowledges the null-
contract (by answering the question) and completes the interaction phase. 

In complex cases (e.g., such as in pervasive supervision) explicit contracting is required to 
ensure that the parties bound themselves to the explicitly specified points (e.g., the ACE 
gives access to its Message Handler for the Supervision ACE). Contracting may become 
more important in case of non-free services (charging). 
 

7.2 Reasoning Engine 
The reasoning engine is an automaton that executes the Self-Model, based on the 
received messages. Context information that enabled ACEs to show context-sensitive 
behaviour is also tracked by the reasoning engine.  
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The basic operation of the reasoning engine could be depicted as an infinite loop that can 
be described with the following meta-code. 
 
loop 
 receive message 
 determine possible transitions in the self-model 
 choose transition(s) to be performed 
 perform transition(s) & execute the side-effects(s) 
end loop 

 

The way a message is received and processed raises questions regarding parallel 
execution, synchronization and queuing. Regarding the message sources, not only 
external sources are possible but also internal ones (because of proactive behaviour and 
ability for self-configuration).  

A matching operation is needed on order to determine the effect6 of the Message on the 
Self-Model. As the matching operation is understood to be intrinsic to the self-model (or 
rather to the meta-self-model) model, that is why it is not examined in details here. 

Selecting that transition (or those transitions) which is (are) going to be performed is the 
result of planning. The simplest “plan” is to choose randomly from the possible transitions. 
Reasoning engines may allow the self-model to be active in a single state only or in 
multiple states at the same time. 

Transitions may trigger actions referring to the outside world (e.g., message sending) or to 
the specific part. 

Besides “normal mode” there is an additional, distinguished operational mode of the 
reasoning engine, called “supervision mode”. If the ACE is supervised (pervasive 
supervision), the reasoning engine switches to supervision mode enabling the supervisor to 
access the internal part. 
 

This section discusses the possible, most important characteristic properties of the 
Reasoning Engine. Further research in this field is scheduled for next year. 

7.2.1 Parallelism, synchronization, queuing 
Reasoning engines may operate in single-threaded mode or in parallel mode. As for now, 
the single threaded model seems to be enough, but to assure the generality of the model, 
also the multithreaded model is discussed. 

Single threaded execution 
Single-threaded execution means that the receiving and the work-up of the message 
happens in the same thread, consequently, the reception of the next message is blocked 
as long as the processing of the current message is not finished. Single-threaded 
behaviour prevents hard-to-reproduce synchronization problems such as cross-effects of 
independent but overlapping processed messages. On the other hand, single-threaded 
systems are more sensitive to order-related faults and deadlocks. In distributed systems, 
the delivery delay of messages may vary, depending on the actual network conditions. The 
                                                 
6  “effect” is meant on a low level, e.g. a transition becomes enabled 
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following figure shows a deadlock situation: because of unlucky delivery delays, both 
parties are waiting for the other one’s reply while the processing of the incoming messages 
is blocked so the other party is not able to reply. 

A: 
send out QA
wait for RA

B: 
send out QB
wait for RB

A B

QA

QB

waiting
for RA

waiting
for RB

 
 

Figure 14  Deadlock situation 
Timers and watchdogs are the simplest tools in deadlock detection. Deadlock prevention 
methods typically need prior knowledge about the other party and the message delivery 
times, which is not the case in a dynamically changing distributed system. 

Multi-threaded execution 
In case of multi-threaded execution, the reasoning engine can decide to process the 
incoming message on a new thread, which means that further messages can be processed 
at the same time. Obviously, a “smart” reasoning engine can detect and resolve certain 
deadlock situations (such as the one pointed out above)7. Even though this direction 
seems to be beneficial, the dummy solution is – to start a new thread for each incoming 
message – may result in cross-relationship faults. Independent messages that are 
processed overlappingly may put the self-model into corrupt/invalid states. A possible 
solution is to protect the synchronization-sensitive parts of the self-model with other tools, 
e.g., with monitor-based exclusive access. 

 Clearly, the multi-threaded execution model shall not be made “obligatory” for all ACEs, as 
it may be unnecessarily complex for some ACEs. On the other hand, in case of intrinsically 
complex ACEs (e.g., aggregated ACEs), this model may help in keeping the component 
model simple and lightweight. 

7.2.2 Message sources, proactive manner, timing 
Messages processed by the reasoning engine may originate from several sources. The 
most important sources are: 
- External sources: 

• ACE (either independent or in composition with the receiver ACE) 
• Proprietary/ Legacy devices 

- Internal sources: 

                                                 
7  It’s a possible research area how to make the reasoning engine smart enough, based on its Self- and 
Environment-Models. 
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• Specific part (return value) 
• Internal timer 

Received messages are inserted into the processing queue of the Reasoning Engine, 
where they wait to be processed. 

External message sources 
Inter-ACE communication is discussed in details in other sections of this document. 

Messages originating from proprietary/legacy devices are translated into “standard” inter-
ACE messages so technically, they do not differ from the real inter-ACE ones. 

External messages are received via the Message Handler. 

Internal message sources 
The Message Handler receives internal messages directly from the originating source. 

A message arriving from the Specific Part may be a response to former specific-part-call or 
may be produced freely, without former impulse. As the communication is strictly message-
based and is supervised by the Reasoning Engine, we think that allowing the Specific Part 
to freely generate messages does not limit the autonomy or the Self-* properties of the 
ACE, and makes it theoretically easier to show proactive behaviour. As the Specific Part 
cannot directly communicate with the ACE environment, message sending to the external 
world is also realised via a special message to the Reasoning Engine. 

Timers are used as special tools to trigger proactive behaviour. When a timer expires, it 
generates a message that can initiate processes in the Self-Model. The timer is the only 
internal element that can generate messages independently, without prior trigger. With the 
help of set-and-expire timers – which can be set to a certain amount of time and expires 
when it is over – timed and/or periodic behaviour can be realised. A special case of using a 
timer is the Null Timer when the timer is set to an infinitesimally small amount of time so 
that it expires immediately. Null Timers can be used to generate proactive behaviour.  

7.2.3 Single-state vs Multi-state engines 
From the Reasoning Engine point of view, it is an important question how many states of 
the Self-Model can be active at the same time.  

The simplest case is the Single-State model when the Self-Model is in a definite, single 
state in each moment. Single-State Reasoning Engines are simple: they use the single-
threaded model – multi-threading has no sense – with all positive and negative 
consequences (e.g., deadlock-sensitivity).  

In a Multi-State model, several states of the Self-Model can be active at the same time, and 
incoming messages are cross-probed with each active state. The Self-Model must describe 
the rules of how to maintain consistency (e.g., hierarchical states, multi-level state-
machines). In case of Multi-State Reasoning Engines, the multi-threaded message 
processing seems to be adequate, especially if the messages processed in parallel affect 
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independent state sets. The simplest Multi-State model is to execute all possible allowed8 
transitions, and not to care about how many states will become active. 

Please note that in this issue similar considerations should be taken as in the case of multi-
threaded model: it shall not be obligatory to support multi-state execution in order to keep 
simple ACEs as lightweight as possible. 

7.2.4 Determinism, planning 
Determinism becomes important if more than one transitions are allowed and the 
reasoning Engine has to choose which one(s) to perform. This choice can be understood 
as the “plan”. From the Reasoning Engine point of view, the best plan is if no choice is 
needed (e.g., because the Facilitator disabled all possible but unnecessary transitions).  

7.2.5 Supervised mode 
For supervision purposes, an ACE can be put into a contractually agreed supervised mode, 
meaning that instances of certain message types specified in the supervision contract may 
be intercepted, changed or removed. The supervision authority needs access to the 
internal message triggering and relay mechanisms of the supervised ACEs and may also 
override the decision of the Reasoning Engine and Facilitator, requiring access to the 
supervision model (e.g., currently executing Self-Model) and internal state assessment 
information. 

 

7.3 Self-model 
The goal of the Self-Model is to describe possible behaviours of the ACE. First of all the 
Self-Model defines the internal states and the transition among them. Transitions may have 
input and output. Output may be the result of the assigned action, e.g., call to the specific 
part or message sending to another ACE. 

Several descriptive formalisms can be used for the Self-Model. CASCADAS is focusing on 
three selected alternatives: extended finite state machine based description, Petri net 
based description, and SXL based description. The descriptive power of the model may 
vary depending on the formalism.  

The last subsection deals with meta-properties of the Self-Model such as determinism and 
number of active states at the same time. 
 

7.3.1 Extended finite state machine based model 
Finite state machines (FSMs) are well-known and simple tools to describe state-based 
(context-sensitive) behaviour. The bottleneck of the model lays in its simplicity: the 
descriptive power of a “normal” state machine is often not enough for real-life problems. A 
wide range of extensions are known to increase the descriptive power. Basic FSMs have 
the same descriptive power as Regular Grammars (Chomsky 3 class). 

 
8  Note that the Facilitator can turn the transitions on/off. This means that the allowedness of the 
transition does not exclusively depend on the match with the incoming message. 
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Due to the age and popularity of the FSM model, slightly different things are meant by the 
same name. In order to prevent misunderstandings, we give formal descriptions first. 

Syntax 
The basic final state automaton is a 5-tuple. 

(1) Finite State Automaton = (S, Σ, δ, q0, F) 
- S: finite set of states 
- Σ: alphabet 
- δ: set of transitions (S * Σ → S) 
- q0: initial state (q0 ∈ S) 
- F: finite set of accept states (F ⊂ S) 

In CASCADAS, we are considering the following extension directions: output, actions and 
guard conditions. 
 

The FSM extended with output is a 6-tuple: 

(2) FSM extension with O = (S, Σ, δ, q0, F, O) 
- S: finite set of states 
- Σ: input alphabet 
- δ: set of transitions 
- q0: initial state (q0 ∈ S) 
- F: finite set of accept states (F ⊂ S) 
- O: finite set of outputs 

Compared to the basic model, the introduction of the output is a big difference. The 
automaton is able to affect its environment, so it can show behaviour not only internally, but 
also externally. 
- δ = (S * Σ → S) / O, where / demarks output 
 

The FSM extended with actions is a 6-tuple. 

(3) FSM extension with A = (S, Σ, δ, q0, F, A) 
- S: finite set of states 
- Σ: input alphabet 
- δ: set of transitions 
- q0: initial state (q0 ∈ S) 
- F: finite set of accept states (F ⊂ S) 
- A: finite set of actions 

The novelty of this extension – compared to the output model – is that actions are not static 
but dynamic elements. Actions can produce more complex and more flexible behaviour, 
too (e.g., the reaction depends on the actual input of the action). 

Theoretically, four action types are possible, from which we are focusing on two: namely 
the Transition Action and Input Action. The Figure 15 shows the possible action types: 
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State Entry Action is executed when entering a state, State Exit Action when exiting it, 
Input Action depends on the actual state and input, and Transition Action is executed when 
performing a certain transition. Provisionally, input actions can be used by the Facilitator, 
and Transition Actions are the tools to refer to the specific interface, for example. 

 

S1 S2Exit
Action

Entry
Action

x

Input 
Action

Transition
Action

 
 Figure 15  Action types 
To be formally complete, here is the missing formal definition of the transition. 

- δ = (S * Σ → S) // A, where // demarks the side-effect 

Actions are functions with range and domain which are not defined in details at this point.  

Please note that this model is quite similar to the basic one (1) as it doesn’t send response 
to the outside. 

 

The FSM extended with actions and output capturing is a 7-tuple. 

(4) FSM extension with I/A/O = (S, Σ, δ, q0, F, A, O) 
- S: finite set of states 
- Σ: input alphabet 
- δ: set of transitions 
- q0: initial state (q0 ∈ S) 
- F: finite set of accept states (F ⊂ S) 
- A: finite set of actions 
- O: finite set of outputs 

In this extension, the output of the transition is generated by the action. Of course, static 
answers (no action just constant output) are also possible. Using this extension, the ACE is 
able to show dynamic and context-sensitive behaviour. 

Action and output seem to be similar but are different. Output is a data (message, 
information), while action is a call to an executable code (method call, script).  

Assuming that the input alphabet of the actions is I and the output alphabet is X: 
- A = ( I → X ) / O  

We are  not using the A = ( I → O) notation because it is confusing. The action may result 
in changes in the internal state of the specific part (which is independent of the Self-Model), 
and as a side-effect, produces some output. 

There is a special case when the output alphabet of the action is part of the input alphabet 
of the automaton (O ⊂ Σ). In this case, actions trigger further actions.  
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From security viewpoint, it is recommended that truly external output is produced at a few 
points of the automaton only. Other parts of the automaton should trigger these points to 
produce the desired external output message. So, normally, the output alphabet of “normal 
actions” should be a subset of Σ (O ⊂ Σ), while a limited number of selected actions may 
have different output (O ∩ Σ ≠ ∅). 

 

The FSM extended with guard conditions is a 6-tuple. 

(5) FSM extension with G = (S, Σ, δ, q0, F, G) 
- S: finite set of states 
- Σ: input alphabet 
- δ: set of transitions 
- q0: initial state (q0 ∈ S) 
- F: finite set of accept states (F ⊂ S) 
- G: a finite set of functions with Boolean return values 

In the guard condition based model, transitions can be executed if the guard condition 
allows it. 
- δ = ( S * Σ → S / A | g(S * Σ) ), where | demarks condition 

Guard conditions raise interesting theoretical questions. If the guard condition is complex 
enough, it can substitute the whole “state” concept, so it may be possible to create an 
identical 1-state-and-complex-guard-condition automaton for each many-states-normal 
FSM. Of course if we restrict not only the range of the function but also the domain of it, 
then such non-orthogonal cases can be excluded9. 

Guard conditions can help in the state explosion problem. If the state consists of n state 
factors (fi), and the actual value of fx is only interesting in the aspect if it is above or below a 
border. In this case, it is a good idea to remove fx from the state and check it using a guard 
condition. 

Guard conditions can also help if the possible number of states is infinite. 

Usability in CASCADAS 
As ACEs must show some behaviour (through sending messages), the basic FSM model 
(1) is definitely not enough. 

For very simple ACEs, the FSM with output (2) could be enough. The problem of this 
model is that it is inflexible, it is not much able to adapt to the situation, as outputs are 
statically predefined. Another problem is that type (2) FSMs must have finite state space, 
which means that e.g., no floating point number or non-ranged integer can be in its state 
descriptor. 

For more complex ACEs, where more descriptive power is needed and there is the danger 
of the state explosion, too, the combination of type (4) and type (5) FSMs are encouraged. 
The guard condition helps in managing the originally infinite state space, and actions with 
output make it possible to produce dynamically adaptable responses. 
A possible mapping is: 

 
9  It’s a different question if we gain anything with the restriction or not. 
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- The Self-Model is a type (4,5) extended FSM, managed by the Reasoning Engine. 
- In case of non-determinism, the Facilitator has to select the transition(s) that should 

be executed (by disabling the others). 
- The Facilitator should be triggered by Input Actions.  
- There should be two types of Transition Actions: Call to the specific interface and 

External message sending. Calls to the specific interface should be able to produce 
(O ⊂ Σ) outputs. External message sending should be able to produce outgoing 
messages and hand it to the Message Handler for delivery. 

- Guard conditions should help in keeping the state space finite (technically, guard 
conditions “fake” those state factors that are excluded from the state space). 

Other considerations 
Meta-properties of the FSM may describe further attributes of the model: 
- Behaviour in case of non-determinism, which is important if the Facilitator didn’t 

make the model (or more precisely the model part) deterministic. A choice number 
can define how many transitions should be executed (1 or *) of the possible ones. 

- Number of active states (1 or *). In a simple FSM, exactly one state is active at each 
time. In an extended model, any number of states can be active. 

- Parallel planes of the FSM. It is possible that the self-model consists of several 
parallel FSMs (e.g., one of them can produce the outgoing messages), which are 
working independently of each other. Parallel planes may have different descriptors 
(meta-properties). 

Other extension possibilities. 
- Trust/probability/credibility values assigned to transitions. As a future connection 

point with the security domain Reputation/Trust system, values may be assigned to 
transitions describing the prospective consequences (for example, , for a cheating 
partner, the transition will sooner or later lead me into S1 with the probability of 0.8 
and to S2 with the probability of 0.2; while for a reliable partner, S1/0.01and S2/0.99.) 
This can help in planning and optimization tasks. Values might be defined on the 
Self-Model itself, or on the abstraction of the Self-Model (where a series of transitions 
is represented by a single one). 

 

7.3.2 Petri net based model 

Syntax  
The Petri nets (PN) are networks consisting of places, transitions and directed arcs. An arc 
always runs between one place and one transition, never between transitions nor between 
two places. The place from where the arc is pointed to the transition is the input place of 
the transition, the place where the arc points to from the transition is the output place of the 
transition. A transition can have any number of input and output places.  

The places may contain any number of tokens. The distribution of the tokens over the 
places of the network is the marking of the network.  

A transition is enabled and can fire, whenever every input places of it contain at least one 
token. When the transition fires, it consumes tokens from every input places, performs 
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some internal processing, and outputs tokens to each output place of it. The firing is a 
single non-preemptable event. Although multiple transitions can be enabled at the same 
time, only one of them can be fired. The enabled transitions are fired automatically and 
non-deterministically. No transition is required to fire – the enabled transition fires 
whenever it will, between T=0...∞. 

 

p1

p2

t1

p4

p3

t2

p5

t3   
Figure 16 A basic Petri net 

The formal description of the basic Petri net is a 4-tuple , where ),,,( 0MFTP
- P is the set of places.  
- T is the set of transitions.  
- F is the set of directed arcs, also known as the flow relations. This set is subject to 

the restriction: , namely that no arcs may connect two places or 
two transitions.  

)()( PTTPF ×∪×⊆

-  is the initial marking, where each ΝPM →:0 Pp∈  places contain  tokens.  Nn∈

There are two widely used extensions to this basic model.  

-  is the set of arc weights, which assigns to every +→ NFW : Ff ∈  arcs an  
weight meaning that when the transition is fired, it consumes weight number of 
tokens from the arbitrary input place, and puts weight number of tokens to the 
arbitrary output place.  

+∈ Nn

- +NS:K →  is the set of place capacity restrictions, which assigns to each Ss∈  
places an +Nn∈  capacity restriction, the maximum number of tokens the place can 
hold. As a result, a PN can be called a k-bounded PN, when every places of it 
possibly can contain maximally k tokens.  

 

Important properties 
Petri nets have some important properties: reachability, liveliness and boundedness.  
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Reachability )MR(N, 0  means all the possible states (markings) that can be reached in 
network N from an initial M0 marking. In modelling, reachability can be used to check 
whether the system gets ever into a desired or even an unwanted state.  

Liveliness is defined by means of the execution of transitions. Five levels of liveliness are 
defined: a t transition is L0 live (or dead) if there is no )ML(N,σ 0∈→  firing sequence 
(trajectory), where t can be executed. L1 live for t means, that there is at least one 
trajectory, in which t can be fired. The PN is live (L4 level), if in any reachable M markings 
( )MR(N,M 0∈∀ ) any t transition is L1 live.  

As seen previously, boundedness can be explicitly defined for a Petri net if capacity 
restrictions are introduced. However, boundedness can also be a possible property of PNs 
without this explicit definition. A PN having no explicit capacity restrictions for its places is 
k-bounded, if the k is maximum number of tokens that any place can possibly contain in 
any reachable states. A PN is safe if it is  1-bounded.  

Extensions 
There are several extensions to the basic model; we mention some of them possibly 
interesting in CASCADAS.  

Guard conditions: the arcs can have a guard conditions defined; which means an additional 
precondition to be fulfilled before the transition can fire. If the guard condition evaluates 
false, the transition is disabled, even if it contains the required number of tokens on all 
input places of it.  

Colouring: the basic PN utilises only one type of tokens that cannot be differentiated. The 
coloured Petri net introduces the token colouring: every token has an additional colour or 
value property. Transitions then can classify tokens based on their values. This extension 
makes possible e.g., flowing different packets through the network.  

Prioritized Petri net: in such a PN the transitions have priorities. A transition can then be 
fired only if there are no competing transitions having a higher priority.  

Usability in CASCADAS 
The Petri net comes to scope of CASCADAS at the description of the self-model; the 
usability of this formalism is currently under discussion.  

Compared to the FSM, PN basically makes it possible to have the same action-result 
oriented execution. Guard conditions can function the same way as in the FSM case. In 
fact, with the restriction that each transition of the PN has exactly one input and exactly one 
output place, we define an FSM.  

However, utilizing the full spectrum of PN’s descriptive power, we can have more 
sophisticated models in some ways. The multiple prerequisites of a transition (multiple 
input places) allow for a more detailed precondition description of the state-to-state 
transitions.  

The non-deterministic execution of the firing of transitions makes the Petri net a good tool 
to describe execution of concurrent and competitive tasks. Desired properties of the 
modelled system can be checked by validating the properties of the network, e.g., the 
system can never get locked if the Petri net is live or the effect of a bounded system 
resource can be examined by defining a k-bounded place.  
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7.3.3 SXL based model 
SXL [32] is an executable language for modelling simple behaviour. The basic idea is to 
give the description of the behaviour in a black box format, called pre-conditions and post-
conditions. The model presented here is motivated by SXL but is not completely identical to 
it. 

Syntax 
The SXL based model is a 4-tuple: 

SXL model = (S, I, O, T) 
- S: set of states 
- I: input alphabet of tasks 
- O: output alphabet of tasks 
- T: set of tasks 

The goal of SXL is to describe the behaviour of tasks in sense of input-output, 
preconditions and side-effects. 

The description of a task is a 4-tuple: t = (pre, i, o, post) 
- pre ⊂ S, pre-conditions of the task 
- i: input of the task 
- o: output of the task 
- post ⊂ S, post-conditions of the task (side-effects) 

The task description is two-faced: it can describe simple (even state insensitive) black box 
behaviour through input-output relationships, while keeping the possibility to describe state-
sensitive behaviour and side-effects as well.  

Originally, SXL was to model finite-state problems. But with applying similar extensions as 
in the case of FSM (e.g., guard conditions), it is possible to extend it so that to describe 
infinite state problems, accordingly. 

Usability in CASCADAS 
For CASCADAS, SXL can be of relevance when describing the behaviour of the specific 
interface. As the specific interface acts as a quasi-black-box (only observable through its 
input-output), the SXL based task description seems to provide enough descriptive power 
for it. In case of non-state-preserving specific part functions, post-conditions are empty 
sets, and preconditions are guard conditions on the input parameters. For state-preserving 
specific part functions, preconditions may refer to more than the input parameters, and 
post-conditions are non-empty. 

Using SXL for the specific interface makes it possible for the Facilitator to re-design the 
self-model (assign/un-assign actions to the transitions of the extended FSM, or rather re-
design the given part of the FSM according to the effects of the transitions). As SXL is a 
formal description, classical deduction techniques and reasoning can be used. For 
example, if an incoming request asks for a value that can be calculated as f○g○h (f,g,h are 
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specific part calls), the Facilitator can deduce it using the pre-and post-conditions of f,g,h, 
and create a corresponding state and transition sequence in the FSM. 

SXL is only formalism; so it is not meant to substitute GN-GA descriptors but to provide a 
descriptive syntax/semantics to them. 

7.4 Facilitator 
As being the core autonomic component of the ACE architecture, the Facilitator is in 
charge of ensuring  the autonomic behaviour. To “ensure the autonomic behaviour” means 
that the Facilitator is able to review the Self-Model: add/remove transitions, add/remove 
states, and assign/modify transition actions. 

The Facilitator is put in action when the Reasoning Engine receives a Message. Based on 
its knowledge, the Facilitator may initiate changes in the Self-Model (e.g., make it 
deterministic for the Message) or may not intervene. The input of the facilitator is at least: 
the Self-Model (and the actual state of it), the description of the available Specific Part 
functionalities, and the incoming message. The Facilitator shall be able to formally process 
(“understand”?) all these information.  

The Facilitator may include complex inner procedures/tools like simulation, environment 
modelling (e.g., history database, probability assignment), self-modelling (e.g., re-working 
of the Self-Model after aggregation), simulation, planning or optimization. 

Adding a new transition to the Self-Model is often mentioned as Join Point concept in this 
document (the new transition is called Join Point). 

7.5 Specific part 
The specific part of the ACE contains executable code, and is executed in a container, also 
known as sandbox. This means that the specific part has limited access to resources, and 
has no control about its own instantiation, or assignment to clients. 

Specific part functions have abstract interface descriptions, where input/output 
relationships, preconditions and side-effects are given. The abstract description should be 
written in a language/formalism that is understandable for the Facilitator/Reasoning 
Engine/Self-Model. 

7.5.1 Resource access 
Specific interface semantically describes the specific part of an ACE and allows the internal 
part of the ACE to access the features implementing the specific part. The specific part can 
provide output for the incoming call, which (the output) may be a request to send a 
message to the external world, but the last decision still remains in the hands of the 
Reasoning Engine only, and they can be invoked through the Reasoning Engine only. 
Technically, there might be one exception: when the function is meant to wrap/abstract a 
simple but low-level resource access (e.g., a database call), it may open legacy 
communication channels to do so, but as it is outside of the ACE architecture, nothing can 
be guaranteed. In order to get guarantees, the low-level communication shall be performed 
using a Specific Message Handler which is able to translate ACE-understandable 
Messages to the resource-specific low-level messages and vice versa.  

The specific part can be accessed through the Reasoning Engine, exclusively. 
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7.6 Interfaces 
There are some interfaces identified so far which will be detailed and enriched during the 
future activities of the work package: 
- Inter-ACE communication: Message Handler and GN-GA protocol 
- ACE – Legacy protocols: Specific Interface 
- Intra-ACE technical interfaces: 

o Message Handler – Reasoning Engine 
o Specific Part – Reasoning Engine 
o Facilitator – Reasoning Engine 

8 Realising Autonomicity 

This section aims to explain how the key autonomic features are supported by the 
architecture described in the previous sections. 

8.1.1 Self-Similarity 
Self-similarity is about aggregating components while the aggregate is identical to its parts. 
The purpose may be to increase scalability, ease configuration or re-use solutions on 
different levels of abstraction. A common example is a WWW server accessible via a 
domain name, but actually distributing the load to a number of different computers that 
serve the same content, have the same structure, address, etc. ACEs are not only self-
similar because their common interfaces are not allowed to be modified and have to be 
implemented by every ACE, but also because of the way composition is handled, allowing 
for an elegant use of group communication. For example consider an aggregated 
ensemble of 10 ACEs whose functionality is accessible via 10 specific interfaces. Using a 
composed ACE, the same functionality could still be accessible via a single common 
specific interface using group communication primitives, like one-of or all. A composed 
ACE would transparently delegate the task to either a single ACE or the whole group. 
Please refer to [14] on how such primitives may be implemented.  

A controversially discussed topic refers to the difference between the hosting environment 
of an ACE and the ACE itself. If one refers to a system exhibiting the self-similarity 
property, wouldn’t that also mean that both, execution environments as well as ACEs 
would need to expose this property? A solution was found within the so-called “Service 
Execution Environment ACE’s”. SEE ACEs are elements that implement the container 
functionality used to host other ACEs. They create a homogeneous environment 
independent of the underlying platform by realising the common interface and the 
functionality described by the specific interface of a SEE ACE. Realising the hosting 
container as an ACE itself ensures the principle of self-similarity and enables the hosting 
code to benefit from all other functionality available via the common part of ACEs.  

SEE functionality is specific to the underlying platform (e.g., certain communication 
primitives) and the code realising it is found in the specific part of an SEE ACE. Every ACE 
needs to expose a similar common part; the SEE ACE does this by exporting its specific 
functionality through the common interface, enabling other ACEs to bind to its specific 
functionality by using the common interface. This mechanism is depicted in Figure 17. 
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Figure 17 Concept of the Service Execution Environment ACE 
 

As SEE ACEs are highly dependent on the underlying platform it may be assumed that 
they will not be able to migrate because of their dependence on immobile functionality. 
Regarding bootstrapping, we will not prescribe a standard way of bootstrapping SEE 
ACEs, but leave this question open to the decision of implementers. A certain 
implementation has to decide in a proprietary way on how to supply the initial binding 
information to the bootstrapped element. 

8.1.2 Self-Healing by Using Dynamic Binding 
Automated repair of functional dependencies among cooperating ACEs is the most 
prominent example for self-healing aspects. Figure 18 shows an example of binding 
dependencies between two ACEs: A SEE ACE and a hypothetical “My” ACE as a 
placeholder for any other ACE. The Common Interface is understood as the access point 
to the Common Part, exposing bindings to the functionality that is shared among both 
ACEs. The Common Part contains functionality that implements the Common Interface. In 
the case of a SEE ACE the SEE Interface is used to realise the Common Interface 
functionality. 
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Figure 18 Dependencies of ACE bindings 
 

The SEE Interface gives an access point to the platform dependent code of the SEE ACE, 
realised in the SEE Specific Part. The SEE Interface is a Specific Interface. “My” Interface 
is also a Specific Interface and realised in the “My” Specific Part, which is a Specific Part. 
The “My” ACE consists of a Common Part and the “My” Specific Part.  

Implementing a new ACE, i.e., “My” ACE, requires a definition of the “My” Interface and its 
realisation in the “My” Specific Part. If “My” ACE would be realised as an internal 
composition of existing ACEs, then “My” ACE would inherit all bindings from its contained 
ACEs. It would then be possible for it to substitute existing bindings with appropriate ones 
from its own Specific Part.  

As we expect an SEE ACE to be the first available element on a host, several ACEs would 
be created with functional bindings depending on this element (e.g., during a migration or 
copy of the SEE ACE). If we consider the case of termination of such an ACE, then a direct 
consequence would be the invalidation of functional bindings of any dependent ACEs 
which would lead to the termination of the cooperating ensemble of ACEs. Automatically 
repairing such functional bindings, e.g., by redistributing components as proposed in [13], 
re-assigning roles of the provisioned cooperation or by automatically searching and using 
ersatz bindings are understood to contribute to the self-repair capabilities of ACE based 
systems. 
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8.1.3 Self-Organisation 
Self-organisation means that the structural and functional organisation of ACEs is done by 
the ACEs themselves. This has to include the discovery of other ACEs and provisioning of 
transport-level communication primitives and addressing; negotiation of rules, policies, 
roles, and constraints of the cooperation; instantiation and supervision of the cooperation. 
As the CASCADAS project has a complete work package (WP 3) devoted to self-
organisation, the results of this work package will be used for selection of appropriate 
strategies and optimal parameterisation of the cooperative models. 

Key features of ACEs to enable self-organisation capabilities are found in the composition 
mechanisms (both external and internal one), by exploiting context information accessible 
through the knowledge network, and in the potential ability to migrate between different 
locations.  

8.1.4 Self-Awareness and Self-Description 
Regarding to ACEs, the term “Self-Awareness” is used in reference to the concepts of 
introspection and reflection. “Self-Description” is a necessary prerequisite for achieving 
self-awareness, as it gives an ACE the ability to communicate models of behaviour among 
ACEs using common semantics.  

Introspection refers to the capability of an ACE to gain information about its structural and 
functional constitution, e.g., the interfaces of services exposed by itself or contained ACEs 
or certain operational data. This information is to be accessed at runtime through analysis 
of the self-model that every ACE has access to. 

Reflection aims at enabling an ACE to obtain information about how its behaviour is 
perceived by other ACEs, in other words to obtain an external view about itself. This is 
useful for example in scenarios where an ACE becomes a victim of a hostile program (e.g., 
a virus). In this case an ACE using introspection might conclude wrongly that it is working 
in a normal operation mode, whereas other ACEs might notice that it started to transmit a 
huge amount of malformed messages on the network. Using reflection would enable an 
ACE to ask its neighbours about their opinion of the situation, in the example leading the 
ACE to realise that it has been compromised. Reflection is to be implemented as part of 
the protocol that enables ACEs to exchange models and reason about the abilities. 

8.2 Interaction models and communication primitives 
ACEs need to interact with each others in order to establish collaborations, aggregation 
and to get knowledge about other ACEs features and the information. Moreover ACEs 
need to deal with different degree of dynamicity avoiding any centralized control.  

8.2.1 The importance of the interaction model 
In order to achieve the goals mentioned above we need an interaction model which allows 
ACEs to coordinate each others, access the right information from other ACEs and 
invoking the right ACEs without any centralized orchestration, planning or directory service.  
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8.2.2 The basic assumption 
The interaction model outlined in this section is mainly based on the assumption that if two 
ACEs are close (using a proper distance heuristic) we can state that the two ACEs deal 
with correlated topics. 

The assumption above should allow facing one of the key challenges in avoiding 
centralized control: limiting the overhead due to the interactions among ACEs needed to 
reach an agreement and to plan the right organisation.  

The implementation of a “semantic time to live” (STT) is needed to avoid that each time an 
ACE advertise its goal this is forwarded to any other ACEs without any filter. This STT 
works on the following assumption: if an ACE receives a GA related to its GN, it would be 
proper to forward that information to neighbour ACEs. 

The following example should briefly clarify what we would like to achieve. The picture 
below contains 4 ACEs, A1 and A2 provided by the service provider 1 and B1 and B2 
provided by service provider 2. These are the GAs provided by the different ACEs: 

 A1: it is able to run a query to get the Italian city; 

 A2: query to get a list of restaurant given a city name; 

 B1: it runs a simple web server; 

 B2: it is able to produce HTML pages given information about cities; 

A1

A2

B1

B2

GA: query to get restaurants in a given city

GA: send web page to a web site

GA: query to get Italian city

GA: produce web page with italian cities info

A2.GA

SP1

SP2

 
Figure 19  interaction example 
What we need in the example above is that the semantic distance between A1 and B1 is 
such as A1 doesn’t forward any information to B1 about A2’s GAs. On the other hand if the 
example is that in the picture below, where the service provider 2 contains a node B3 
which is able to produce HTML pages containing restaurant information, it is needed that 
B1 forward the A2’s GA information to ACEs in service provider 2. 
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A1

A2

B1

B2

GA: query to get restaurants in a given city

GA: send web page to a web site

GA: query to get Italian city

GA: produce web page with italian cities info

A2.GA

SP1

SP2

B3

GA: produce web page with italian restaurant info

A2.GA

 
Figure 20  interaction example 
 

8.2.3 A metaphor behind the interaction model 
We can describe the key aspect of the interaction model using a simple metaphor: the ACE 
interaction model is fully based on a “pull” semantic which generates a sort of altruistic 
environment. Each ACE is altruistic: if it is able to do something and it is available to do it, 
the ACE will propose its help other ACEs as much as possible.  

The key challenge in this case is to ensure that the information about ACEs availability and 
capability reaches the proper ACEs in a proper time. In order to achieve this we think it is 
needed to define a P2P protocol aimed to diffuse the information about ACEs capability 
and availability in a proper time and without unacceptable overhead. 

The interaction model based on the above mentioned metaphor works in the following way: 

 If an ACE is able to do something (expressed by means of GAs) and it is ready to 
do it, it advertises this information to all its neighbours (the information is flooded 
through the network). 

 When an ACE needs something (expressed by means of GNs), it doesn’t need to 
start any search. The ACE only need to check if someone has already advertised a 
feature (GA) which can address its need: this mechanism may be based on a 
blackboard metaphor. 

8.2.4 Self-aggregation by means of P2P interactions 
As stated in previous sections, the current vision is based on the idea that a certain service 
(to be created, executed and provided to a User) could be described in terms of a set of so-
called goals. 

As specified in the previous section, the key idea for enabling self-aggregation is the 
propagation of specific information (in terms of GAs) rather than “needs” (in terms of GNs). 
For achieving that, we introduce a so-called virtual board (distributed over the ACEs) where 
both goals (needed and achievable) could be semantically described and reported: 
Specifically the part of this DVB reporting the ACE GNs is exposed externally, and then 
accessible, via the so-called common interface, by other ACEs; the part of the ACE virtual 
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board reporting the GAs is kept internal the ACE and it is necessary to make the semantic 
matching GN – GA. 

In summary, each ACE contributes to the overall virtual board (of the ACE population) 
reporting an internal portion of this distributed board subdivided into two parts:  

• A public part, accessible via the common interface by other ACEs, listing the GN; 
given a semantic matching GN – GA, the GN will be taken by the proper ACE enabling the 
self-aggregation. 

• An internal part listing the GA propagated; it should be noted that the key concept 
enabling the autonomic self-aggregation is the propagation of specific information (in terms 
of goal achievable) rather needs (in terms of GN). 

As mention, the key concept is the peering propagation of a semantic representation of 
goal achievable. 

The second main assumption is that each ACE receiving such information (semantic 
representation of goal achievable from another peer ACE) makes three actions: first it 
checks the semantic matching with its GN; second it elaborates the received information 
combining it with a semantic description of its GAs; third it properly propagates the resulted 
information (combination of the received GAs with its own GAs) to other peers. 

The figure below shows the sort of GAs wave which is created among ACEs based on the 
defined mechanism. 

 
Figure 21 Self-aggregation of ACEs by distributing semantic information 
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Furthermore, it should be noted that: 

In case an ACE discovers a semantic matching of a received GA with its GN, it sends back 
a kind of acknowledgment to the ACE in charge of the matching GA; the next step is a take 
of such GN by the tail-end ACE. 

When an ACE elaborates the received information and it combines it with a semantic 
description of its GA, it modulates the “intensity” of the “wave” of information (to be 
propagated); for example it may reduce the level of details of the semantic description of 
the list of GA. This should allow scaling in the distributed information and a natural smooth 
decade of the propagation. 

An ACE expected to propagate the elaborated information (combination of the received 
goal-achievable with its goal achievable) to other ACEs belonging to the same semantic 
domain. Anyway from time to time, randomly, an ACE has to propagate the information to 
other domain in order to allow the potential cross-correlation of different domains. This 
cross-connection of domain may enable satisfying new unpredicted emerging needs 
(creation of new services). As a matter of fact, randomness and fluctuations (or noise) play 
an important part in allowing the system to find optimal solutions and/or lead to the 
emergence of the right type of collective pattern. In some cases, it is even possible to 
identify an optimal level of noise that is most likely to result in the discovery of optimal 
solutions. Optimality is largely achieved through a balance between fluctuations leading to 
innovation and accuracy of communications or behaviour. Emergent collective behaviour 
can be robust with respect to other sources of noise like, for example, fluctuations caused 
by small populations of atypical individuals. Noise can be present either at the level of the 
individuals themselves or in the interactions among them. Since it appears to play a key 
role in natural self-organizing phenomena, incorporating a controlled noise level into the 
design of artificial systems and determining its optimal intensity should be given a high 
priority if such systems are expected to exhibit similar emergent properties. 

Another aspect of this approach, is allowing a best-fitting competition among ACEs offering 
the similar GA to match a certain GN. Even if there might be more than one ACE making a 
take of a GN, there will be a natural selection of the “best” ACE matching the GN (also in 
terms of performance or other criteria). Another aspect, strictly related to this, is ACE 
replication (cloning): when an ACE self-detects some internal degradation may self-
replicate itself and self-exclude itself from participating (with expected performances) to a 
certain aggregation. 

8.2.5 A use case: behavioural pervasive advertisement 
This section describes the application of the self-aggregation solution proposal for BPA 
scenario introduced in chapter 3. 

The description doesn’t contain any implementation details and for sake’s clarity every 
semantic description of the ACE goals needed and achievable reported in DVB is given in 
natural language using XML tags to make a distinction between the types of goal. 

The picture below is the representation scenario in which ACEs act and collaborate to 
realize the application: it will be the result of the ACEs aggregation mechanism based on 
the semantic matching GA-GN among ACEs. Four different actors take part to the 
scenario: 1 telecommunication operator and 3 service providers. The service provider 3 is 
needed to start the scenario, sending a SMS to the user’s device: this match with the GN of 
the ACE aboard the user handset. The same mechanism is valid toward other ACEs .The 
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arrows in the following pictures are useful to understand the wave of GAs among ACEs to 
achieve the main goal of the scenario i.e., to personalize the Screen Window with the Ads 
images based on the population preferences deduced from the information gathered from 
user’s handsets.  

 
Figure 22   Scenario representation 
 
The picture below shows the blackboard (DVB) made available by each ACE participating 
to the application. Each blackboard contains the GN needed by the ACE to reach its goal. 
The publication of the blackboard allows each ACE to take part to the application as soon 
as an ACE, able to meet the need exposed, sends that information by the GA wave and 
this latter is able to reach the blackboard through the inter-domains links. 
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Figure 23  ACE Distributed Virtual Board 
As soon as the ACEs Personal receive the activation SMS, they start to propagate the 
wave with their goal achievable. As the ACEs are properly connected to an ACEs network 
and an inter-domain links exist, the wave should be able to propagate until the right ACEs 
are reached. The figure below shows the waves propagation in the scenario. 
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Figure 24 Wave propagation 
The two following pictures show how the random mechanism introduced in the model 
enables an autonomous behaviour. The unpredictable event is that a new handset with 
new capabilities is introduced in the operator network. Such handset is able to show 
images so in its blackboard the GN = “Images needed” appears. As soon as this GN 
appears and the wave containing the GA = Ads Images is randomly propagated a new 
inter-domain link is created: images and operator handset start to deal each other so the 
ACEs of the service provider 2 start to sent images to the operator handset too.  

The following picture shows the new propagation of the GA = Ads Images wave due to the 
introduction of a new handset with video capability in telecommunication operator network. 
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Figure 25 The new wave propagation 
 

The key idea for enabling component self-aggregation by the propagation some specific 
information (in terms of goal achievable) rather needs (in terms of goal needed). For doing 
that a so-called virtual board (distributed over the components) is introduced. Both goals 
(needed and achievable) could be semantically described and reported in such distributed 
virtual board (DVB): specifically the part of this virtual board reporting the component goal 
needed is exposed externally, and as such it is accessible, via the so-called common 
interface, by other components; the part of the virtual board reporting the goal achievable is 
kept internal the components and it is necessary to make the semantic matching goal 
needed – goal achievable.
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8. Conclusion 

The overall objective of CASCADAS is to develop and to validate an autonomic framework 
for the creating, executing and provisioning situation-aware and dynamically adaptable 
communication services. Particularly the project development activities aims at prototyping 
a toolkit based on distributed self-similar components (Autonomic Communication 
Elements) characterised by autonomic features (self-configuration, self-optimization, self-
healing, self-protection, etc.) The Autonomic Communication Element (ACE) is the basic 
component abstraction over which the CASCADAS vision is built. Services are being 
created and executed (in a distributed way) by the self-aggregation of ACEs 

This document, constituting the Deliverable 1.1 “Report on state-of-art, requirements and 
ACE model”, reports the main results (achieved during the first year of the project) about 
the definition  of the ACE model and its interactions mechanisms.  

CASCADAS adopted an application-oriented approach: starting from scenarios and related 
use-cases, high level requirements have been defined and are being used by WPs 
activities. 

The project vision aims at validating a so-called Open Autonomic Service Environment 
defined as a highly distributed platform for composing, executing and providing situation-
aware and dynamically adaptable communication and content services.  

The essence of the innovation stands in exploiting highly distributed resources (even 
commodity servers of low-cost) running autonomic S/W solutions based on distributed self-
aggregating, self-organising components (ACEs). The overall self-similar architecture (both 
pizza-box servers and clusters of servers have the same functional architecture) supporting 
a distributed replication of data. This will allow high levels of availability also starting from 
low-cost commodity H/W. 

 The tool-kit developed in the project will be used to demonstrate such vision specifically 
referring to some use-cases of particular interest (such as pervasive communications, etc).
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ACE   Autonomic Communication Element 

ACF   Autonomic Communication Forum 

AutoComm Autonomic Communication 

HSDPA High-Speed Downlink Packet Access 

GPS  Global Positioning System 

GSM  Global System for Mobile Communication 

HSDPA High-Speed Downlink Packet Access 

HSUPA High-Speed Uplink Packet Access 

PDA  Personal Digital Assistant 

P2P  Peer to Peer 

QoS  Quality of Service 

RFID  Radio Frequency Identification 

TMF  Telemanagement Forum 

UMTS  Universal Mobile Telecommunications Services 

UWB  Ultra-Wideband 

Wi-Max Worldwide Interoperability for Microwave Access 
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